首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Rho-associated kinase (Rho-kinase/ROCK/ROK) is a serine/threonine kinase and plays an important role in various cellular functions. The cAMP-dependent protein kinase (protein kinase A/PKA) and protein kinase C (PKC) are also serine/threonine kinases, and directly and/or indirectly take part in the signal transduction pathways of Rho-kinase. They have similar phosphorylation site motifs, RXXS/T and RXS/T. The purpose of this study was to identify whether sites phosphorylated by Rho-kinase could be targets for PKA and PKC and to find peptide substrates that are specific to Rho-kinase, i.e., with no phosphorylation by PKA and PKC. A total of 18 substrates for Rho-kinase were tested for phosphorylation by PKA and PKC. Twelve of these sites were easily phosphorylated. These results mean that Rho-kinase substrates can be good substrates for PKA and/or PKC. On the other hand, six Rho-kinase substrates showing no or very low phosphorylation efficiency (<20%) for PKA and PKC were identified. Kinetic parameters (K(m) and k(cat)) showed that two of these peptides could be useful as substrates specific to Rho-kinase phosphorylation.  相似文献   

2.
The endogenous cellular oncogene products, pp60c-src, exhibits a protein kinase activity, but is itself a phosphoprotein. Based on the assumption that pp60c-src might play a role in the control of cell proliferation, we have studied its behaviour as a substrate for phosphorylation known to occur when quiescent, serum-deprived cells are stimulated to enter cell cycle following addition of either serum, platelet-derived growth factor or the phorbol ester derivative, 12-O-tetradecanoyl-phorbol-13-acetate. For this purpose a partial purification of pp60c-src on DEAE ion-exchange chromatography was combined with immune precipitation. A 2-4-fold increase in serine phosphorylation of pp60c-src was consistently observed after stimulation of quiescent cells to growth.  相似文献   

3.
Peptide array, which is known as an emerging technology, has been developed for identification of protein kinase activity. For this purpose, the ability of quantitative analysis is very important because the absolute change in protein kinase activity is critical for the determination of cellular function. Here we report an original type of peptide array for quantitative evaluation of protein kinase activity by fluorescence imaging. We used the peptide array for the quantitative evaluation of the nonreceptor tyrosine kinase c-Src activity as a model for detecting protein kinase activities. By using positive and negative control peptides, we obtained the actual ratio of tyrosine phosphorylation of substrate peptide not only by purified c-Src but also by c-Src in cell lysate. In addition, the experimental approach provided simple immobilization of peptide. Our sensitive, specific, and high-throughput peptide array can be used for quantitative evaluation of kinase activity and potentially can be applied to drug discovery and screening.  相似文献   

4.
The neuronal protein B-50 may be involved in diverse functions including neural development, axonal regeneration, neural plasticity, and synaptic transmission. The rat B-50 sequence contains 226 amino acids which include 14 Ser and 14 Thr residues, all putative sites for phosphorylation by calcium/phospholipid-dependent protein kinase C (PKC). Phosphorylation of the protein appears to be a major factor in its biochemical and possibly its physiological activity. Therefore, we investigated rat B-50 phosphorylation and identified a single phosphorylated site at Ser41. Phosphoamino acid analysis eliminated the 14 Thr residues because only [32P]Ser was detected in an acid hydrolysate of [32P]B-50. Staphylococcus aureus protease peptide mapping produced a variety of radiolabelled [32P]B-50 products, none of which had the same molecular weights or HPLC retention times as several previously characterized fragments. Indirect confirmation of the results was provided by differential phosphorylation of major and minor forms of B-60 that have their N-termini at, or C-terminal to, the Ser41 residue and are the major products of specific B-50 proteolysis. Only those forms of B-60 that contained the Ser41 residue incorporated phosphate label. The results are discussed with reference to the substrate requirements for B-50 phosphorylation by PKC and the proposed structure of the B-50 calmodulin binding domain.  相似文献   

5.
Abstract: Bovine chromaffin cells contain a family of renaturable protein kinases. One of these, a 60,000 Mr kinase (PK60) that phosphorylated myelin basic protein in vitro, was activated fourfold when cells were treated with the protein kinase inhibitor Staurosporine. Because staurosporine inhibits protein kinase C, the role of this kinase in the regulation of PK60 activity was investigated. Fifty nanomolar Staurosporine produced half-maximal inhibition of protein kinase C activity in chromaffin cells, whereas ∼225 n M Staurosporine was required to induce half-maximal activation of PK60. Other protein kinase C inhibitors, H-7 and K-252a, did not mimic the effect of Staurosporine on PK60 activity. Chromaffin cells have three protein kinase C isoforms: α, ε, and ζ. Prolonged treatment with phorbol esters depleted the cells of protein kinase C α and ε, but not ζ. Neither activation nor depletion of protein kinase C affected the basal activity of PK60. Moreover, Staurosporine activated PK60 in cells depleted of protein kinase C α and e; thus, Staurosporine appeared to activate PK60 by a mechanism that does not require these protein kinase C isoforms. Incubation of cell extracts with Staurosporine in vitro did not activate PK60. Incubation of these extracts with adenosine 5'-O-(3-thiotriphosphate), however, caused a twofold activation of PK60. Although this suggests that PK60 activity is regulated by phosphorylation, the mechanism by which Staurosporine activates PK60 is not known. Staurosporine has been reported to promote neurite outgrowth from chromaffin cells. The role of PK60 in mediating the effects of Staurosporine on chromaffin cell function remains to be determined.  相似文献   

6.
Protein kinase C (PKC), a phospholipid-dependent serine/threonine kinase, appears to be involved in the signal transduction response to many hormones and growth factors; there are 11 different PKC isozymes. Because PKC isozymes directly and/or indirectly participate in signal transduction pathways of normal and transformed cells through phosphorylation of target proteins, it is critical to understand the diversity of the intracellular signaling pathways regulated by each PKC isozyme. Thus, PKC isozyme-specific substrates are useful to understand the characterization of the intracellular signaling pathways for each PKC isozyme. Consensus sequences and sequence information obtained from PKC target proteins are very important to design PKC isozyme-specific peptide substrates. Moreover, computational prediction programs of phosphorylation sites using a library of peptide substrates aid in the fast design of PKC isozyme-specific peptide substrates. Although a large number of target proteins and synthetic peptides for PKCs are known, only two peptide substrates (peptide 422–426 of murine elongation factor-1α and Alphatomega peptide) have been reported as PKC isozyme-specific peptide substrates. This discussion will review the literature concerning these native and synthetic PKC isozyme-specific peptide substrates and their design.  相似文献   

7.
Glycogen synthase kinase-3 (GSK-3) is a highly conserved protein serine/threonine kinase ubiquitously distributed in eukaryotes as a constitutively active enzyme. Abnormally high GSK-3 activity has been implicated in several pathological disorders, including diabetes and neuron degenerative and affective disorders. This led to the hypothesis that inhibition of GSK-3 may have therapeutic benefit. Most GSK-3 inhibitors developed so far compete with ATP and often show limited specificity. Our goal is to develop inhibitors that compete with GSK-3 substrates, as this type of inhibitor is more specific and may be useful for clinical applications. We have employed computational, biochemical, and molecular analyses to gain in-depth understanding of GSK-3's substrate recognition. Here we argue that GSK-3 is a promising drug discovery target and describe the strategy and practice for developing specific substrate-competitive inhibitors of GSK-3.  相似文献   

8.
Activation of phospholipase Cβ (PLCβ) by G proteins leads to a chain of events that result in an increase in intracellular calcium and activation of protein kinase C (PKC). It has been found that PKC phosphorylates PLCβ1 on S887 in vitro without affecting its enzymatic activity or its ability to be activated by Gα(q) proteins. To understand whether S887 phosphorylation affects the enzyme’s activity in cells, we constructed two mutants that mimic the wild type and PKC-phosphorylated enzymes (S887A and S887D). We find that these constructs bind similarly to Gα(q) in vitro. When expressed in HEK293 cells, both mutants associate identically to Gα(q) in both the basal and stimulated states. Both mutants diffuse with similar rates and also interact identically with another known binding partner, translin-associated factor X (TRAX), which associates with PLCβ1 in the cytosol and nucleus. However, the two mutants localize differently in the cell. We find that S887A has a much higher nuclear localization than its S887D counterpart both in HEK293 cells and PC12 cells. Our studies suggest that PKC phosphorylation regulates the level of PLCβ1 cytosolic and nuclear activity by regulating its cellular compartmentalization.  相似文献   

9.
Nck family proteins function as adaptors to couple tyrosine phosphorylation signals to actin cytoskeleton reorganization. Several lines of evidence indicate that Nck family proteins involve in regulating the activity of Rho family GTPases. In the present study, we characterized a novel interaction between Nck-1 with engulfment and cell motility 1 (ELMO1). GST pull-down and co-immunoprecipitation assay demonstrated that the Nck-1-ELMO1 interaction is mediated by the SH2 domain of Nck-1 and the phosphotyrosine residues at position 18, 216, 395, and 511 of ELMO1. A R308K mutant of Nck-1 (in which the SH2 domain was inactive), or a 4YF mutant of ELMO1 lacking these four phosphotyrosine residues, diminished Nck-1-ELMO1 interaction. Conversely, tyrosine phosphatase inhibitor treatment and overexpression of Src family kinase Hck significantly enhanced Nck-1-ELMO1 interaction. Moreover, wild type Nck-1, but not R308K mutant, significantly augmented the interaction between ELMO1 and constitutively active RhoG (RhoGV12A), thus promoted Rac1 activation and cell motility. Taken together, the present study characterized a novel Nck-1-ELMO1 interaction and defined a new role for Nck-1 in regulating Rac1 activity.  相似文献   

10.
Muscarinic acetylcholine receptors purified from porcine cerebrum were phosphorylated by protein kinase C purified from the same tissue. More than 1 mol of phosphate was incorporated per mole of receptor, with both serine and threonine residues being phosphorylated. Neither the degree nor the rate of the phosphorylation was affected by the presence or absence of acetylcholine. GTP-sensitive high-affinity binding with acetylcholine was observed for muscarinic receptors reconstituted with GTP-binding proteins (Gi or Go), irrespective of whether muscarinic receptors or the GTP-binding proteins had been phosphorylated by protein kinase C or not. This indicates that the interaction between purified muscarinic receptors and purified GTP-binding proteins in vitro is not affected by their phosphorylation.  相似文献   

11.
Abstract: The composition of tissue gangliosides is thought to result mainly from the active regulation and selective expression of specific enzymes responsible for their metabolism. In the last few years, we have purified several rat brain sialyltransferases to homogeneity; the availability of these highly purified enzymes enabled us to investigate their regulation and expression at the molecular level. Thus, we studied the regulation of sialyltransferase activities, in particular, CMP-NeuAc:GM1 and CMP-NeuAc:LacCer sialyltransferases by a phosphorylation/dephosphorylation mechanism. Protein kinase C was added to a standard enzyme assay mixture containing [γ-32P]ATP, and the activity of the enzyme was measured after various incubation times. We found that treatment of several sialyltransferases by protein kinase C decreased their activities in a time-dependent manner. Analyses of 32P-labeled amino acids revealed that the major phosphorylation site of CMP-NeuAc:GM1 α2→3 sialyltransferase (ST-IV) was serine and that for CMP-NeuAc:LacCer α2→3 sialyltransferase (ST-I) was primarily threonine. Partial recovery of the enzyme activity could be achieved by treatment of the phosphorylated sialyltransferases with rat brain protein phosphatase. We conclude that the activities of sialyltransferases can be modulated by protein kinase C and protein phosphatase and this may represent a potential regulatory mechanism for ganglioside biosynthesis.  相似文献   

12.
A missense single-nucleotide polymorphism in the gene encoding the lymphoid-specific tyrosine phosphatase (Lyp) has been identified as a causal factor in a wide spectrum of autoimmune diseases. Interestingly, the autoimmune-predisposing variant of Lyp appears to represent a gain-of-function mutation, implicating Lyp as an attractive target for the development of effective strategies for the treatment of many autoimmune disorders. Unfortunately, the precise biological functions of Lyp in signaling cascades and cellular physiology are poorly understood. Identification and characterization of Lyp substrates will help define the chain of molecular events coupling Lyp dysfunction to diseases. In the current study, we identified consensus sequence motifs for Lyp substrate recognition using an "inverse alanine scanning" combinatorial library approach. The intrinsic sequence specificity data led to the discovery and characterization of SKAP-HOM, a cytosolic adaptor protein required for proper activation of the immune system, as a bona fide Lyp substrate. To determine the molecular basis for Lyp substrate recognition, we solved crystal structures of Lyp in complex with the consensus peptide as well as the phosphopeptide derived from SKAP-HOM. Together with the biochemical data, the structures define the molecular determinants for Lyp substrate specificity and provide a solid foundation upon which novel therapeutics targeting Lyp can be developed for multiple autoimmune diseases.  相似文献   

13.
A potential role of the protein kinase C (PKC) system in differentiation of human neuroblastoma cell line LA-N-5 was investigated. It was found that neurite outgrowth induced by 12-O-tetradecanoylphorbol 13-acetate (TPA, 81 nM) was associated with a down-regulation of PKC as determined independently by immunocytochemistry, immunoblot, and enzyme activity assay. Down-regulation of PKC in cells induced to differentiate by retinoic acid (1 microM) was less pronounced, whereas it was undetected in cells induced to differentiate by nerve growth factor (100 ng/ml). The in vitro phosphorylation of an 80-kilodalton protein present in control LA-N-5 cells or in cells treated with TPA, retinoic acid, or nerve growth factor for 1 day decreased to various extents at days 4 or 7 concomitant with neuritogenesis. Pretreatment of LA-N-5 cells with a high concentration (1 microM) of TPA to deplete cellular PKC rendered the cells unresponsive to the differentiating effect of the agents. It was observed that CHP-100 cells, another human neuroblastoma line shown to be resistant to differentiation induced by the agents, had a reduced PKC level and the amount of in vitro phosphorylation of the 80-kilodalton protein was greatly reduced in control cells and remained relatively unchanged when the cells were treated with the agents for up to 7 days. The present studies suggested that PKC and its 80-kilodalton substrate protein were likely involved in initiation and/or progression of LA-N-5 cell differentiation induced by TPA and that separate PKC-independent pathways might also be involved in the differentiating effect of retinoic acid or nerve growth factor.  相似文献   

14.
We have identified and partially purified an acidic, heat-stable, noncalmodulin protein from bovine brain cytosol that stimulates Ca2+-dependent phosphorylation of an Mr 90K substrate in crude rat brain synaptic membranes. We show that this modulator of phosphorylation (MOP) enhances Ca2+- and phospholipid-dependent protein kinase (C kinase) phosphorylation of this 90K substrate. The 90K substrate is a higher Mr form of an 87K substrate that is a major C kinase substrate in rat brain. The Ca2+-dependent phosphorylation of both substrates is inhibited by the Ca2+-binding proteins S-100 and calmodulin. Both substrates yield phosphopeptide fragments of Mr 9K and 13K after limited proteolysis with V8 protease. Two-dimensional polyacrylamide gel electrophoresis reveals that they have similar acidic isoelectric points (pI 5.0). MOP enhances Ca2+-dependent phosphorylation of the 90K substrate whereas the phosphorylation of 87K is diminished. This reciprocal relationship suggests that the mobility of the 87K substrate in sodium dodecyl sulfate-polyacrylamide gels is decreased to 90K with increasing phosphorylation. MOP may be a novel protein modulator of C kinase-mediated phosphorylation in the nervous system.  相似文献   

15.
The mechanism by which calmodulin and troponin C influence phosphorylation of troponin I (TnI) by protein kinase C was investigated. The phosphorylation of TnI by protein kinase C requires the presence of acidic phospholipid, calcium and diacylglycerol. Light scattering intensity and fluorescence intensity experiments showed that TnI associated with the phospholipid membranes and caused extensive aggregation. In the presence of Ca2+, TnI-phospholipid interactions were prevented by approximately stoichiometric amounts of either troponin C or calmodulin. Troponin C was shown to completely inhibit phosphorylation of TnI by either protein kianse C or by phosphorylase b kinase. In contrast, calmodulin completely inhibited phosphorylation of TnI by protein kinase C, but had only little effect on TnI phosphorylation by phosphorylase b kinase. Inhibition by calmodulin did not appear to be due to interaction with PKC, since calmodulin mildly increased protein kinase C phosphorylation of histone III-S. The ratio of phosphoserine to phosphothreonine in protein kinase C-phosphorylated TnI remained approximately constant for reactions inhibited by up to 90% by clamodulin. TnI interactions with phospholipid and phosphorylation of TnI by PKC were also prevented by high salt concentrations. However, salt concentrations adequate to inhibit phosphorylation were sufficient to dissociate only TnI, but not protein kinase C from the membrane. These results suggest that the binding of TnI to phospholipid is required for phosphorylation by protein kinase C and that prevention of this binding by any means completely inhibited phosphorylation of TnI by protein kinase C.  相似文献   

16.
Proteolytic cleavage of protein kinase C (PKC) under cell-free conditions generates a co-factor independent, free catalytic subunit (PKM). However, the difficulty in visualizing PKM in intact cells has generated controversy regarding its physiological relevance. In the present study, treatment of SH-SY-5Y cells with 2-O-tetradecanoylphorbol 13-acetate resulted in complete down-regulation of PKC within 24 h without detection of PKM. By contrast, low levels of PKM were transiently detected following ionophore-mediated calcium influx under conditions which induced no detectable PKC loss. PKM was not detected during rapid cell-free degradation of partially purified SH-SY-5Y PKCα by purified human brain mM calpain. However, when the kinetics of PKC degradation were slowed by lowering levels of calpain, PKM was transiently detected. PKM was also only transiently observed following calpain-mediated degradation of purified rat brain PKCα. Densitometric analyses indicated that, once formed, PKM was degraded approximately 10 times faster than PKC. These data provide an explanation as to why PKM is difficult to observe in situ, and indicate that PKM should not be considered as an ‘unregulated’ kinase, since its persistence is apparently strictly regulated by proteolysis.  相似文献   

17.
18.
Abstract: Cytoplasmic inclusion bodies that are accumulations of neurofilaments are the pathological hallmark of many neurodegenerative diseases and have been produced in transgenic mice by overexpression of mouse (NF-L and NF-M; light and medium chains, respectively) and human (NF-M and NF-H; medium and heavy chains, respectively) neurofilament subunits. This report describes a neuronal culture model in which human NF-L was overexpressed to produce cytoplasmic accumulations of neurofilaments within cell bodies concomitant with the collapse of the endogenous neurofilament network. Electron microscopy showed that, within accumulations, neurofilaments retained a filamentous structure. The culture model thus provides a novel system in which the effect on neurofilament accumulations of manipulating protein phosphorylation can be studied. Treatment of cells containing neurofilament accumulations with bisindolylmaleimide, a specific protein kinase C inhibitor, resulted in regeneration of the filamentous network; this effect was not due to a change in the level of transfected NF-L expression. These findings lend support to the suggestion that an impairment in the regulation of protein phosphorylation may lead to the accumulation of neurofilaments seen in neurodegenerative disease.  相似文献   

19.
    
The endogenous phosphorylation of serotonin binding protein (SBP), a soluble protein found in central and peripheral serotonergic neurons, inhibits the binding of 5-hydroxytryptamine (5-HT, serotonin). A protein kinase activity that copurifies with SBP (SBP-kinase) was partially characterized and compared with calcium/calmodulin-dependent protein kinase II (CAM-PK II). SBP itself is not the enzyme since heating destroyed the protein kinase activity without affecting the capacity of the protein to bind [3H]5-HT. SBP-kinase and CAM-PK II kinase shared the following characteristics: (1) size of the subunits; (2) autophosphorylation in a Ca2+-dependent manner; and (3) affinity for Ca2+. In addition, both forms of protein kinase phosphorylated microtubule-associated proteins well and did not phosphorylate myosin, phosphorylase b, and casein. Phorbol esters or diacylglycerol had no effect on either of the protein kinases. However, substantial differences between SBP-kinase and CAM-PK II were observed: (1) CAM enhanced CAM-PK II activity, but had no effect on SBP-kinase; (2) synapsin I was an excellent substrate for CAM-PK II, but not for SBP-kinase; (3) 5-HT inhibited both the autophosphorylation of SBP-kinase and the phosphorylation of SBP, but had no effect on CAM-PK II. These data indicate that SBP-kinase is different from CAM-PK II. Phosphopeptide maps of SBP and SBP-kinase generated by digestion with S. aureus V8 protease are consistent with the conclusion that these proteins are distinct molecular entities. It is suggested that phosphorylation of SBP may regulate the transport of 5-HT within neurons.  相似文献   

20.
Abstract: Neurotransmission at excitatory glutamatergic synapses is terminated by the reuptake of the neurotransmitter by high-affinity transporters, which keep the extracellular glutamate concentration below excitotoxic levels. The amino acid sequence of the recently isolated and cloned brain-specific glutamate/aspartate transporter (GLAST-1) of the rat reveals three consensus sequences of putative phosphorylation sites for protein kinase C (PKC). The PKC activator phorbol 12-myristate 13-acetate (PMA) decreased glutamate transport activity in Xenopus oocytes and human embryonic kidney cells (HEK293) expressing the cloned GLAST-1 cDNA, within 20 min, to 25% of the initial transport activity. This down-regulation was blocked by the PKC inhibitor staurosporine. GLAST-1 transport activity remains unimpaired by phorbol 12-monomyristate. Removal of all putative PKC sites of wild-type GLAST-1 by site-directed mutagenesis did not abolish inhibition of glutamate transport. [32P]Phosphate-labeled wild-type and mutant transport proteins devoid of all predicted PKC sites were detected by immunoprecipitation after stimulation with PMA. Immunoprecipitation of [35S]methionine-labeled transporter molecules indicates a similar stability of phosphorylated and nonphosphorylated GLAST-1 protein. Immunofluorescence staining did not differentiate surface staining of HEK293 cells expressing GLAST-1 with and without PMA treatment. These data suggest that the neurotransmitter transporter activity of GLAST-1 is inhibited by phosphorylation at a non-PKC consensus site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号