首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Clearance of apoptotic cells is of key importance during development, tissue homeostasis and wound healing in multi-cellular animals. Genetic studies in the nematode Caenorhabditis elegans have identified a set of genes involved in the early steps of cell clearance, in particular the recognition and internalization of apoptotic cells. A pathway that orchestrates the maturation of phagosomes containing ingested apoptotic cells in the worm has recently been described. However, many steps in this pathway remain elusive. Here we show that the C. elegans SNX9-family member LST-4 (lateral signaling target) and its closest mammalian orthologue SNX33 play an evolutionary conserved role during apoptotic cell corpse clearance. In lst-4 deficient worms, internalized apoptotic cells accumulated within non-acidified, DYN-1-positive but RAB-5-negative phagosomes. Genetically, we show that LST-4 functions at the same step as DYN-1 during corpse removal, upstream of the GTPase RAB-5. We further show that mammalian SNX33 rescue C. elegans lst-4 mutants and that overexpression of truncated SNX33 fragments interfered with phagosome maturation in a mammalian cell system. Taken together, our genetic and cell biological analyses suggest that LST-4 is recruited through a combined activity of DYN-1 and VPS-34 to the early phagosome membrane, where it cooperates with DYN-1 to promote recruitment/retention of RAB-5 on the early phagosomal membrane during cell corpse clearance. The functional conservation between LST-4 and SNX33 indicate that these early steps of apoptotic phagosome maturation are likely conserved through evolution.  相似文献   

2.
Yu X  Lu N  Zhou Z 《PLoS biology》2008,6(3):e61
Apoptotic cells in animals are engulfed by phagocytic cells and subsequently degraded inside phagosomes. To study the mechanisms controlling the degradation of apoptotic cells, we developed time-lapse imaging protocols in developing Caenorhabditis elegans embryos and established the temporal order of multiple events during engulfment and phagosome maturation. These include sequential enrichment on phagocytic membranes of phagocytic receptor cell death abnormal 1 (CED-1), large GTPase dynamin (DYN-1), phosphatidylinositol 3-phosphate (PI(3)P), and the small GTPase RAB-7, as well as the incorporation of endosomes and lysosomes to phagosomes. Two parallel genetic pathways are known to control the engulfment of apoptotic cells in C. elegans. We found that null mutations in each pathway not only delay or block engulfment, but also delay the degradation of engulfed apoptotic cells. One of the pathways, composed of CED-1, the adaptor protein CED-6, and DYN-1, controls the rate of enrichment of PI(3)P and RAB-7 on phagosomal surfaces and the formation of phagolysosomes. We further identified an essential role of RAB-7 in promoting the recruitment and fusion of lysosomes to phagosomes. We propose that RAB-7 functions as a downstream effector of the CED-1 pathway to mediate phagolysosome formation. Our work suggests that phagocytic receptors, which were thought to act specifically in initiating engulfment, also control phagosome maturation through the sequential activation of multiple effectors such as dynamin, PI(3)P, and Rab GTPases.  相似文献   

3.
During apoptosis, the dying cell activates an intrinsic mechanism that quickly dismantles itself. The apoptotic cell corpses are then recognized and removed by neighboring cells or professional phagocytes. How dying cells are degraded after internalization is poorly understood. Here, we report the identification and characterization of unc-108, the Caenorhabditis elegans homolog of the human Rab GTPase 2, as a novel component involved in the degradation of apoptotic cells. unc-108 is expressed and functions in the engulfing cells and is likely to affect the degradation rather than the internalization of cell corpses. Similar to other Rab GTPases, unc-108 also affects endocytosis, acting in the endosomal trafficking from early to late endosome and late endosome to lysosome. UNC-108 co-localizes with RAB-5, RAB-7 and LMP-1 to the phagosome and promotes cell corpse degradation, possibly by mediating phagosome maturation.  相似文献   

4.
We identify here a novel class of loss-of-function alleles of uncoordinated locomotion(unc)-108, which encodes the Caenorhabditis elegans homologue of the mammalian small guanosine triphosphatase Rab2. Like the previously isolated dominant-negative mutants, unc-108 loss-of-function mutant animals are defective in locomotion. In addition, they display unique defects in the removal of apoptotic cells, revealing a previously uncharacterized function for Rab2. unc-108 acts in neurons and engulfing cells to control locomotion and cell corpse removal, respectively, indicating that unc-108 has distinct functions in different cell types. Using time-lapse microscopy, we find that unc-108 promotes the degradation of engulfed cell corpses. It is required for the efficient recruitment and fusion of lysosomes to phagosomes and the acidification of the phagosomal lumen. In engulfing cells, UNC-108 is enriched on the surface of phagosomes. We propose that UNC-108 acts on phagosomal surfaces to promote phagosome maturation and suggest that mammalian Rab2 may have a similar function in the degradation of apoptotic cells.  相似文献   

5.
Mycobacterium tuberculosis (M. tb) is an intracellular pathogen that can replicate within infected macrophages. The ability of M. tb to arrest phagosome maturation is believed to facilitate its intracellular multiplication. Rab GTPases regulate membrane trafficking, but details of how Rab GTPases regulate phagosome maturation and how M. tb modulates their localization during inhibiting phagolysosome biogenesis remain elusive. We compared the localization of 42 distinct Rab GTPases to phagosomes containing either Staphylococcus aureus or M. tb. The phagosomes containing S. aureus were associated with 22 Rab GTPases, but only 5 of these showed similar localization kinetics as the phagosomes containing M. tb. The Rab GTPases responsible for phagosome maturation, phagosomal acidification and recruitment of cathepsin D were examined in macrophages expressing the dominant-negative form of each Rab GTPase. LysoTracker staining and immunofluorescence microscopy revealed that Rab7, Rab20 and Rab39 regulated phagosomal acidification and Rab7, Rab20, Rab22b, Rab32, Rab34, Rab38 and Rab43 controlled the recruitment of cathepsin D to the phagosome. These results suggest that phagosome maturation is achieved by a series of interactions between Rab GTPases and phagosomes and that differential recruitment of these Rab GTPases, except for Rab22b and Rab43, to M. tb-containing phagosomes is involved in arresting phagosome maturation and inhibiting phagolysosome biogenesis.  相似文献   

6.
During programmed cell death, the clearance of apoptotic cells is achieved by their phagocytosis and delivery to lysosomes for destruction in engulfing cells. However, the role of lysosomal proteases in cell corpse destruction is not understood. Here we report the identification of the lysosomal cathepsin CPL-1 as an indispensable protease for apoptotic cell removal in Caenorhabditis elegans. We find that loss of cpl-1 function leads to strong accumulation of germ cell corpses, which results from a failure in degradation rather than engulfment. CPL-1 is expressed in a variety of cell types, including engulfment cells, and its mutation does not affect the maturation of cell corpse–containing phagosomes, including phagosomal recruitment of maturation effectors and phagosome acidification. Of importance, we find that phagosomal recruitment and incorporation of CPL-1 occurs before digestion of cell corpses, which depends on factors required for phagolysosome formation. Using RNA interference, we further examine the role of other candidate lysosomal proteases in cell corpse clearance but find that they do not obviously affect this process. Collectively, these findings establish CPL-1 as the leading lysosomal protease required for elimination of apoptotic cells in C. elegans.  相似文献   

7.
Apoptotic cells are swiftly engulfed by phagocytes and degraded inside phagosomes. Phagosome maturation requires phosphatidylinositol 3-phosphate [PtdIns(3)P], yet how PtdIns(3)P triggers phagosome maturation remains largely unknown. Through a genomewide PtdIns(3)P effector screen in the nematode Caenorhabditis elegans , we identified LST-4/SNX9, SNX-1, and SNX-6, three BAR domain-containing sorting nexins, that act in two parallel pathways to drive PtdIns(3)P-mediated degradation of apoptotic cells. We found that these proteins were enriched on phagosomal surfaces through association with PtdIns(3)P and through specific protein-protein interaction, and they promoted the fusion of early endosomes and lysosomes to phagosomes, events essential for phagosome maturation. Specifically, LST-4 interacts with DYN-1 (dynamin), an essential phagosome maturation initiator, to strengthen DYN-1's association to phagosomal surfaces, and facilitates the maintenance of the RAB-7 GTPase on phagosomal surfaces. Furthermore, both LST-4 and SNX-1 promote the extension of phagosomal tubules to facilitate the docking and fusion of intracellular vesicles. Our findings identify the critical and differential functions of two groups of sorting nexins in phagosome maturation and reveal a signaling cascade initiated by phagocytic receptor CED-1, mediated by PtdIns(3)P, and executed through these sorting nexins to degrade apoptotic cells.  相似文献   

8.
《Autophagy》2013,9(8):1267-1268
Autophagy is a catabolic process through which damaged organelles and protein aggregates are delivered to lysosomes for degradation. Autophagy genes are reported to promote exposure of “eat me” signals on the surface of apoptotic cells, but whether they function in engulfing cells is not clear. Recently, we found that the autophagy mutants atg-18 and epg-5 are defective in removing apoptotic cells derived from the C. elegans Q neuroblast, a phenotype that can be fully rescued by expression of ATG-18 and EPG-5 in the engulfing cell. Loss of ATG-18 or EPG-5 does not affect cell corpse engulfment but causes defects in phagosomal recruitment of RAB-5 and RAB-7 and formation of phagolysosomes. EPG-5, ATG-18 and LGG-1 are sequentially recruited to phagosomes, suggesting that they function at different steps of phagosomal maturation. Our studies indicate that autophagy genes function sequentially to promote apoptotic cell corpse degradation in the engulfing cell.  相似文献   

9.
Phagosome maturation is the process by which internalized particles (such as bacteria and apoptotic cells) are trafficked into a series of increasingly acidified membrane-bound structures, leading to particle degradation. The characterization of the phagosomal proteome and studies in model organisms and mammals have led to the identification of numerous candidate proteins that cooperate to control the maturation of phagosomes containing different particles. A subset of these candidate proteins makes up the first pathway to be identified for the maturation of apoptotic cell-containing phagosomes. This suggests that a machinery that is distinct from receptor-mediated endocytosis is used in phagosome maturation.  相似文献   

10.
Dynamins are large GTPases that oligomerize along membranes. Dynamin''s membrane fission activity is believed to underlie many of its physiological functions in membrane trafficking. Previously, we reported that DYN-1 (Caenorhabditis elegans dynamin) drove the engulfment and degradation of apoptotic cells through promoting the recruitment and fusion of intracellular vesicles to phagocytic cups and phagosomes, an activity distinct from dynamin''s well-known membrane fission activity. Here, we have detected the oligomerization of DYN-1 in living C. elegans embryos and identified DYN-1 mutations that abolish DYN-1''s oligomerization or GTPase activities. Specifically, abolishing self-assembly destroys DYN-1''s association with the surfaces of extending pseudopods and maturing phagosomes, whereas inactivating guanosine triphosphate (GTP) binding blocks the dissociation of DYN-1 from these membranes. Abolishing the self-assembly or GTPase activities of DYN-1 leads to common as well as differential phagosomal maturation defects. Whereas both types of mutations cause delays in the transient enrichment of the RAB-5 GTPase to phagosomal surfaces, only the self-assembly mutation but not GTP binding mutation causes failure in recruiting the RAB-7 GTPase to phagosomal surfaces. We propose that during cell corpse removal, dynamin''s self-assembly and GTP hydrolysis activities establish a precise dynamic control of DYN-1''s transient association to its target membranes and that this control mechanism underlies the dynamic recruitment of downstream effectors to target membranes.  相似文献   

11.
Egami Y  Araki N 《PloS one》2012,7(4):e35663
Rab20, a member of the Rab GTPase family, is known to be involved in membrane trafficking, however its implication in FcγR-mediated phagocytosis is unclear. We examined the spatiotemporal localization of Rab20 during phagocytosis of IgG-opsonized erythrocytes (IgG-Es) in RAW264 macrophages. By the live-cell imaging of fluorescent protein-fused Rab20, it was shown that Rab20 was transiently associated with the phagosomal membranes. During the early stage of phagosome formation, Rab20 was not localized on the membranes of phagocytic cups, but was gradually recruited to the newly formed phagosomes. Although Rab20 was colocalized with Rab5 to some extent, the association of Rab20 with the phagosomes persisted even after the loss of Rab5 from the phagosomal membranes. Then, Rab20 was colocalized with Rab7 and Lamp1, late endosomal/lysosomal markers, on the internalized phagosomes. Moreover, our analysis of Rab20 mutant expression revealed that the maturation of phagosomes was significantly delayed in cells expressing the GDP-bound mutant Rab20-T19N. These data suggest that Rab20 is an important component of phagosome and regulates the phagosome maturation during FcγR-mediated phagocytosis.  相似文献   

12.
Phagosomal biogenesis is central for microbial killing and antigen presentation by leukocytes. However, the molecular mechanisms governing phagosome maturation are poorly understood. We analyzed the role and site of action of phosphatidylinositol 3-kinases (PI3K) and of Rab GTPases in maturation using both professional and engineered phagocytes. Rab5, which is recruited rapidly and transiently to the phagosome, was found to be essential for the recruitment of Rab7 and for progression to phagolysosomes. Similarly, functional PI3K is required for successful maturation. Remarkably, inhibition of PI3K did not preclude Rab5 recruitment to phagosomes but instead enhanced and prolonged it. Moreover, in the presence of PI3K inhibitors Rab5 was found to be active, as deduced from measurements of early endosome antigen 1 binding and by photobleaching recovery determinations. Though their ability to fuse with late endosomes and lysosomes was virtually eliminated by wortmannin, phagosomes nevertheless recruited a sizable amount of Rab7. Moreover, Rab7 recruited to phagosomes in the presence of PI3K antagonists retained the ability to bind its effector, Rab7-interacting lysosomal protein, suggesting that it is functionally active. These findings imply that (i) dissociation of Rab5 from phagosomes requires products of PI3K, (ii) PI3K-dependent effectors of Rab5 are not essential for the recruitment of Rab7 by phagosomes, and (iii) recruitment and activation of Rab7 are insufficient to induce fusion of phagosomes with late endosomes and lysosomes. Accordingly, transfection of constitutively active Rab7 did not bypass the block of phagolysosome formation exerted by wortmannin. We propose that Rab5 activates both PI3K-dependent and PI3K-independent effectors that act in parallel to promote phagosome maturation.  相似文献   

13.
To prevent excessive degradation of internalized antigens, which could destroy the peptides recognized by T lymphocytes, dendritic cells have developed several strategies that limit proteolytic activity in phagosomes. The recruitment of the NADPH oxidase NOX2 prevents acidification of phagosomes, limiting antigen degradation. Here, we show that dendritic cells derived from Rab27a-deficient ashen mice show increased phagosome acidification and antigen degradation, causing a defect in antigen cross-presentation. Enhanced acidification results from a delay in the recruitment to phagosomes of a subset of lysosome-related organelles containing the membrane subunits of NOX2. The Rab27a-dependent recruitment of these "inhibitory lysosome-related organelles" to phagosomes continuously limits acidification and degradation of ingested particles in dendritic cells, thus promoting antigen cross-presentation.  相似文献   

14.
Apoptotic corpses can be engulfed and cleared by many other cell types in addition to ‘professional’ phagocytes such as macrophage. Studies of several organisms have contributed to the understanding of apoptotic corpse engulfment. Two partially redundant engulfment pathways have been characterized that act even in non-professional phagocytes to promote corpse engulfment. This review summarizes some recent progress in signaling by these pathways, including the exposure of eat-me-signals on apoptotic cells, and insights from Drosophila on the roles of the bridging receptor Six Microns Under, the non-receptor tyrosine kinase Shark, and store-operated calcium release in the Draper/Ced-1 pathway of corpse recognition and internalization. The mechanism of apoptotic phagosome maturation is outlined, and possible connections between corpse engulfment and proliferation, cell competition, and immunity are discussed.  相似文献   

15.
The uniformity of phagosome maturation in macrophages   总被引:6,自引:0,他引:6  
Many studies of endocytosis and phagocytosis presume that organelles containing a single kind of internalized particle exhibit invariant patterns of protein and phospholipid association as they mature inside cells. To test this presumption, fluorescent protein chimeras were expressed in RAW 264.7 macrophages, and time-lapse ratiometric fluorescence microscopy was used to measure the maturation dynamics of individual phagosomes containing IgG-opsonized erythrocytes. Quantitative analysis revealed consistent patterns of association for YFP chimeras of beta-actin, Rab5a, Rab7, and LAMP-1, and no association of YFP chimeras marking endoplasmic reticulum or Golgi. YFP-2xFYVE, recognizing phosphatidylinositol 3-phosphate (PI(3)P), showed two patterns of phagosome labeling. Some phagosomes increased labeling quickly after phagosome closure and then lost the label within 20 min, whereas others labeled more slowly and retained the label for several hours. The two patterns of PI(3)P on otherwise identical phagosomes indicated that organelle maturation does not necessarily follow a single path and that some features of phagosome maturation are integrated over the entire organelle.  相似文献   

16.
Mycobacterium tuberculosis arrests phagosomal maturation in infected macrophage, and, apart from health significance, provides a superb model system to dissect the phagolysosomal biogenesis pathway. Here, we demonstrate a critical role for the small GTPase Rab14 in maintaining mycobacterial phagosome maturation block. Four-dimensional microscopy showed that phagosomes containing live mycobacteria accumulated Rab14 following phagocytosis. The recruitment of Rab14 had strong functional consequence, as a knockdown of endogenous Rab14 by siRNA or overexpression of Rab14 dominant-negative mutants (Rab14S25N and Rab14N125I) released the maturation block and allowed phagosomes harboring live mycobacteria to progress into phagolysosomes. Conversely, overexpression of the wild-type Rab14 and the constitutively active mutant Rab14Q70L prevented phagosomes with dead mycobacteria from undergoing default maturation into phagolysosomal organelles. Mechanistic studies demonstrated a role for Rab14 in stimulating organellar fusion between phagosomes and early endosomes but not with late endosomes. Rab14 enables mycobacterial phagosomes to maintain early endosomal characteristics and avoid late endosomal/lysosomal degradative components.  相似文献   

17.
《Autophagy》2013,9(12):2022-2032
Phagocytosis and autophagy are two lysosome-mediated cellular degradation pathways designed to eliminate extracellular and intracellular constituents, respectively. Recent studies suggest that these two processes intersect. Several autophagy proteins have been shown to participate in clearance of apoptotic cells, but whether and how the autophagy pathway is involved is unclear. Here we showed that loss of function mutations in 19 genes acting at overlapping or distinct stages of autophagy caused increased numbers of cell corpses in C. elegans embryos. In contrast, genes that mediate specific clearance of P granules or protein aggregates through autophagy are dispensable for cell corpse removal. We showed that defective autophagy impairs phagosome maturation and that autophagy genes act in parallel to the class II phosphoinositide (PI)/phosphatidylinositol (PtdIns) 3-kinase PIKI-1 to regulate phagosomal PtdIns3P in a similar manner as VPS-34. Our data indicate that autophagy may coordinate with PIKI-1 to promote phagosome maturation, thus ensuring efficient clearance of apoptotic cells.  相似文献   

18.
Apoptotic cell degradation is a fundamental process for organism development, and impaired clearance causes inflammatory or autoimmune disease. Although autophagy genes were reported to be essential for exposing the engulfment signal on apoptotic cells, their roles in phagocytes for apoptotic cell removal are not well understood. In this paper, we develop live-cell imaging techniques to study apoptotic cell clearance in the Caenorhabditis elegans Q neuroblast lineage. We show that the autophagy proteins LGG-1/LC3, ATG-18, and EPG-5 were sequentially recruited to internalized apoptotic Q cells in the phagocyte. In atg-18 or epg-5 mutants, apoptotic Q cells were internalized but not properly degraded; this phenotype was fully rescued by the expression of autophagy genes in the phagocyte. Time-lapse analysis of autophagy mutants revealed that recruitment of the small guanosine triphosphatases RAB-5 and RAB-7 to the phagosome and the formation of phagolysosome were all significantly delayed. Thus, autophagy genes act within the phagocyte to promote apoptotic cell degradation.  相似文献   

19.
Many mycobacteria are intramacrophage pathogens that reside within nonacidified phagosomes that fuse with early endosomes but do not mature to phagolysosomes. The mechanism by which mycobacteria block this maturation process remains elusive. To gain insight into whether fusion with early endosomes is required for mycobacteria-mediated inhibition of phagosome maturation, we investigated how perturbing the GTPase cycles of Rab5 and Rab7, GTPases that regulate early and late endosome fusion, respectively, would affect phagosome maturation. Retroviral transduction of the constitutively activated forms of both GTPases into primary murine macrophages had no effect on Mycobacterium avium retention in an early endosomal compartment. Interestingly, expression of dominant negative Rab5, Rab5(S34N), but not dominant negative Rab7, resulted in a significant increase in colocalization of M. avium with markers of late endosomes/lysosomes and increased mycobacterial killing. This colocalization was specific to mycobacteria since Rab5(S34N) expressing cells showed diminished trafficking of endocytic tracers to lysosomes. We further demonstrated that maturation of M. avium phagosomes was halted in Rab5(S34N) expressing macrophages supplemented with exogenous iron. These findings suggest that fusion with early endosomes is required for mycobacterial retention in early phagosomal compartments and that an inadequate supply of iron is one factor in mycobacteria's inability to prevent the normal maturation process in Rab5(S34N)-expressing macrophages.  相似文献   

20.
At the phagosome level, Mycobacterium spp. alters activation and recruitment of several "Ras gene from rat brain" proteins, commonly known as Rab. Mycobacterial phagosomes have a greater and sustained expression of Rab5, Rab11, Rab14 and Rab22a, and lowered or no expression of Rab7, Rab9 and Rab6. This correlates with increased fusion of the phagosomes with early and recycling endosomes acquiring some features of early phagosomes, allowing the bacteria to gain access to nutrients and preventing the activation of anti-mycobacterial mechanisms. The expression of constitutively active mutants of Rab from the early stage endosomes prevents the maturation of phagosomes containing latex beads or heat-inactivated mycobacteria. Silencing of these mutants by interference RNA or dominant negative forms induces the maturation of mycobacterial phagosomes. The mechanisms have not been established by which mycobacteria alter the expression of these GTPases and thereby shift the phagolysosomal maturation. The problem can be explained by alterations in the recruitment of proteins that interact with Rab, such as phosphoinositide 3-kinases and early endosomal antigen 1. Identifying the mechanisms used by Mycobacterium spp. to disrupt the cycle of Rab activation will be essential to understand the pathophysiology of mycobacterial infections and usefully to potential drug targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号