首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: A high-affinity binding site for 5'- N -ethylcarboxamido[3H]adenosine ([3H]NECA) from bovine cerebral cortex has been characterized in its membrane-bound and solubilized state after gel filtration on Sepharose CL-6B. For detection of this site in membranes, it was necessary to remove metabolites with high affinities for this site enzymatically, e.g., adenosine by addition of adenosine deaminase and inosine by addition of nucleoside phosphorylase. The pore-forming peptide antibiotic alamethicin further enhanced binding of [3H]NECA to this site in membranes. In contrast to adenosine receptors and the adenotin-like low-affinity binding protein, this novel site was extremely sensitive against treatment with the sulfhydryl alkylating agent N -ethylmaleimide. In competition experiments, this site could be differentiated from adenosine receptors by its high affinity for adenine nucleotides and its lack of affinity for adenosine receptor antagonists. Inosine and its derivative S -(4-nitrobenzyl)-6-thioinosine were relatively potent ligands with K i values in the high nano- and low micromolar range, respectively. We conclude that the high-affinity NECA binding site described previously in bovine striatum is not exclusively located in the striatum, but can also be detected in membrane preparations and soluble extracts of bovine brain cortex.  相似文献   

2.
Kinetic studies showed that under appropriate conditions, [3H]clonidine binds to two distinct receptor sites in calf cortex membranes. At 23 degrees C, binding was obtained at a low-affinity site (dissociation constant, KD = 5.4 nM) and a high-affinity site (KD = 1.1 nM). In contrast, at 0 degree C, selective binding occurred to the low-affinity site only. Consequently, at 0 degree C, it was possible to evaluate the interaction of drugs with the low-affinity receptor directly. On the other hand, competition with the high-affinity receptor could be ascertained by generating displacement curves representing the differential between specific binding values obtained at 23 and 0 degree C. Guanine nucleotides selectively decreased binding to the high-affinity site without apparent influence on the low-affinity [3H]clonidine binding. The activities of various pharmacological agents at the low- and high-affinity clonidine receptors are discussed and compared with WB-4101 binding data.  相似文献   

3.
The binding isotherms of opioid receptors in rat brain membranes with [3H]D-Ala2-D-Leu5-enkephalin ([3H]DADLE), [3H]dihydromorphine ([3H]DHM), and [3H]etorphine were analysed to show the effects of Mg2+, Na+, and guanine nucleotides. Four opioid receptor subtypes of delta, kappa, mu 1, and mu 2 specificities were differentiated, where necessary with the aid of specific displacing ligands. Both a guanine nucleotide [guanosine-5'-(beta, gamma-imido)triphosphate] and the cations (Na+, Mg2+) affect the affinity state of all four subtypes of the receptor. The opioid binding behaviour is found on detailed inspection to be complex, with cases of "half-of-the-sites" reactivity and of cooperativity. By their behaviour under the various ionic conditions noted, it was concluded that these subtypes are distinct, without the need to assume interconvertibility by such agents. The evidence suggests that the formation of heterologous kappa-delta or mu 1-mu 2 receptor complexes is required for stabilization of the high-affinity conformational state of the receptor. Important effects of cations in increasing the binding and regulating the equilibria of receptor association-dissociation were observed when these studies were conducted, not in the Tris-HCl buffer commonly used in opioid binding assays, but in N-tris[hydroxymethyl]-methyl-2-aminoethanesulphonate (K+) buffer (TES-KOH; 10 mM, pH 7.5): it was found that ionic species of Tris can substitute for divalent cations. Dithiothreitol effects on agonist binding in the presence and absence of the cations suggested that those cation effects involve the exchange of -SH/-SS- bonds between receptor subunits. All of the behaviour is interpreted in terms of a model involving association-dissociation equilibria of homologous and/or heterologous receptor subunits of an oligomeric opioid receptor structure.  相似文献   

4.
The binding of [3H]neurotensin to membranes from human brain at 0 degrees C was specific, saturable, and reversible. In the frontal cortex, the equilibrium dissociation constant (KD) for [3H]neurotensin determined from the ratio of rate constants (k-1/k1), saturation isotherms, and inhibition binding experiments was 0.80, 2.0, and 2.0 nM, respectively, and the maximum number of binding sites (Bmax) from the saturation isotherms and the competitive binding experiments was 2.4 and 2.2 pmol/g of tissue, respectively. Hill coefficients for binding were equal to 1, indicating the presence of single, noncooperative binding sites. Inhibition of specific binding of [3H]-neurotensin by several analogs of neurotensin showed that [Gln4]neurotensin and neurotensin(8-13) had the highest affinities for these binding sites in human frontal cortex, with each analog being approximately 13-fold more potent than neurotensin. In addition, these data showed that the carboxy-terminal portion of neurotensin played an important part in the binding of this neuropeptide in human brain, a result described for other species. Regional distribution of binding sites was different from that reported for animal brains. Of the 33 different regions investigated, the uncus and substantia nigra showed the highest specific binding of [3H]neurotensin, whereas such areas as the pineal body, medulla, and corpus callosum had few binding sites.  相似文献   

5.
alpha-Amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) is a selective ligand for an excitatory amino acid receptor subtype in mammalian brain. We have solubilized an AMPA binding protein from bovine brain membranes with 1% Triton X-100 in 0.5 M phosphate buffer and 20% glycerol at 37 degrees C and purified the stable binding sites using a series of chromatographic steps. Scatchard analysis of the purified preparation showed a curvilinear plot with dissociation constants of 10.6 and 323 nM and Bmax values of 670 and 1,073 pmol/mg of protein for the high- and low-affinity sites, respectively. Inhibition constants for several excitatory amino acid analogues were similar to those obtained for other membrane and solubilized preparations. Gel filtration of the soluble AMPA binding protein showed a single peak of [3H]AMPA binding activity at Mr approximately 500,000. With sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the purified AMPA binding protein showed a single major band at Mr = 110,000. Previously, we have shown that a monoclonal antibody (KAR-B1) against a frog brain kainate binding protein selectively recognizes an unknown protein in mammalian brain migrating at Mr approximately 100,000. We now show that this antibody recognizes the major component of the purified AMPA binding protein, supporting a structural similarity between the frog brain kainate binding protein and the mammalian AMPA binding protein.  相似文献   

6.
Abstract: The specific binding of L-[3H]glutamate to its receptors was investigated on crude membrane preparations from different brain regions of pentylenetetrazole-kindled rats using a binding assay technique. Pentylenetetrazole kindling induced by 10 intraperitoneal applications of 45 mg/kg over a period of 20 days resulted in a significant increase of both the convulsive susceptibility of animals to the convulsant and the specific L-[3H]glutamate binding in hippocampus and in motor, frontal, and inferiotemporal (acoustic) cortex tested with a L-[3H]glutamate concentration of 50 n M . No differences were observed in the other brain structures studied. Kinetic studies indicated that the enhanced L-[3H]glutamate binding to hippocampal membranes from kindled rats reflects changes in the density of the glutamate binding sites rather than an increase in receptor affinity. To study the effect of acute generalized convulsions on L-[3H]glutamate binding to synaptosomal membranes of hippocampus and visual cortex, rats were treated 24 h before the experiment with 60 mg/kg of pentylenetetrazole, i.p. Under these conditions, no differences between treated and control rats were observed. From these findings, it is concluded that the increase in glutamate receptor density demonstrated in hippocampus and several neocortical brain structures of pentylenetetrazole-kindled rats may be the expression of a specific enhancement of susceptibility of glutamatergic systems to this excitatory amino acid developing in the course of formation of pentylenetetrazole-induced kindling.  相似文献   

7.
Abstract : Studies on iron uptake into the brain have traditionally focused on transport by transferrin. However, transferrin receptors are not found in all brain regions and are especially low in white matter tracts where high iron concentrations have been reported. Several lines of research suggest that a receptor for ferritin, the intracellular storage protein for iron, may exist. We present, herein, evidence for ferritin binding sites in the brains of adult mice. Autoradiographic studies using 125I-recombinant human ferritin demonstrate that ferritin binding sites in brain are predominantly in white matter. Saturation binding analyses revealed a single class of binding sites with a dissociation constant ( K D) of 4.65 × 10-9 M and a binding site density ( B max) of 17.9 fmol bound/μg of protein. Binding of radiolabeled ferritin can be competitively displaced by an excess of ferritin but not transferrin. Ferritin has previously been shown to affect cellular proliferation, protect cells from oxidative damage, and deliver iron. The significance of a cellular ferritin receptor is that ferritin is capable of delivering 2,000 times more iron per mole of protein than transferrin. The distribution of ferritin binding sites in brain vis-à-vis transferrin receptor distribution suggests distinct methods for iron delivery between gray and whi  相似文献   

8.
We purified to homogeneity rat brain S100b protein, which constitutes about 90% of the soluble S100 protein fraction. Purified rat S100b protein comigrates with bovine S100b protein in nondenaturant system electrophoresis but differs in its amino acid composition and in its electrophoretic mobility in urea-sodium dodecyl sulfate-polyacrylamide gel with bovine S100b protein. The properties of the Ca2+ and Zn2+ binding sites on rat S100b protein were investigated by flow dialysis and by fluorometric titration, and the conformation of rat S100b in its metal-free form as well as in the presence of Ca2+ or Zn2+ was studied. The results were compared with those obtained for the bovine S100b protein. In the absence of KCl, rat brain S100b protein is characterized by two high-affinity Ca2+ binding sites with a KD of 2 X 10(-5) M and four lower affinity sites with KD about 10(-4) M. The calcium binding properties of rat S100b protein differ from bovine S100b only by the number of low-affinity calcium binding sites whereas similar Ca2+-induced conformational changes were observed for both proteins. In the presence of 120 mM KCl rat brain S100b protein bound two Zn2+-ions/mol of protein with a KD of 10(-7) M and four other with lower affinity (KD approximately equal to 10(-6) M). The occupancy of the two high-affinity Zn2+ binding sites was responsible for most of the Zn2+-induced conformational changes in the rat S100b protein. No increase in the tyrosine fluorescence quantum yield after Zn2+ binding to rat S100b was observed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Abstract: In this study we examined the interaction of opiates with K binding sites in the bovine adrenal medulla. [3H]Ethylketocyclazocine (EKC), [3H]etorphine, and [3H]bremazocine stereoselective bindings were used to assay these interactions. The K sites were found to be heterogeneous: [3H]bremazocine identified with high affinity all subtypes of these sites. [3H]EKC, in the presence of saturating concentrations of [D-Ala2, D-Leut]-enkephalin (DADLE) (5μM), was used to identify K1 sites, on which dynorphin A (1–13) bound with high affinity. Either [3H]EKC or [3H]etorphine in the presence of 5μM DADLE identified the K2 subtype. This subtype was found to interact with β-endorphin and especially with the octapeptide Met5-enkephalyl-Arg6-Gly7-Leu8. Furthermore, [3H]etorphine identified in the bovine adrenal medulla a third high-affinity component, in the presence of 5 μM DADLE. This residual interaction was found to be equally stereoselective and presenting K selectivity. Met5-enkephalyl-Arg6-Phe7 interacted preferentially with this site. The three K subtypes interacted differentially with monovalent (Na+, K+, and Li+) and divalent (Ca2+, Mg2+, and Mn2+) ions by modification of the apparent concentration of the accessible sites and/or by changes of the apparent KD for radioligands. Modifying agents (proteolytic enzymes, thiol-modifying reagents, and A2-phospholipase) produced different effects on each subtype of the K site, suggesting a different protein (or protein-lipid?) composition.  相似文献   

10.
Characterization of [3H]Guanine Nucleotide Binding Sites in Brain Membranes   总被引:2,自引:0,他引:2  
[3H]GTP [guanosine triphosphate] and [3H]GMP-PNP [guanosine 5'-(beta, 8-imino)triphosphate, a nonmetabolized analog of GTP] have been utilized as ligands to characterize binding sites of guanine nucleotides to rat brain membranes. Binding of both [3H]GTP and [3H]GMP-PNP is saturable, with respective KD values of 0.76 and 0.42 microM. The number of binding sites for GMP-PNP (4 nmol/g) is three times greater than for GTP (1.5 nmol/g). This discrepancy is caused by rapid degradation of GTP to guanosine by brain membranes, which can be partially prevented by addition of 100 microM-ATP. The binding of [3H]guanine nucleotides is selective, with approximately equipotent inhibition by GTP, GDP, and GMP-PNP (at 0.2--1.0 microM), but no inhibition by other nucleotides at 100 microM concentrations. The bindings sites for guanine nucleotides in brain membranes appear not to be associated with microtubules, since treatments that reduce [3H]colchicine binding by 65% have no effect on [3H]GTP binding. [3H]Guanine nucleotide binding is widely distributed in various organs, with highest levels in liver and brain and lowest levels in skeletal muscle. The characteristics of these binding sites in brain show specificity properties of sites that regulate neurotransmitter receptors and adenylate cyclase.  相似文献   

11.
Abstract: Isolated brain nuclei possess binding sites for S-100 protein. The interaction of S-100 with these sites is specific and time-, temperature-, and Ca+-dependent. The profile of the 125I-labelled S-100 binding inhibition is biphasic, displaying a high-affinity component and a low-affinity component. The S-100 binding to brain nuclei is largely irreversible, probably owing to the formation of a tight complex between the protein and its nuclear binding sites. The S-100 binding to brain nuclei is in most aspects similar to that to synaptosomal membranes. Several lines of evidence indicate, however, that the S-100 binding to nuclei is not due to contamination of these structures with plasma membranes. Isolated liver nuclei do not possess the high-affinity component of S-100 binding.  相似文献   

12.
Ascorbate is present in millimolar concentrations in mammalian brain and can be released from cellular stores by membrane depolarization. We report here that physiologically relevant concentrations of ascorbate modulate 5-[3H]hydroxytryptamine ([3H]5-HT) binding to bovine frontal cortex membranes. Under conditions where [3H]5-HT binding is reversible and saturable, ascorbate causes a concentration-dependent increase in the affinity of [3H]5-HT for central 5-HT3 binding sites. At pH 7.4, increasing ascorbate from 0 to 5.7 mM changes the equilibrium affinity constant (KD) of binding to 5-HT3 sites from 125 nM to 30 nM, without affecting binding site number. These ascorbate-induced effects are pH dependent. At pH 7.1 binding to central 5-HT3 sites is essentially eliminated in the presence of ascorbate. These studies suggest that ascorbate and hydrogen ion concentration interactions may modulate serotonergic function.  相似文献   

13.
Abstract: In the present study, we investigated the existence of a binding site for l -carnitine in the rat brain. In crude synaptic membranes, l -[3H]carnitine bound with relatively high affinity (KD = 281 nM) and in a saturable manner to a finite number (apparent Bmax value = 7.3 pmol/mg of protein) of binding sites. Binding was reversible and dependent on protein concentration, pH, ionic strength, and temperature. Kinetic studies revealed a Koff of 0.018 min?1 and a Kon of 0.187 × 10?3 min?1 nM?1. Binding was highest in spinal cord, followed by medulla oblongata-pons ≥ corpus striatum ≥ cerebellum = cerebral cortex = hippocampus = hypothalamus = olfactory bulb. l -[3H]Carnitine binding was stereoselective for the l -isomers of carnitine, propionylcarnitine, and acetylcarnitine. The most potent inhibitor of l -[3H]carnitine binding was l -carnitine followed by propionyl-l -carnitine. Acetyl-l -carnitine and isobutyryl-l -carnitine showed an affinity ~500-fold lower than that obtained for l -carnitine. The precursor γ-butyrobetaine had negligible activity at 0.1 mM. l -Carnitine binding to rat crude synaptic membrane preparation was not inhibited by neurotransmitters (GABA, glycine, glutamate, aspartate, acetylcholine, dopamine, norepinephrine, epinephrine, 5-hydroxytryptamine, histamine) at a final concentration of 0.1 mM. In addition, the binding of these neuroactive compounds to their receptors was not influenced by the presence of 0.1 mMl -carnitine. Finally, a subcellular fractionation study showed that synaptic vesicles contained the highest density of l -carnitine membrane binding sites whereas l -carnitine palmitoyltransferase activity was undetectable, thus excluding the possibility of the presence of an active site for carnitine palmitoyltransferase. This finding indicated that the localization of the l -[3H]carnitine binding site should be essentially presynaptic.  相似文献   

14.
Neurotensin (NT) is now reasonably well established as a neurotransmitter or neuromodulator candidate in the CNS. In the present study, we characterized the NT receptors in dispersed cells from the anterior lobe of rat pituitary and investigated the involvement of both cyclic AMP and calcium in the release of prolactin (PRL) induced by NT receptor stimulation. The [3H]NT binding to membranes from anterior pituitary dispersed cells was found saturable and stereospecific. Scatchard analysis of the data gave a straight line indicating a Bmax value of 121 +/- 11 fmol/mg protein and a KD value of 1.4 +/- 0.2 nM. The calculated IC50 values for [3H]NT binding were 5.8 nM for NT, 7.8 nM for L-Phe-NT, and 3,000 nM for the pharmacologically inactive form D-Phe-NT. NT, up to a concentration of 1 microM, did not affect the cyclic AMP generating system in homogenates of anterior pituitary from male or lactating female rats. The same pattern of results was obtained for cyclic AMP formation in intact cells. NT and its analogs stereospecifically enhanced the influx of calcium into dispersed cells from rat anterior pituitary. The effect was time- and dose-dependent. It appeared to be associated with neurotransmitter-operated calcium channels since: preincubation of the cells with tetrodotoxin did not affect the increase in calcium influx induced by NT; concentrations of verapamil that counteract the influx of calcium induced by potassium lacked the capacity to modify the influx of calcium induced by NT; and NT lost its capacity to release PRL in the absence of extracellular calcium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
GABA and benzodiazepine receptors were solubilized from bovine cerebral cortex, cerebellum, and hippocampus and then partially purified by gel filtration and characterized. The apparent molecular weights of all these receptors were determined to be 600,000-650,000 by gel filtration, the sedimentation coefficients being 11.0-11.3 S by sucrose density gradient centrifugation. [3H]Muscimol was bound to two classes of sites in fractions from all three regions, and [3H]flunitrazepam bound to one class of sites. A comparison of the ratios of Bmax for flunitrazepam binding to Bmax for muscimol binding revealed that the fractions from the hippocampus exhibited a much higher ratio of benzodiazepine binding sites than were detected in fractions from the cortex and cerebellum. GABA agonist and antagonist inhibited [3H]muscimol binding to the fractions from these regions, at similar concentrations. Benzodiazepine agonists and antagonists also inhibited [3H]flunitrazepam binding in these three fractions, with similar potency. CL 218,872, however, inhibited [3H]flunitrazepam binding in the cerebellar fraction with the lowest IC50 value and that in th hippocampal fraction with the highest IC50 value. Hill coefficients for CL 218,872 inhibition were 0.98, 0.64, and 0.58 for cerebellum, cortex, and hippocampus, respectively.  相似文献   

16.
Abstract: Fractionation of isolated brain nuclei previously reacted with 125I-labelled S-100 showed that most of the specifically bound radioactivity associated with the nuclear membranes and the nucleoli. Labelling of nucleoli, which indicates the entrance of 125I-labelled S-100 into the nucleus, was observed at 37°C, but not at 0–4°C. When tested separately for 125I-labelled S-100 specific binding, both the nuclear membranes and the nucleoli were found to bind 125I-labelled S-100 in a biphasic manner, the binding displaying a high affinity and a low affinity component, as observed with intact nuclei. However, the binding to nuclear membranes was largely irreversible, while that to nucleoli was fully reversible after any association time.  相似文献   

17.
In the present study we examined the interaction of opiates with the delta and mu opioid binding sites in the bovine adrenal medulla. [3H][D-Ala2, D-Leu5]-enkephalin ( [3H]DADLE) in the presence of saturating concentrations of morphiceptin was used to analyze delta site interactions, whereas either [3H]DADLE in the presence of saturation concentrations of [D-Ser2, Leu5]-enkephalin-Thr6 (DSLET) or [3H][D-Ala2, Me-Phe4, Gly5-ol]-enkephalin ( [3H]DAGO) was used for the determination of mu sites. Both binding sites were found to interact stereoselectively with opiates. The binding was affected differentially by proteolytic enzymes (trypsin, alpha-chymotrypsin, pepsin), N-ethylmaleimide, and A2-phospholipase. Kinetic and equilibrium binding studies revealed that in each case radiolabeled opiates interact with one class of binding sites, following simple second-order bimolecular kinetics. Competition for binding by opiates and opioid peptides confirmed the delta and mu selectivity of these sites. Monovalent (Na+, Li+, K+) and divalent (Mg2+, Mn2+, Ca2+) ions interacted differentially with these two binding sites: In general, monovalent cations affected preferentially the apparent number of binding sites, whereas divalent ions modified the equilibrium dissociation constant. Furthermore, positive or negative cooperativity and an apparent heterogeneity of binding sites were detected under some ionic conditions.  相似文献   

18.
Specific binding of bovine somatotropin (BST) and bovine prolactin (BPRL) to cow granulosa cells from antrumcontaining follicles of different diameter was studied. Scatchard analysis of the data revealed a single type of low affinity BST-binding sites on the granulosa cells with dissociation constants similar to those for the BPRL-binding sites. The number of BST-binding sites on the cells decreased with increasing follicle diameter from 3-5 to 6-10 mm. However, the binding capacity to BPRL decreased only in the case of cells from follicles 11-20 mm in diameter. The findings are discussed in relation to the homologous binding phenomenon.  相似文献   

19.
Fractions and subcellular structures were prepared from rat brain homogenate and their purity was assessed using enzyme markers, gamma-aminobutyric acid binding, DNA content, and electron microscopy. Insulin binding was highest on the plasma membrane preparations and approximately 50% less so on brain homogenate crude mitochondrial (P2), myelinated axon, and synaptosome preparations. Very low levels of binding were found on mitochondria and nuclei. Differences in binding between fractions were due to numbers of binding sites, and not variable binding affinity. There was a close relationship between insulin binding and the activity of Na/K ATPase (E.C. 3.6.1.4) in all fractions (r = 0.98). Insulin binding to the P2 was compared with plasma membrane fractions in seven brain regions, and the results demonstrated the same close relationship between insulin binding and plasma membrane content in all regions except hypothalamus. Plasma membrane insulin binding was well represented by the binding on P2 membranes in all regions except hypothalamus and brainstem. It was concluded that insulin binding is distributed evenly over the surface of brain cells and is not increased on nerve endings.  相似文献   

20.
Abstract: Solubilization of rat striatal membranes with sodium cholate, followed by reconstitution into phospholipid vesicles, leads to a 6.5-fold increase in the agonist high-affinity binding sites of the D1 dopamine receptor. These high-affinity binding sites display differential sensitivity toward temperature. When reconstituted receptors were preincubated for 1 h at 0–4°C (on ice) or at 22°C (room temperature) followed by radioligand binding assays with dopamine, neither the high-affinity values of the receptor for dopamine nor the percent receptors in the high-affinity state (31–39%) were changed from control reconstituted receptors, which were not subject to any preincubations. At 30°C, there was a partial loss in the number of high-affinity D1 receptors with only 25% of the total receptor population in the high-affinity state; there was no change in the affinity values of the high-affinity binding sites. At 37°C, there was a 40% loss in total number of D1 receptor binding sites. All the high-affinity binding sites were lost and the remaining 60% of binding activity represented the low-affinity binding state of the receptor. These results indicate that the high-affinity binding sites of the reconstituted D1 dopamine receptors are uniquely sensitive to higher temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号