首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In mammalian cells, flat Golgi cisternae closely arrange together to form stacks. During mitosis, the stacked structure undergoes a continuous fragmentation process. The generated mitotic Golgi fragments are distributed into the daughter cells, where they are reassembled into new Golgi stacks. In this study, an in vitro assay has been developed using purified proteins and Golgi membranes to reconstitute the Golgi disassembly and reassembly processes. This technique provides a useful tool to delineate the mechanisms underlying the morphological change. There are two processes during Golgi disassembly: unstacking and vesiculation. Unstacking is mediated by two mitotic kinases, cdc2 and plk, which phosphorylate the Golgi stacking protein GRASP65 and thus disrupt the oligomer of this protein. Vesiculation is mediated by the COPI budding machinery ARF1 and the coatomer complex. When treated with a combination of purified kinases, ARF1 and coatomer, the Golgi membranes were completely fragmented into vesicles. After mitosis, there are also two processes in Golgi reassembly: formation of single cisternae by membrane fusion, and restacking. Cisternal membrane fusion requires two AAA ATPases, p97 and NSF (N-ethylmaleimide-sensitive fusion protein), each of which functions together with specific adaptor proteins. Restacking of the newly formed Golgi cisternae requires dephosphorylation of Golgi stacking proteins by the protein phosphatase PP2A. This systematic study revealed the minimal machinery that controls the mitotic Golgi disassembly and reassembly processes.  相似文献   

2.
At the onset of mitosis, the Golgi apparatus, which consists of several cisternae, disperses throughout the cell to be partitioned into daughter cells. The molecular mechanisms of this process are now beginning to be understood. To investigate the biochemical requirements and kinetics of mitotic Golgi membrane dynamics in polarized cells, we have reconstituted the disassembly of the Golgi apparatus by introducing Xenopus egg extracts into permeabilized Mardin-Darby canine kidney (MDCK) cells. We used green fluorescence protein (GFP)-tagged galactosyltransferase-expressing MDCK cells to analyze the morphological changes of the Golgi membrane in the semi-intact system. Analyses by fluorescence and electron microscopies showed that the Golgi disassembly can be dissected into two elementary processes morphologically. In the first process, the perinuclear Golgi stacks break into punctate structures, intermediates, which are comprised of mini-stacks of cisternae associating with apical microtubule networks. In the second process, the structures fragment more thoroughly or substantially relocate to the ER. Our analyses further showed that cdc2 kinase and mitogen-activated protein kinase kinase (MAPKK = MEK) are differently involved in these two processes: the first process is mainly regulated by MEK and the second mainly by cdc2.  相似文献   

3.
Sec7p directs the transitions required for yeast Golgi biogenesis   总被引:6,自引:0,他引:6  
Endoplasmic reticulum (ER)-to-Golgi traffic in yeast proceeds by the maturation of membrane compartments from post-ER vesicles to intermediate small vesicle tubular clusters (VTCs) to Golgi nodular membrane networks (Morin-Ganet et al., Traffic 2000; 1: 56–68). The balance between ER and Golgi compartments is maintained by COPII- and COPI-mediated anterograde and retrograde traffic, which are dependent on Sec7p and ARF function. The sec7-4 temperature-sensitive allele is a mutation in the highly conserved Sec7 domain (Sec7d) found in all ARF-guanine nucleotide exchange factor proteins. Post-ER trafficking is rapidly inactivated in sec7-4 mutant yeast at the restrictive temperature. This conditional defect prevented the normal production of VTCs and instead generated Golgi-like tubes emanating from the ER exit sites. These tubes progressively developed into stacked cisternae defining the landmark sec7 mutant phenotype. Consistent with the in vivo results, a Sec7d peptide inhibited ER-to-Golgi transport and displaced Sec7p from its membrane anchor in vitro . The similarities in the consequences of inactivating Sec7p or ARFs in vivo was revealed by genetic disruption of yeast ARFs or by addition of brefeldin A (BFA) to whole cells. These treatments, as in sec7-4 yeast, affected the morphology of membrane compartments in the ER-Golgi transition. Further evidence for Sec7p involvement in the transition for Golgi biogenesis was revealed by in vitro binding between distinct domains of Sec7p with ARFs, COPI and COPII coat proteins. These results suggest that Sec7p coordinates membrane transitions in Golgi biogenesis by directing and scaffolding the binding and disassembly of coat protein complexes to membranes, both at the VTC transition from ER exit sites to form Golgi elements and for later events in Golgi maturation.  相似文献   

4.
During microtubule depolymerization, the central, juxtanuclear Golgi apparatus scatters to multiple peripheral sites. We have tested here whether such scattering is due to a fragmentation process and subsequent outward tracking of Golgi units or if peripheral Golgi elements reform through a novel recycling pathway. To mark the Golgi in HeLa cells, we stably expressed the Golgi stack enzyme N-acetylgalactosaminyltransferase-2 (GalNAc-T2) fused to the green fluorescent protein (GFP) or to an 11–amino acid epitope, VSV-G (VSV), and the trans/TGN enzyme β1,4-galactosyltransferase (GalT) fused to GFP. After nocodazole addition, time-lapse microscopy of GalNAc-T2–GFP and GalT–GFP revealed that scattered Golgi elements appeared abruptly and that no Golgi fragments tracked outward from the compact, juxtanuclear Golgi complex. Once formed, the scattered structures were relatively stable in fluorescence intensity for tens of minutes. During the entire process of dispersal, immunogold labeling for GalNAc-T2–VSV and GalT showed that these were continuously concentrated over stacked Golgi cisternae and tubulovesicular Golgi structures similar to untreated cells, suggesting that polarized Golgi stacks reform rapidly at scattered sites. In fluorescence recovery after photobleaching over a narrow (FRAP) or wide area (FRAP-W) experiments, peripheral Golgi stacks continuously exchanged resident proteins with each other through what appeared to be an ER intermediate. That Golgi enzymes cycle through the ER was confirmed by microinjecting the dominant-negative mutant of Sar1 (Sar1pdn) blocking ER export. Sar1pdn was either microinjected into untreated or nocodazole-treated cells in the presence of protein synthesis inhibitors. In both cases, this caused a gradual accumulation of GalNAc-T2–VSV in the ER. Few to no peripheral Golgi elements were seen in the nocodazole-treated cells microinjected with Sar1pdn. In conclusion, we have shown that Golgi-resident glycosylation enzymes recycle through the ER and that this novel pathway is the likely explanation for the nocodazole-induced Golgi scattering observed in interphase cells.  相似文献   

5.
T. Noguchi  H. Watanabe  R. Suzuki 《Protoplasma》1998,201(3-4):202-212
Summary The effects of brefeldin A (BFA) on the structure of the Golgi apparatus, the nuclear envelope, and the endoplasmic reticulum (ER), and on the thiamine pyrophosphatase (TPPase) activity in these organelles were examined in a green alga,Scenedesmus acutus, to obtain evidence for the existence of a retrograde transport from the Golgi apparatus to the ER via the nuclear envelope. InScenedesmus, Golgi bodies are situated close to the nuclear envelope throughout the cell cycle and receive the transition vesicles not directly from the ER, but from the nuclear envelope. BFA induced the disassembly of Golgi bodies and an increase in the ER cisternae at the trans-side of decomposed Golgi bodies in interphase cells and multinuclear cells before septum formation. The accumulated ER cisternae connected to the nuclear envelope at one part. TPPase activity was detected in all cisternae of Golgi bodies, but not in the nuclear envelope or the ER in nontreated cells. On the contrary, in BFA-treated cells, TPPase activity was detected in the nuclear envelope and the ER in addition to the decomposed Golgi bodies. When septum-forming cells were treated with BFA, the disassembly of Golgi bodies was less than that in interphase cells, and TPPase activity was detected in the Golgi cisternae but not in the nuclear envelope or the ER. These results suggest mat BFA blocks the anterograde transport from the nuclear envelope to the Golgi bodies but does not block the retrograde transport from the Golgi bodies to the nuclear envelope in interphase and multinuclear cells.Abbreviations BFA brefeldin A - ER endoplasmic reticulum - TPPase thiamine pyrophosphatase  相似文献   

6.
The fungal metabolite brefeldin A (BFA) induces the disassembly of the Golgi complex in mammalian cells. The drug seems to accentuate tubule formation and causes the subsequent fusion with the endoplasmic reticulum (ER). To investigate the biochemical requirements and kinetics of BFA-induced Golgi disassembly, we have reconstituted the process of green fluorescent protein-tagged Golgi complex disassembly in streptolysin O-permeabilized semi-intact Chinese hamster ovary cells. For quantitative analysis of the morphological changes to the Golgi complex in semi-intact cells, we developed a novel morphometric analysis. Based on this analysis, we have dissected the BFA-induced Golgi disassembly process biochemically into two processes, Golgi tubule formation and fusion with the ER, and found that the formation is induced by only ATP and the residual factors in the cells and that the subsequent fusion is mediated in an N-ethylmaleimide-sensitive factor-dependent manner via Golgi tubules. Tubulation occurs by two pathways that depend on either microtubule integrity or exogenously added cytosol. In the presence of GTPgammaS, coat protein I inhibited the Golgi tubule fusion with the ER but showed no apparent effect on tubulation. Additionally, we analyzed the kinetics of tubulation and fusion independently in nocodazole-treated and -untreated semi-intact cells and found that tubulation is a rate-limiting step of the Golgi disassembly.  相似文献   

7.
Fine structure and stereo-images of the Golgi apparatus and endoplasmic reticulum (ER) in the subcommissural organ (SCO) cells were visualized by the application of zinc-iodide osmium tetroxide (ZIO) impregnation, conventional electron microscopy and high voltage electron microscopy (HVEM). The Golgi apparatus in the SCO cells of rats, gerbils and hamsters consisted of flattened saccules stacked in parallel array. It showed a selective staining toward ZIO mixture and might form a complex network of tubular structures because of the presence of numerous fenestrations in the flattened Golgi saccules. The cytoplasm of the SCO cells in the rat and gerbil was crowded by dilated cisternae of the ER with a few flattened profiles. In the hamster SCO cells, however, the dilated cisternae of the ER were not observed. Flattened cisternae of ER in all species studied showed a positivity for ZIO impregnation and formed a complex tubular network, whereas dilated cisternae of the ER in the rats and gerbils did not show any reactivity. It was thus determined that the observation of thin and thick sections selectively stained with appropriate reagent for defined cellular organelles under conventional electron microscopy and HVEM offered valuable information about three-dimensional organization of the cell. A definite species-specific variation of SCO ultrastructure and cytochemistry was also demonstrated.  相似文献   

8.
Incubating cells at 20 degrees C blocks transport out of the Golgi complex and amplifies the exit compartments. We have used the 20 degrees C block, followed by EM tomography and serial section reconstruction, to study the structure of Golgi exit sites in NRK cells. The dominant feature of Golgi structure in temperature-blocked cells is the presence of large bulging domains on the three trans-most cisternae. These domains extend laterally from the stack and are continuous with "cisternal" domains that maintain normal thickness and alignment with the other stacked Golgi cisternae. The bulging domains do not resemble the perpendicularly extending tubules associated with the trans-cisternae of control cells. Such tubules are completely absent in temperature-blocked cells. The three cisternae with bulging domains can be identified as trans by their association with specialized ER and the presence of clathrin-coated buds on the trans-most cisterna only. Immunogold labeling and immunoblots show a significant degradation of a medial- and a trans-Golgi marker with no evidence for their redistribution within the Golgi or to other organelles. These data suggest that exit from the Golgi occurs directly from three trans-cisternae and that specialized ER plays a significant role in trans-Golgi function.  相似文献   

9.
A Driouich  G F Zhang    L A Staehelin 《Plant physiology》1993,101(4):1363-1373
Brefeldin A (BFA), a specific inhibitor of Golgi-mediated secretion in animal cells, has been used to study the organization of the secretory pathway and the function of the Golgi apparatus in plant cells. To this end, we have employed a combination of electron microscopical, immunocytochemical, and biochemical techniques to investigate the effects of this drug on the architecture of the Golgi apparatus as well as on the secretion of proteins and complex cell wall polysaccharides in sycamore maple (Acer pseudoplatanus) suspension-cultured cells. We have used 2.5 and 7.5 micrograms/mL of BFA, which is comparable to the 1 to 10 micrograms/mL used in experiments with animal cells. Electron micrographs of high-pressure frozen and freeze-substituted cells show that although BFA causes swelling of the endoplasmic reticulum cisternae, unlike in animal cells, it does not induce the disassembly of sycamore maple Golgi stacks. Instead, BFA induces the formation of large clusters of Golgi stacks, an increase in the number of trans-like Golgi cisternae, and the accumulation in the cytoplasm of very dense vesicles that appear to be derived from trans Golgi cisternae. These vesicles contain large amounts of xyloglucan (XG), the major hemicellulosic cell wall polysaccharide, as shown by immunocytochemical labeling with anti-XG antibodies. All of these structural changes disappear within 120 min after removal of the drug. In vivo labeling experiments using [3H]leucine demonstrate that protein secretion into the culture medium, but not protein synthesis, is inhibited by approximately 80% in the presence of BFA. In contrast, the incorporation of [3H]fucose into N-linked glycoproteins, which occurs in trans-Golgi cisternae, appears to be affected to a greater extent than the incorporation of [3H]xylose, which has been localized to medial Golgi cisternae. BFA also affects secretion of complex polysaccharides as evidenced by the approximate 50% drop in incorporation of [3H]xylose and [3H]fucose into cell wall hemicelluloses. Taken together, these findings suggest that at concentrations of 2.5 to 7.5 mu g/mL BFA causes the following major changes in the secretory pathway of sycamore maple cells: (a) it inhibits the transport of secretory proteins to the cell surface by about 80% and of hemicelluloses by about 50%; (b) it changes the patterns of glycosylation of N-linked glycoproteins and hemicelluloses; (c) it reduces traffic between trans Golgi cisternae and secretory vesicles; (d) it produces a major block in the transport of XG-containing, dense secretory vesicles to the cell surface; and (e) it induces the formation of large aggregates of Golgi apparatus of plant and animal cels share many functional and structural characteristics, the plant Golgi apparatus possesses properties that make its response to BFA unique.  相似文献   

10.
Brefeldin A (BFA) has previously been shown to block protein transport from the endoplasmic reticulum (ER), to cause the redistribution of Golgi components to the ER, and to change profoundly the morphology of the Golgi apparatus. In order to quantitate the effects of this drug on the morphology of the ER and the Golgi apparatus in HeLa cells, the numerical, surface and volume densities of these organelles were determined by stereological means. We found that in cells treated with BFA (5 micrograms/ml) clusters of vesicles and tubules, often located near transitional elements of the ER, replaced the Golgi apparatus. The numerical density of these clusters in cells treated with BFA for 30 min or 4.5 h is similar to that of Golgi complexes and Golgi-related clusters in control cells. The surface density of the vesicles and tubules contained in these clusters is about 50% of that represented by Golgi elements in control cells. Concomitantly, a corresponding increase in the surface density of the ER-Golgi hybrid compartment was observed. This hybrid compartment contained Golgi-specific enzymes effecting modifications of N-linked oligosaccharides and the transfer of O-linked sugars. Antibodies recognizing different subcompartments of the Golgi apparatus or the intermediate compartment, labeled vesicles and tubules of the Golgi-related clusters. Applying low doses of BFA allowed for the dissection of the disassembly of the Golgi apparatus into at least two phases. At very low doses (10-20 ng/ml) the numerical density of vesicles in the clusters increased up to 4-fold above control, while the surface density did not markedly change, suggesting that vesiculation of the Golgi cisternae had occurred. Fusion of Golgi elements with the ER seemed to occur only at doses of BFA higher than 20 ng/ml. Contrary to observations on other cell types, removal of BFA from HeLa cell cultures resulted in a rather slow reformation (1-2 h) of the Golgi complex, which allowed us to observe several intermediate stages in this process. During this time period an ER was restored which no longer contained Golgi-specific O-glycosylation functions. Our results demonstrate that BFA does not simply cause the disappearance of the Golgi apparatus by fusion with the ER, but instead clusters of vesicles and tubules remain that contain Golgi-specific markers.  相似文献   

11.
J Saraste  E Kuismanen 《Cell》1984,38(2):535-549
The effect of reduced temperature on synchronized transport of SFV membrane proteins from the ER via the Golgi complex to the surface of BHK-21 cells revealed two membrane compartments where transport could be arrested. At 15 degrees C the proteins could leave the ER but failed to enter the Golgi cisternae and accumulated in pre-Golgi vacuolar elements. At 20 degrees C the proteins passed through Golgi stacks but accumulated in trans-Golgi cisternae, vacuoles, and vesicular elements because of a block affecting a distal stage in transport. Both blocks were reversible, allowing study of the synchronous passage of viral membrane proteins through the Golgi complex at high resolution by immunolabeling in electron microscopy. We propose that membrane proteins enter the Golgi stack via tubular extensions of the pre-Golgi vacuolar elements which generate the Golgi cisternae. The proteins pass across the Golgi apparatus following cisternal progression and enter the post-Golgi vacuolar elements to be routed to the cell surface.  相似文献   

12.
Plant hormones play a key role in plant growth and differentiation. Certain plant hormones are known to be potential antitumor agents, affect the secretory activity of animal cells, and are produced by mammalian cells as proinflammatory cytokines. The goal of this research was to study the effect of abscisic and gibberellic acids on the secretory system of human epidermoid A431 carcinoma cells and HaCaT keratinocytes. Immunocytochemical and morphometric analysis showed that a subtoxic concentration of abscisic and gibberellic acids induced extension of the ER network and increased the size of the Golgi complex. Electron-microscope studies confirmed the hypertrophic changes of the Golgi complex: swelling of cisternae in the trans-Golgi compartment after exposure to abscisic acid and swelling of cis- and trans-compartments after exposure to gibberellic acid. The Click-iT technique revealed elevation of total protein synthesis only in A431 cells exposed to abscisic acid. Our data suggest that the hypertrophy of Golgi may reflect enhanced secretory activity in A431 cells exposed to abscisic acid. In other experiments, Golgi hypertrophy was not accompanied with increased protein synthesis that suggested the stress-related changes of ER and Golgi complex. Our results demonstrate that morphologically similar reaction manifested in hypertrophy of Golgi complex, in response to plant hormones, is the result of different functional activities, and that molecular mechanisms underlying induced changes need further investigations.  相似文献   

13.
Three-dimensional reconstructions of portions of the Golgi complex from cryofixed, freeze-substituted normal rat kidney cells have been made by dual-axis, high-voltage EM tomography at approximately 7-nm resolution. The reconstruction shown here ( approximately 1 x 1 x 4 microm3) contains two stacks of seven cisternae separated by a noncompact region across which bridges connect some cisternae at equivalent levels, but none at nonequivalent levels. The rest of the noncompact region is filled with both vesicles and polymorphic membranous elements. All cisternae are fenestrated and display coated buds. They all have about the same surface area, but they differ in volume by as much as 50%. The trans-most cisterna produces exclusively clathrin-coated buds, whereas the others display only nonclathrin coated buds. This finding challenges traditional views of where sorting occurs within the Golgi complex. Tubules with budding profiles extend from the margins of both cis and trans cisternae. They pass beyond neighboring cisternae, suggesting that these tubules contribute to traffic to and/or from the Golgi. Vesicle-filled "wells" open to both the cis and lateral sides of the stacks. The stacks of cisternae are positioned between two types of ER, cis and trans. The cis ER lies adjacent to the ER-Golgi intermediate compartment, which consists of discrete polymorphic membranous elements layered in front of the cis-most Golgi cisterna. The extensive trans ER forms close contacts with the two trans-most cisternae; this apposition may permit direct transfer of lipids between ER and Golgi membranes. Within 0.2 microm of the cisternae studied, there are 394 vesicles (8 clathrin coated, 190 nonclathrin coated, and 196 noncoated), indicating considerable vesicular traffic in this Golgi region. Our data place structural constraints on models of trafficking to, through, and from the Golgi complex.  相似文献   

14.
Colchicine administered to adult rats at a dosage of 0.5 mg/100 g of body weight effected a disorganization of the Golgi apparatus in pancreatic acinar cells. The results obtained after various periods of treatment (10 min to 6 h) showed (a) changes in all components of the Golgi complex, and (b) occurrence of large vacuoles that predominated in cytoplasmic areas outside the Golgi region. The alterations in Golgi stacks concerned elements of the proximal and distal side: (a) accumulation of transport vesicles, (b) formation of small, polymorphic secretion granules, and (c) alterations in the cytochemical localization of enzymes and reaction product after osmification. Transport vesicles accumulated and accompanied short, dilated cisternae, which lack mostly the reaction products of thiamine pyrophosphatase, inosine diphosphatase, and acid phosphatase, and osmium deposits after prolonged osmification. After 4 to 6 h of treatment, accumulated transport vesicles occupied extensive cellular areas; stacked cisternae were not demonstrable in these regions. The changes on the distal Golgi side included GERL elements: condensing vacuoles were diminished; they were substituted by small, polymorphic zymogen granules, which appeared to be formed by distal Golgi cisternae and by rigid lamellae. Unusually extended coated regions covered condensing vacuoles, rigid lamellae, and polymorphic secretion granules. A cytochemical distinction between Golgi components and GERL was possible neither in controls nor after colchicine treatment. The cytochemical alterations in Golgi components were demonstrable 20-30 min following administration of colchicine; at 45 min, initial morphological changes--augmentation of transport vesicles and formation of polymorphic zymogen granules--became apparent. 20 min after administration of colchicine, conspicuous groups of large vacuoles occurred. They were located mostly in distinct fields between cisternae of the endoplasmic reticulum, and were accompanied by small osmium--reactive vesicles. Stacked cisternae were not demonstrable in these fields. Vacuoles and vesicles were devoid of reaction products of thiamine pyrophosphatase, inosine diphosphatase, and acid phosphatase. The results provide evidence that formation of stacked Golgi cisternae is impaired after colchicine treatment. The colchicine--induced disintegration of the Golgi complex suggests a regulatory function of microtubules in the organization of the Golgi apparatus.  相似文献   

15.
The Golgi complex in mammalian cells forms a continuous ribbon of interconnected stacks of flat cisternae. We show here that this distinctive architecture reflects and requires the continuous input of membranes from the endoplasmic reticulum (ER), in the form of pleiomorphic ER-to-Golgi carriers (EGCs). An important step in the biogenesis of the Golgi ribbon is the complete incorporation of the EGCs into the stacks. This requires the Golgi-matrix protein GM130, which continuously cycles between the cis-Golgi compartments and the EGCs. On acquiring GM130, the EGCs undergo homotypic tethering and fusion, maturing into larger and more homogeneous membrane units that appear primed for incorporation into the Golgi stacks. In the absence of GM130, this process is impaired and the EGCs remain as distinct entities. This induces the accumulation of tubulovesicular membranes, the shortening of the cisternae, and the breakdown of the Golgi ribbon. Under these conditions, however, secretory cargo can still be delivered to the Golgi complex, although this occurs less efficiently, and apparently through transient and/or limited continuities between the EGCs and the Golgi cisternae.  相似文献   

16.
During mitosis the interconnected Golgi complex of animal cells breaks down to produce both finely dispersed elements and discrete vesiculotubular structures. The endoplasmic reticulum (ER) plays a controversial role in generating these partitioning intermediates and here we highlight the importance of mitotic ER export arrest in this process. We show that experimental inhibition of ER export (by microinjecting dominant negative Sar1 mutant proteins) is sufficient to induce and maintain transformation of Golgi cisternae to vesiculotubular remnants during interphase and telophase, respectively. We also show that buds on the ER, ER exit sites and COPII vesicles are markedly depleted in mitotic cells and COPII components Sec23p, Sec24p, Sec13p and Sec31p redistribute into the cytosol, indicating ER export is inhibited at an early stage. Finally, we find a markedly uneven distribution of Golgi residents over residual exit sites of metaphase cells, consistent with tubulovesicular Golgi remnants arising by fragmentation rather than redistribution via the ER. Together, these results suggest selective recycling of Golgi residents, combined with prebudding cessation of ER export, induces transformation of Golgi cisternae to vesiculotubular remnants in mitotic cells. The vesiculotubular Golgi remnants, containing populations of slow or nonrecycling Golgi components, arise by fragmentation of a depleted Golgi ribbon independently from the ER.  相似文献   

17.
When transport between the rough endoplasmic reticulum (ER) and Golgi complex is blocked by Brefeldin A (BFA) treatment or ATP depletion, the Golgi apparatus and associated transport vesicles undergo a dramatic reorganization. Because recent studies suggest that coat proteins such as beta-COP play an important role in the maintenance of the Golgi complex, we have used immunocytochemistry to determine the distribution of beta-COP in pancreatic acinar cells (PAC) in which ER to Golgi transport was blocked by BFA treatment or ATP depletion. In controls, beta-COP was associated with Golgi cisternae and transport vesicles as expected. Upon BFA treatment, PAC Golgi cisternae are dismantled and replaced by clusters of remnant vesicles surrounded by typical ER transitional elements that are generally assumed to represent the exit site of vesicular carriers for ER to Golgi transport. In BFA-treated PAC, beta-COP was concentrated in large (0.5-1.0 micron) aggregates closely associated with remnant Golgi membranes. In addition to typical ER transitional elements, we detected a new type of transitional element that consists of specialized regions of rough ER (RER) with ribosome-free ends that touched or extended into the beta-COP containing aggregates. In ATP-depleted PAC, beta-COP was not detected on Golgi membranes but was concentrated in similar large aggregates found on the cis side of the Golgi stacks. The data indicate that upon arrest of ER to Golgi transport by either BFA treatment or energy depletion, beta-COP dissociates from PAC Golgi membranes and accumulates as large aggregates closely associated with specialized ER elements. The latter may correspond to either the site of entry or exit for vesicles recycling between the Golgi and the RER.  相似文献   

18.
The glucose-6-phosphatase (G6Pase) activity of cytoplasmic components of spermatocytes and spermatids of the rat was examined by electron microscope cytochemistry using cerium chloride as a capture agent. G6Pase activity, a recognized ER-resident enzyme, was present in all ER cisternae of spermatocytes. In spermatids, while some ER cisternae were G6Pase-reactive, others were negative or only slightly reactive, indicating an unequal distribution of the enzymatic activity throughout the network of ER cisternae in these cells. In spermatocytes, the cis- and trans-elements of the stacks of Golgi saccules were slightly but significantly reactive for G6Pase. In the Golgi apparatus of spermatids, the cis-element, 4 or 5 underlying saccules, as well as one or two thick trans Golgi elements were G6Pase reactive. The G6Pase activity of the various Golgi elements, like that of the ER cisternae was not affected by the pH of the medium and was completely inhibited by Na-vanadate, a known G6Pase inhibitor. Sertoli and Leydig cells, submitted to the same cytochemical conditions, showed complete G6Pase reactivity of their ER; however in Sertoli cells, all Golgi components were consistently negative while in Leydig cells the cis- and trans-elements of the Golgi stacks were slightly reactive, as in spermatocytes. Thus, the G6Pase reactivity of Golgi elements, appeared variable from one cell type to another. The compact juxtanuclear Golgi apparatuses of spermatocytes and spermatids were both associated with numerous G6Pase reactive ER cisternae; some were present at their surface, others crossed their cortices between Golgi stacks and formed elaborate networks in their cores.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Wang Y  Wei JH  Bisel B  Tang D  Seemann J 《PloS one》2008,3(2):e1647
The Golgi apparatus in mammalian cells is composed of flattened cisternae that are densely packed to form stacks. We have used the Golgi stacking protein GRASP65 as a tool to modify the stacking state of Golgi cisternae. We established an assay to measure protein transport to the cell surface in post-mitotic cells in which the Golgi was unstacked. Cells with an unstacked Golgi showed a higher transport rate compared to cells with stacked Golgi membranes. Vesicle budding from unstacked cisternae in vitro was significantly increased compared to stacked membranes. These results suggest that Golgi cisternal stacking can directly regulate vesicle formation and thus the rate of protein transport through the Golgi. The results further suggest that at the onset of mitosis, unstacking of cisternae allows extensive and rapid vesiculation of the Golgi in preparation for its subsequent partitioning.  相似文献   

20.
SEGREGATION AND PACKAGING OF GRANULE ENZYMES IN EOSINOPHILIC LEUKOCYTES   总被引:43,自引:21,他引:22       下载免费PDF全文
During their differentiation in the bone marrow, eosinophilic leukocytes synthesize a number of enzymes and package them into secretory granules. The pathway by which three enzymes (peroxidase, acid phosphatase, and arylsulfatase) are segregated and packaged into specific granules of eosinophils was investigated by cytochemistry and electron microscopy. During the myelocyte stage, peroxidase is present within (a) all rough ER cisternae, including transitional elements and the perinuclear cisterna; (b) clusters of smooth vesicles at the periphery of the Golgi complex; (c) all Golgi cisternae; and (d) all immature and mature specific granules. At later stages, after granule formation has ceased, peroxidase is not seen in ER or Golgi elements and is demonstrable only in granules. The distribution of acid phosphatase and arylsulfatase was similar, except that the reaction was more variable and fully condensed (mature) granules were not reactive. These results are in accord with the general pathway for intracellular transport of secretory proteins demonstrated in the pancreas exocrine cell by Palade and coworkers. The findings also demonstrate (a) that in the eosinophil the stacked Golgi cisternae participate in the segregation of secretory proteins and (b) that the entire rough ER and all the Golgi cisternae are involved in the simultaneous segregation and packaging of several proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号