首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 201 毫秒
1.
2.
3.
4.
5.
6.
K. J. Abel  K. W. Gross 《Genetics》1990,124(4):937-947
Many inbred strains of mice have a single locus encoding renin, Ren-1, whereas other inbred strains have two tandemly linked loci, Ren-1 and Ren-2. Each of these renin genes in inbred mice exhibits a unique pattern of tissue-specific expression. As a prerequisite to understanding the structural basis for the expression differences, we have physically characterized the sequence organization of this chromosomal region in both types of strains. Pulsed field gel electrophoresis was initially used to compare the long-range structure of this region in C57BL/6 (Ren-1) and DBA/2 (Ren-1 + Ren-2) mice. The structure in both inbred strains is extremely similar, except for an additional 30 kb containing Ren-2 in DBA/2 mice. The boundaries of the extra 30-kb segment were sequenced and compared to homologous sequences flanking the Ren-1 alleles. This analysis identified the precise recombination site, and also the presence of a large insertion, between the renin loci in DBA/2. The renin gene duplication apparently resulted from recombination between sequences sharing little homology, suggesting that nonhomologous chromosomal breakage and rejoining may have been involved mechanistically in the event.  相似文献   

7.
8.
9.
10.
11.
The important cardiovascular regulator renin contains a strong in vitro enhancer 2.7 kb upstream of its gene. Here we tested the in vivo role of the mouse Ren-1c enhancer. In renin-expressing As4.1 cells stably transfected with Ren-1c promoter with or without enhancer, expression of linked beta-geo reporter, stable expression, and colony formation were dependent on the presence of the enhancer. We then generated mice carrying a targeted deletion of the enhancer (REKO mice) and found marked depletion of renin in renal juxtaglomerular and submandibular ductal cells, as well as hyperplasia of macula densa cells. Plasma creatinine was increased, but electrolytes were normal. Male REKO mice implanted with telemetry devices had 9 +/- 1 mm Hg lower mean arterial pressure (p < 0.001), which was partly normalized by a high NaCl diet. Locomotor activity was lower, and baroreflex sensitivity was normal. Markedly reduced mean arterial pressure variability in the midfrequency band indicated a contribution of reduced sympathetic vasomotor tone to the hypotension. In conclusion, the renin enhancer is critical for renin gene expression and physiological sequelae, including response to alteration in salt intake. The REKO mouse may be useful as a low renin expression model.  相似文献   

12.
Ren-1 renin is synthesized in the kidney of every mouse. Ren-2 renin has been observed in the submandibular gland (SMG) of male mice carrying two renin genes. However, it is not known if Ren-2 renin is in the kidney and blood of the two-renin gene mice. In this study, a direct ELISA for Ren-2 renin (SMG renin) was established by a sandwich method. This ELISA could measure the Ren-2 active renin in the range from 1 to 100ng and distinguish Ren-2 active renin from not only Ren-1 renin but also Ren-2 prorenin. By a combination of this assay system and conventional methods, the pro-form as well as the active form of Ren-2 renin was found in the kidney and plasma of male AKR mice carrying two-renin genes.  相似文献   

13.
Evolution and Variation of Renin Genes in Mice   总被引:6,自引:2,他引:4  
Inbred strains of mice carry Ren-1, a gene encoding the thermostable Renin-1 isozyme. Ren-1 is expressed at relatively low levels in mouse submandibular gland and kidney. Some strains also carry Ren-2, a gene encoding the thermolabile Renin-2 isozyme. Ren-2 is expressed at high levels in the mouse submandibular gland and at very low levels, if at all, in the kidney. Ren-1 and Ren-2 are closely linked on mouse chromosome 1, show extensive homology in coding and noncoding regions and provide a model for studying the regulation of gene expression. An investigation of renin genes and enzymatic activity in wild-derived mice identified several restriction site polymorphisms as well as putative variants in renin gene expression and protein structure. The number of renin genes carried by different subpopulations of wild-derived mice is consistent with the occurrence of a gene duplication event prior to the divergence of M. spretus (2.75–5.5 million yr ago). This conclusion is in agreement with a prior estimate based upon comparative sequence analysis of Ren-1 and Ren-2 from inbred laboratory mice.  相似文献   

14.
In a survey of inbred and wild mouse DNAs for genetic variation at the duplicate renin loci, Ren-1 and Ren-2, a variant Not I hybridization pattern was observed in the wild mouse M. hortulanus. To determine the basis for this variation, the structure of the M. hortulanus renin loci has been examined in detail and compared to that of the inbred strain DBA/2. Overall, the gross features of structure in this chromosomal region are conserved in both Mus species. In particular, the sequence at the recombination site between the linked Ren-1 and Ren-2 loci was found to be identical in both DBA/2 and M. hortulanus, indicating that the renin gene duplication occurred prior to the divergence of ancestors of these mice. Renin flanking sequences in M. hortulanus, however, were found to lack four DNA insertions totaling approximately 10.5 kb which reside near the DBA/2 loci. The postduplication evolution of the mouse renin genes is thus characterized by a number of insertion and/or deletion events within nearby flanking sequences. Analysis of renin expression showed little or no difference between these mice in steady state renin RNA levels in most tissues examined, suggesting that these insertions do not influence expression at those sites. A notable exception is the adrenal gland, in which DBA/2 and M. hortulanus mice exhibit different patterns of developmentally regulated renin expression.  相似文献   

15.
Most mouse inbred strains carry two renin genes, Ren-1 and Ren-2, Renin-2, the product of the Ren-2 gene, is highly expressed in the submaxillary gland. It is a renin isoenzyme 96% similar to kidney renin-1, but unglycosylated. In order to investigate if glycosylation of prorenin affects its processing and/or secretion we have introduced two potential N-linked glycosylation sites into preprorenin-2 cDNA using site-directed mutagenesis. Expression plasmids were derived from wild-type and mutant renin-2 cDNA and were transfected into AtT20 cells. Both transfected cells, expressing glycosylated or unglycosylated forms, secreted prorenin and renin by the constitutive and regulated pathways, respectively. Prorenin was correctly processed to active renin but the second maturation site was not cleaved in AtT20 cells. The comparison of glycosylated and unglycosylated renin expression showed a diminished secretion of glycosylated active renin. Prevention of glycosylation with tunicamycin resulted in an improved secretion of active renin. Moreover, the efficiency of the trypsin activation in vitro was reduced for glycosylated prorenin and it was restored when the activation was performed on mutant renin secreted from tunicamycin-treated cells. It is proposed that the bulky carbohydrates attached to prorenin constitute a steric hindrance to proteolysis by maturation enzymes.  相似文献   

16.
In a survey of inbred and wild mouse DNAs for genetic variation at the duplicate renin loci,Ren-1 andRen-2, a variantNot I hybridization pattern was observed in the wild mouseM. hortulanus. To determine the basis for this variation, the structure of theM. hortulanus renin loci has been examined in detail and compared to that of the inbred strain DBA/2. Overall, the gross features of structure in this chromosomal region are conserved in bothMus species. In particular, the sequence at the recombination site between the linkedRen-1 andRen-2 loci was found to be identical in both DBA/2 andM. hortulanus, indicating that the renin gene duplication occurred prior to the divergence of ancestors of these mice. Renin flanking sequences inM. hortulanus, however, were found to lack four DNA insertions totaling approximately 10.5 kb which reside near the DBA/2 loci. The postduplication evolution of the mouse renin genes in thus characterized by a number of insertion and/or deletion events within nearby flanking sequences. Analysis of renin expression showed little or no difference between these mice in steady state renin RNA levels in most tissues examined, suggesting that these insertions do not influence expression at those sites. A notable exception is the adrenal gland, in which DBA/2 andM. hortulanus mice exhibit different patterns of developmentally regulated renin expression.  相似文献   

17.
18.
19.
20.
Close physical linkage of the murine Ren-1 and Ren-2 loci   总被引:5,自引:1,他引:4       下载免费PDF全文
In addition to the Ren-1 gene common to all mice, some inbred strains carry a second copy of the renin structural gene, Ren-2. These two loci are tightly linked genetically on mouse chromosome one. We have used pulsed field gel electrophoresis (PFGE) to study the physical arrangement of the two renin genes in the inbred strain DBA/2. PFGE mapping permitted the construction of a restriction map of the Ren loci spanning roughly 120 Kb. The results indicate that the genes are transcribed in the same relative direction, that Ren-2 lies upstream relative to Ren-1, and that the respective coding sequences are separated by approximately 20 Kb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号