首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasticity of neuronal excitability: Hebbian rules beyond the synapse   总被引:1,自引:0,他引:1  
Activity-dependent synaptic plasticity is classically though to be the cellular substrate for learning and memory. Recent data show that activation of glutamate receptors initiates a long-term modification in pre- or post-synaptic neuronal excitability. Similarly to synaptic plasticity, intrinsic plasticity is bidirectional and input- or cell-specific. In addition to an increase in the reliability of the input-output function, temporal precision of the neuronal discharge is improved. These forms of plasticity not only share common learning rules and induction pathways with the better known synaptic plasticity but may also contribute in synergy with these synaptic changes to the formation of a coherent mnesic engram.  相似文献   

2.
Neuronal networks are highly plastic and reconfigure in a state-dependent manner. The plasticity at the network level emerges through multiple intrinsic and synaptic membrane properties that imbue neurons and their interactions with numerous nonlinear properties. These properties are continuously regulated by neuromodulators and homeostatic mechanisms that are critical to maintain not only network stability and also adapt networks in a short- and long-term manner to changes in behavioral, developmental, metabolic, and environmental conditions. This review provides concrete examples from neuronal networks in invertebrates and vertebrates, and illustrates that the concepts and rules that govern neuronal networks and behaviors are universal.  相似文献   

3.
Häusser M  Monsivais P 《Neuron》2003,40(3):449-451
Modulation of intrinsic excitability is an alternative to classical synaptic plasticity for implementing activity-dependent changes in neuronal networks. In this issue of Neuron, Nelson et al. reveal a new form of plasticity of intrinsic excitability that can be triggered rapidly when synaptic inhibition reduces spontaneous firing, resulting in persistent enhancement of firing rate and neuronal gain.  相似文献   

4.
Hebb and homeostasis in neuronal plasticity   总被引:22,自引:0,他引:22  
The positive-feedback nature of Hebbian plasticity can destabilize the properties of neuronal networks. Recent work has demonstrated that this destabilizing influence is counteracted by a number of homeostatic plasticity mechanisms that stabilize neuronal activity. Such mechanisms include global changes in synaptic strengths, changes in neuronal excitability, and the regulation of synapse number. These recent studies suggest that Hebbian and homeostatic plasticity often target the same molecular substrates, and have opposing effects on synaptic or neuronal properties. These advances significantly broaden our framework for understanding the effects of activity on synaptic function and neuronal excitability.  相似文献   

5.
The role of short-term synaptic dynamics in motor control   总被引:5,自引:0,他引:5  
During the past few years, much attention has been given to the role of short-term synaptic plasticity, in particular depression and facilitation, in sculpting network activity. A recent study shows that synaptic depression in rhythmic motor networks could switch the control of network frequency from intrinsic neuronal properties to the synaptic dynamics. Short-term synaptic plasticity is also involved in the stabilization and reconfiguration of motor circuits and in the initiation, maintenance and modulation of motor programs.  相似文献   

6.
Epigenetic and regulatory elements provide an additional layer of complexity to the heterogeneity of anxiety disorders. MicroRNAs (miRNAs) are a class of small, noncoding RNAs that have recently drawn interest as epigenetic modulators of gene expression in psychiatric disorders. miRNAs elicit their effects by binding to target messenger RNAs (mRNAs) and hindering translation or accelerating degradation. Considering their role in neuronal differentiation and synaptic plasticity, miRNAs have opened up new investigative avenues in the aetiology and treatment of anxiety disorders. In this review, we provide a thorough analysis of miRNAs, their targets and their functions in the central nervous system (CNS), focusing on their role in anxiety disorders. The involvement of miRNAs in CNS functions (such as neurogenesis, neurite outgrowth, synaptogenesis and synaptic and neural plasticity) and their intricate regulatory role under stressful conditions strongly support their importance in the aetiology of anxiety disorders. Furthermore, miRNAs could provide new avenues for the development of therapeutic targets in anxiety disorders.  相似文献   

7.
Diverse ion channels and their dynamics endow single neurons with complex biophysical properties. These properties determine the heterogeneity of cell types that make up the brain, as constituents of neural circuits tuned to perform highly specific computations. How do biophysical properties of single neurons impact network function? We study a set of biophysical properties that emerge in cortical neurons during the first week of development, eventually allowing these neurons to adaptively scale the gain of their response to the amplitude of the fluctuations they encounter. During the same time period, these same neurons participate in large-scale waves of spontaneously generated electrical activity. We investigate the potential role of experimentally observed changes in intrinsic neuronal properties in determining the ability of cortical networks to propagate waves of activity. We show that such changes can strongly affect the ability of multi-layered feedforward networks to represent and transmit information on multiple timescales. With properties modeled on those observed at early stages of development, neurons are relatively insensitive to rapid fluctuations and tend to fire synchronously in response to wave-like events of large amplitude. Following developmental changes in voltage-dependent conductances, these same neurons become efficient encoders of fast input fluctuations over few layers, but lose the ability to transmit slower, population-wide input variations across many layers. Depending on the neurons'' intrinsic properties, noise plays different roles in modulating neuronal input-output curves, which can dramatically impact network transmission. The developmental change in intrinsic properties supports a transformation of a networks function from the propagation of network-wide information to one in which computations are scaled to local activity. This work underscores the significance of simple changes in conductance parameters in governing how neurons represent and propagate information, and suggests a role for background synaptic noise in switching the mode of information transmission.  相似文献   

8.
Activity-dependent changes in the strength of excitatory synapses are a cellular mechanism for the plasticity of neuronal networks that is widely recognized to underlie cognitive functions such as learning and memory. AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid)-type glutamate receptors (AMPARs) are the main transducers of rapid excitatory transmission in the mammalian CNS, and recent discoveries indicate that the mechanisms which regulate AMPARs are more complex than previously thought. This review focuses on recent evidence that alterations to AMPAR functional properties are coupled to their trafficking, cytoskeletal dynamics and local protein synthesis. These relationships offer new insights into the regulation of AMPARs and synaptic strength by cellular signalling.  相似文献   

9.
Perineuronal nets (PNNs) are reticular structures that surround the cell body of many neurones, and extend along their dendrites. They are considered to be a specialized extracellular matrix in the central nervous system (CNS). PNN formation is first detected relatively late in development, as the mature synaptic circuitry of the CNS is established and stabilized. Its unique distribution in different CNS regions, the timing of its establishment, and the changes it undergoes after injury all point toward diverse and important functions that it may be performing. The involvement of PNNs in neuronal plasticity has been extensively studied over recent years, with developmental, behavioural, and functional correlations. In this review, we will first briefly detail the structure and organization of PNNs, before focusing our discussion on their unique roles in neuronal development and plasticity. The PNN is an important regulator of CNS plasticity, both during development and into adulthood. Production of critical PNN components is often triggered by appropriate sensory experiences during early postnatal development. PNN deposition around neurones helps to stabilize the established neuronal connections, and to restrict the plastic changes due to future experiences within the CNS. Disruption of PNNs can reactivate plasticity in many CNSs, allowing activity-dependent changes to once again modify neuronal connections. The mechanisms through which PNNs restrict CNS plasticity remain unclear, although recent advances promise to shed additional light on this important subject.  相似文献   

10.
It is generally believed that spatio-temporal configurations of distributed activity in the brain contribute to the coding of neuronal information and that synaptic contacts between nerve cells could play a central role in the formation of privileged pathways of activity. Synaptic plasticity is not the only mode of regulation of information processing in the brain and persistent regulations of ionic conductances in some specialized neuronal areas such as the dendrites, the cell body and the axon could also modulate, in the short- and the long-term, the propagation of information in the brain. Persistent changes in intrinsic excitability have been reported in several brain areas in which activity is modified during a classical conditioning. The role of synaptic activity seems to be determinant in the induction but the learning rules and the underlying mechanisms remain to be defined. This review discusses the role of neuronal activity in the induction of intrinsic plasticity in cortical, hippocampal and cerebellar neurons. Activation and inactivation properties of ionic channels in the axon determine the short-term dynamics of axonal propagation and synaptic transmission. Activation of glutamate receptors initiates a long-term modification in neuronal excitability that may represent the substrate for the mnesic engram and for the stabilization of the epileptic state. Similarly to synaptic plasticity, long-lasting intrinsic plasticity appears to be reversible and to express a certain level of input or cellular specificity. These non-synaptic forms of plasticity affect the signal propagation in the axon, the dendrites and the soma. They not only share common learning rules and induction pathways with the better known synaptic plasticity such as NMDA receptor-dependent LTP and LTD but also contribute in synergy with these synaptic changes to the formation of a coherent mnesic engram.  相似文献   

11.
Interneurons are critical for neuronal circuit function, but how their dendritic morphologies and membrane properties influence information flow within neuronal circuits is largely unknown. We studied the spatiotemporal profile of synaptic integration and short-term plasticity in dendrites of mature cerebellar stellate cells by combining two-photon guided electrical stimulation, glutamate uncaging, electron microscopy, and modeling. Synaptic activation within thin (0.4?μm) dendrites produced somatic responses that became smaller and slower with increasing distance from the soma, sublinear subthreshold input-output relationships, and a somatodendritic gradient of short-term plasticity. Unlike most studies showing that neurons employ active dendritic mechanisms, we found that passive cable properties of thin dendrites determine the sublinear integration and plasticity gradient, which both result from large?dendritic depolarizations that reduce synaptic driving force. These integrative properties allow stellate cells to act as spatiotemporal filters of synaptic input patterns, thereby biasing their output in favor of sparse presynaptic activity.  相似文献   

12.
Endocannabinoids (eCBs) function as retrograde messengers at both excitatory and inhibitory synapses, and control various forms of synaptic plasticity in the adult brain. The molecular machinery required for specific eCB functions during synaptic plasticity is well established. However, eCB signaling plays surprisingly fundamental roles in controlling the acquisition of neuronal identity during CNS development. Recent work suggests that selective recruitment of regulatory signaling networks to CB1 cannabinoid receptors dictates neuronal state-change decisions. In addition, the spatial localization and temporal precision of eCB actions emerges as a novel organizer in developing neuronal networks. Current challenges include fitting novel molecular candidates into regulatory eCB signaling pathways, and defining the temporal dynamics of context-dependent signaling mechanisms underpinning particular neuronal specification events.  相似文献   

13.
Activity-dependent regulation of intrinsic excitability has been shown to greatly contribute to the overall plasticity of neuronal circuits. Such neuroadaptations are commonly investigated in patch clamp experiments using current step stimulation and the resulting input-output functions are analyzed to quantify alterations in intrinsic excitability. However, it is rarely addressed, how such changes translate to the function of neurons when they operate under natural synaptic inputs. Still, it is reasonable to expect that a strong correlation and near proportional relationship exist between static firing responses and those evoked by synaptic drive. We challenge this view by performing a high-yield electrophysiological analysis of cultured mouse hippocampal neurons using both standard protocols and simulated synaptic inputs via dynamic clamp. We find that under these conditions the neurons exhibit vastly different firing responses with surprisingly weak correlation between static and dynamic firing intensities. These contrasting responses are regulated by two intrinsic K-currents mediated by Kv1 and Kir channels, respectively. Pharmacological manipulation of the K-currents produces differential regulation of the firing output of neurons. Static firing responses are greatly increased in stuttering type neurons under blocking their Kv1 channels, while the synaptic responses of the same neurons are less affected. Pharmacological blocking of Kir-channels in delayed firing type neurons, on the other hand, exhibit the opposite effects. Our subsequent computational model simulations confirm the findings in the electrophysiological experiments and also show that adaptive changes in the kinetic properties of such currents can even produce paradoxical regulation of the firing output.  相似文献   

14.
The nucleus tractus solitarius (NTS) is the first central nervous system (CNS) site for synaptic contact of the primary afferent fibers from the lungs and airways. The signal processing at these synapses will determine the output of the sensory information from the lungs and airways to all downstream synapses in the reflex pathways. The second-order NTS neurons bring to bear their own intrinsic and synaptic properties to temporally and spatially integrate the sensory information with inputs from local networks, higher brain regions, and circulating mediators, to orchestrate a coherent reflex output. There is growing evidence that NTS neurons share the rich repertoire of forms of plasticity demonstrated throughout the CNS. This review focuses on existing evidence for plasticity in the NTS, potential targets for plasticity in the NTS, and the impact of this plasticity on lung and airway reflexes.  相似文献   

15.
Structural inhomogeneities in synaptic efficacies have a strong impact on population response dynamics of cortical networks and are believed to play an important role in their functioning. However, little is known about how such inhomogeneities could evolve by means of synaptic plasticity. Here we present an adaptive model of a balanced neuronal network that combines two different types of plasticity, STDP and synaptic scaling. The plasticity rules yield both long-tailed distributions of synaptic weights and firing rates. Simultaneously, a highly connected subnetwork of driver neurons with strong synapses emerges. Coincident spiking activity of several driver cells can evoke population bursts and driver cells have similar dynamical properties as leader neurons found experimentally. Our model allows us to observe the delicate interplay between structural and dynamical properties of the emergent inhomogeneities. It is simple, robust to parameter changes and able to explain a multitude of different experimental findings in one basic network.  相似文献   

16.
Although models based on independent component analysis (ICA) have been successful in explaining various properties of sensory coding in the cortex, it remains unclear how networks of spiking neurons using realistic plasticity rules can realize such computation. Here, we propose a biologically plausible mechanism for ICA-like learning with spiking neurons. Our model combines spike-timing dependent plasticity and synaptic scaling with an intrinsic plasticity rule that regulates neuronal excitability to maximize information transmission. We show that a stochastically spiking neuron learns one independent component for inputs encoded either as rates or using spike-spike correlations. Furthermore, different independent components can be recovered, when the activity of different neurons is decorrelated by adaptive lateral inhibition.  相似文献   

17.
Neuroglial cells are fundamental for control of brain homeostasis and synaptic plasticity. Decades of pathological and physiological studies have focused on neurons in neurodegenerative disorders, but it is becoming increasingly evident that glial cells play an irreplaceable part in brain homeostasis and synaptic plasticity. Animal models of brain injury and neurodegenerative diseases have largely contributed to current understanding of astrocyte-specific mechanisms participating in brain function and neurodegeneration. Specifically, gliotransmission (presence of glial neurotransmitters, and their receptors and active transporters), trophic support (release, maturation and degradation of neurotrophins) and metabolism (production of lactate and GSH components) are relevant aspects of astrocyte function in neuronal metabolism, synaptic plasticity and neuroprotection. Morpho-functional changes of astrocytes and microglial cells after traumatic or toxic insults to the central nervous system (namely, reactive gliosis) disrupt the complex neuro-glial networks underlying homeostasis and connectivity within brain circuits. Thus, neurodegenerative diseases might be primarily regarded as gliodegenerative processes, in which profound alterations of glial activation have a clear impact on progression and outcomes of neuropathological processes. This review provides an overview of current knowledge of astrocyte functions in the brain and how targeting glial-specific pathways might ultimately impact the development of therapies for clinical management of neurodegenerative disorders.  相似文献   

18.
Glycogen synthase kinase 3beta (GSK-3β) is an enzyme with a variety of cellular functions in addition to the regulation of glycogen metabolism. In the central nervous system, different intracellular signaling pathways converge on GSK-3β through a cascade of phosphorylation events that ultimately control a broad range of neuronal functions in the development and adulthood. In mice, genetically removing or increasing GSK-3β cause distinct functional and structural neuronal phenotypes and consequently affect cognition. Precise control of GSK-3β activity is important for such processes as neuronal migration, development of neuronal morphology, synaptic plasticity, excitability, and gene expression. Altered GSK-3β activity contributes to aberrant plasticity within neuronal circuits leading to neurological, psychiatric disorders, and neurodegenerative diseases. Therapeutically targeting GSK-3β can restore the aberrant plasticity of neuronal networks at least in animal models of these diseases. Although the complete repertoire of GSK-3β neuronal substrates has not been defined, emerging evidence shows that different ion channels and their accessory proteins controlling excitability, neurotransmitter release, and synaptic transmission are regulated by GSK-3β, thereby supporting mechanisms of synaptic plasticity in cognition. Dysregulation of ion channel function by defective GSK-3β activity sustains abnormal excitability in the development of epilepsy and other GSK-3β-linked human diseases.  相似文献   

19.
20.
During development the extracellular matrix (ECM) of the central nervous system (CNS) facilitates proliferation, migration, and synaptogenesis. In the mature nervous system due to changes in the ECM it provides structural stability and impedes proliferation, migration, and synaptogensis. The perineuronal net (PN) is a specialized ECM structure found primarily surrounding inhibitory interneurons where it forms a mesh-like structure around points of synaptic contact. The PN organizes the extracellular space by binding multiple components of the ECM and bringing them into close proximity to the cell membrane, forming dense aggregates surrounding synapses. The PN is expressed late in postnatal development when the nervous system is in the final stages of maturation and the critical periods are closing. Once fully expressed the PN envelopes synapses and leads to decreased plasticity and increases synaptic stability in the CNS. Disruptions in the PN have been studied in a number of disease states including epilepsy. Epilepsy is one of the most common neurologic disorders characterized by excessive neuronal activity which results in recurrent spontaneous seizures. A shift in the delicate balance between excitation and inhibition is believed to be one of the underlying mechanisms in the development of epilepsy. During epileptogenesis, the brain undergoes numerous changes including synaptic rearrangement and axonal sprouting, which require structural plasticity. Because of the PNs location around inhibitory cells and its role in limiting plasticity, the PN is an important candidate for altering the progression of epilepsy. In this review, an overview of the ECM and PN in the CNS will be presented with special emphasis on potential roles in epileptogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号