首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A general formalism is derived for the evaluation of binding isotherms of n-mers (ligands) to one-dimensional polymers in the presence of ligand-ligand interactions which extend over several binding sites with distance-dependent interaction energies (multi-parameter model). This is an extension of the usual n-mer binding theory developed by several investigators in which ligand-ligand interaction occurs only when two ligands are in close contact (one-parameter model). The difference in binding isotherms between a one-parameter model and a multi-parameter model is studied numerically using the present formalism.  相似文献   

2.
Membranes from rat telencephalon contain a single class of strychnine-insensitive glycine sites. That these sites are associated with N-methyl-D-aspartic acid (NMDA) receptors is indicated by the observations that [3H]glycine binding is selectively modulated by NMDA receptor ligands and, conversely, that several amino acids interacting with the glycine sites increase [3H]N-[1-(2-thienyl)cyclohexyl]piperidine ([3H]TCP) binding to the phencyclidine site of the NMDA receptor. The endogenous compound kynurenate and several related quinoline and quinoxaline derivatives inhibit glycine binding with affinities that are much higher than their affinities for glutamate binding sites. In contrast to glycine, kynurenate-type compounds inhibit [3H]TCP binding and thus are suggested to form a novel class of antagonists of the NMDA receptor acting through the glycine site. These results suggest the existence of a dual and opposite modulation of NMDA receptors by endogenous ligands.  相似文献   

3.
4.
Trivalent oxygenated phosphorus ligands include alkyl and aryl phosphites, (RO)3P, phosphonites, (RO)2PR, and phosphinites, ROPR2. All such compounds tested, with the exception of triphenyl phosphite, interact with ferrous cytochrome P-450 and its denatured form, cytochrome P-420, to produce complexes having two peaks in the Soret region of their optical difference spectra. Careful evaluation of these spectra indicate that they arise for different reasons for each of the two cytochromes. Clear evidence shows that cytochrome P-450 is not denatured by these ligands. The high affinity of these ligands for heme iron is indicated by small Ks values. The experimental results are used to substantiate a theory of the origin of microsomal double Soret spectra and the nature of the environments available for microsomal cytochromes P-450 and P-420.  相似文献   

5.
Macrophage scavenger class A type I and type II receptors (SR-A) are trimeric, integral membrane glycoproteins that bind an unusually broad array of macromolecular ligands. These ligands include modified proteins and lipoproteins, nucleic acids, and a variety of plant and microbial cell wall constituents, such as fucoidan and lipoteichoic acid. Early studies of SR-A functions indicated that the receptors bound, internalized, and degraded their ligands without provoking any macrophage activating signaling events. More recent studies have provided evidence that several SR-A ligands can activate macrophage gene expression via utilization of a receptor-linked, PI3-kinase pathway. To investigate the role of SR-A in engaging signal transduction events, we employed macrophages taken from mice lacking these receptors. Using either fucoidan or lipoteichoic acid, we confirm that both ligands stimulate tyrosine phosphorylation of PI3-kinase and production of modest levels of the cytokine, TNFalpha. However, macrophages taken from SR-A null mice did not differ from wild type macrophages in these responses, indicating that these signaling events arise independently of SR-A activity. Employing mice lacking CD14, a GPI anchored receptor that binds bacterial lipopolysaccharide and signals via activation of Toll-like receptors, we show that the fucoidan and lipoteichoic acid responses are largely abrogated when CD14 is absent. These data do not provide support for direct SR-A involvement in signal transduction events and suggest that the early characterization of these receptors as initiators of a non-phlogistic, pathogen clearance pathway was correct.  相似文献   

6.
Abstract

Heterologous tracer ligands used in displacement studies with peptide-receptor systems may become unsuitable to these aims for several reasons. (1) The forms of binding isotherms for the tracer and for the ligand under investigation are different. The Schild plot and similar schemes are then not applicable. Possible modifications of the computational methods are indicated. (2) The rate of dissociation from the receptor is slowed, until almost irreversible. In such cases, there is no chance for displacement studies. (3) Large discrepancy in rate constants, or dramatically different distribution coefficients between binding system and water, for the two ligands mimic irreversible binding to receptors in a pharmacological experiment. Adjustment of ligand concentrations (control of association rate) may help in some instances.  相似文献   

7.
The DM1/sigma 1 site binds dextromethorphan (DM) and sigma receptor ligands. The broad binding specificity of this site and its peculiar subcellular distribution prompted us to explore the possibility that this site is a member of the cytochrome P-450 superfamily of enzymes. We tested the effects of the liver microsomal monooxygenase inhibitor SKF 525-A (Proadifen), and other P-450 substrates on the binding of [3H]dextromethorphan, [3H]3-(-3-Hydroxyphenyl)-N-(1-propyl)piperidine and (+)-[3H]1,3-Di-o-tolyl-guanidine ([3H]DTG) to the guinea pig brain. SKF 525-A, l-lobeline and GBR-12909 inhibited the binding of the three labeled ligands with nM affinity. Each drug has identical nM Ki values for the high-affinity site labeled by the three ligands. This indicated that they displaced the labeled ligands from the common DM1/sigma 1 site. Debrisoquine and sparteine, prototypical substrates for liver debrisoquine 4-hydroxylase, displayed Ki values of 9-13 and 3-4 microM respectively against the three labeled ligands. These results, the broad specificity of the DM1/sigma 1 binding site, and its peculiar subcellular distribution, raises the possibility that this binding site is a member of the cytochrome P-450 superfamily of isozymes, rather than a neurotransmitter receptor. These findings may have important implications for the understanding of the therapeutic, side effects and toxicity of several neurotropic drugs.  相似文献   

8.
Muscarinic receptors have been characterized in smooth muscle and brain by the binding of reversible (e.g. atropine, quinuclidinylbenzylate) or irreversible (benzilylcholine or propylbenzilylcholine mustards) ligands. There is a close correlation between affinity constants derived from binding experiments and the affinities of muscarinic ligands for these sites obtained in pharmacological experiments on smooth muscle. Whereas atropine shows a single high affinity binding component (in subcellular preparations) several other ligands (QNB, ACh, oxotremorine) show multiple affinity binding. This indicated the existence of several types of binding sides which show selectivity toward certain cholinergic effectors. Most detergents inhibit the binding of ligands to the receptor site and therefore cannot be used to solubilize the receptor protein from the membrane. Treatment of brain subcellular membrane preparations with high salt concentrations (2M NaI) solubilize proteins which possess the muscarinic ligand binding properties observed in the membrane preparation. The affinities for muscarinic antagonists however are decreased, which suggests that a conformational change occurs in the protein upon solubilization.  相似文献   

9.
Quinone reductase 2 (QR2) is one of two members comprising the mammalian quinone reductase family of enzymes responsible for performing FAD mediated reductions of quinone substrates. In contrast to quinone reductase 1 (QR1) which uses NAD(P)H as its co‐substrate, QR2 utilizes a rare group of hydride donors, N‐methyl or N‐ribosyl nicotinamide. Several studies have linked QR2 to the generation of quinone free radicals, several neuronal degenerative diseases, and cancer. QR2 has been also identified as the third melatonin receptor (MT3) through in cellulo and in vitro inhibition of QR2 by traditional MT3 ligands, and through recent X‐ray structures of human QR2 (hQR2) in complex with melatonin and 2‐iodomelatonin. Several MT3 specific ligands have been developed that exhibit both potent in cellulo inhibition of hQR2 nanomolar, affinity for MT3. The potency of these ligands suggest their use as molecular probes for hQR2. However, no definitive correlation between traditionally obtained MT3 ligand affinity and hQR2 inhibition exists limiting our understanding of how these ligands are accommodated in the hQR2 active site. To obtain a clearer relationship between the structures of developed MT3 ligands and their inhibitory properties, in cellulo and in vitro IC50 values were determined for a representative set of MT3 ligands (MCA‐NAT, 2‐I‐MCANAT, prazosin, S26695, S32797, and S29434). Furthermore, X‐ray structures for each of these ligands in complex with hQR2 were determined allowing for a structural evaluation of the binding modes of these ligands in relation to the potency of MT3 ligands.  相似文献   

10.
Phylogenetic relatedness and cocirculation of several major human pathogen flaviviruses are recognized as a possible cause of deleterious immune responses to mixed infection or immunization and call for a greater understanding of the inter-Flavivirus protein homologies. This study focused on the identification of human leukocyte antigen (HLA)-restricted West Nile virus (WNV) T-cell ligands and characterization of their distribution in reported sequence data of WNV and other flaviviruses. H-2-deficient mice transgenic for either A2, A24, B7, DR2, DR3, or DR4 HLA alleles were immunized with overlapping peptides of the WNV proteome, and peptide-specific T-cell activation was measured by gamma interferon (IFN-γ) enzyme-linked immunosorbent spot (ELISpot) assays. Approximately 30% (137) of the WNV proteome peptides were identified as HLA-restricted T-cell ligands. The majority of these ligands were conserved in ~≥88% of analyzed WNV sequences. Notably, only 51 were WNV specific, and the remaining 86, chiefly of E, NS3, and NS5, shared an identity of nine or more consecutive amino acids with sequences of 64 other flaviviruses, including several major human pathogens. Many of the shared ligands had an incidence of >50% in the analyzed sequences of one or more of six major flaviviruses. The multitude of WNV sequences shared with other flaviviruses as interspecies variants highlights the possible hazard of defective T-cell activation by altered peptide ligands in the event of dual exposure to WNV and other flaviviruses, by either infection or immunization. The data suggest the possible preferred use of sequences that are pathogen specific with minimum interspecies sequence homology for the design of Flavivirus vaccines.  相似文献   

11.
A series of pyrazolo[1',5':1,6]pyrimido[4,5-d]pyridazin-4(3H)-ones was synthesized and tested in radioligand binding assays to determine their affinities for the human adenosine A(1), A(2A), A(2B) and A(3) receptors. Results indicated that this scaffold is appropriate for adenosine receptor subtype A(1) ligands and that the best arranged groups around this scaffold are 3- and 4-pyridinyl at position 1, benzyl at position 3, hydrogen at position 6 and 3-thienyl or phenyl at position 9. The most interesting compounds showed K(i) for A1 in the nanomolar range and an appreciable selectivity for other receptor subtypes.  相似文献   

12.
The phosphotyrosine binding-like domain of talin activates integrins   总被引:1,自引:0,他引:1  
Cellular regulation of the ligand binding affinity of integrin adhesion receptors (integrin activation) depends on the integrin beta cytoplasmic domains (tails). The head domain of talin binds to several integrin beta tails and activates integrins. This head domain contains a predicted FERM domain composed of three subdomains (F1, F2, and F3). An integrin-activating talin fragment was predicted to contain the F2 and F3 subdomains. Both isolated subdomains bound specifically to the integrin beta3 tail. However, talin F3 bound the beta3 tail with a 4-fold higher affinity than talin F2. Furthermore, expression of talin F3 (but not F2) in cells led to activation of integrin alpha(IIb)beta3. A molecular model of talin F3 indicated that it resembles a phosphotyrosine-binding (PTB) domain. PTB domains recognize peptide ligands containing beta turns, often formed by NPXY motifs. NPX(Y/F) motifs are highly conserved in integrin beta tails, and mutations that disrupt this motif interfere with both integrin activation and talin binding. Thus, integrin binding to talin resembles the interactions of PTB domains with peptide ligands. These resemblances suggest that the activation of integrins requires the presence of a beta turn at NPX(Y/F) motifs conserved in integrin beta cytoplasmic domains.  相似文献   

13.
Lescot E  Bureau R  Rault S 《Peptides》2008,29(5):680-690
Human Urotensin-II (hU-II) is a cyclic 11-amino acid peptide that plays a role in cardiovascular homeostasis. Its receptor is a member of the class A of G-protein-coupled receptors, called GPR14. In recent years, several nonpeptide ligands have been reported in the literature. Most were identified by high-throughput screening and optimized by medicinal chemistry methods. Other nonpeptide ligands were discovered starting from the 3D structure of hU-II or other ligands. They were identified by a virtual screening approach based on a 3D pharmacophore or by structural similarity with others cyclic peptides. In this review, nonpeptide agonists and antagonists are presented in relation to structure-activity relationships.  相似文献   

14.
A series of 3,6-disubstituted β-carbolines was synthesized and evaluated for their in vitro affinities at α(x)β(3)γ(2) GABA(A)/benzodiazepine receptor subtypes by radioligand binding assays in search of α(1) subtype selective ligands to treat alcohol abuse. Analogues of β-carboline-3-carboxylate-t-butyl ester (βCCt, 1) were synthesized via a CDI-mediated process and the related 6-substituted β-carboline-3-carboxylates 6 including WYS8 (7) were synthesized via a Sonogashira or Stille coupling processes from 6-iodo-βCCt (5). The bivalent ligands of βCCt (32 and 33) were also designed and prepared via a palladium-catalyzed homocoupling process to expand the structure-activity relationships (SAR) to larger ligands. Based on the pharmacophore/receptor model, a preliminary SAR study on 34 analogues illustrated that large substituents at position-6 of the β-carbolines were well tolerated. As expected, these groups are proposed to project into the extracellular domain (L(Di) region) of GABA(A)/Bz receptors (see 32 and 33). Moreover, substituents located at position-3 of the β-carboline nucleus exhibited a conserved stereo interaction in lipophilic pocket L(1), while N(2) presumably underwent a hydrogen bonding interaction with H(1). Three novel β-carboline ligands (βCCt, 3PBC and WYS8), which preferentially bound to α1 BzR subtypes permitted a comparison of the pharmacological efficacies with a range of classical BzR antagonists (flumazenil, ZK93426) from several different structural groups and indicated these β-carbolines were 'near GABA neutral antagonists'. Based on the SAR, the most potent (in vitro) α(1) selective ligand was the 6-substituted acetylenyl βCCt (WYS8, 7). Earlier both βCCt and 3PBC had been shown to reduce alcohol self-administration in alcohol preferring (P) and high alcohol drinking (HAD) rats but had little or no effect on sucrose self-administration.(1-3) Moreover, these two β-carbolines were orally active, and in addition, were anxiolytic in P rats but were only weakly anxiolytic in rodents. These data prompted the synthesis of the β-carbolines presented here.  相似文献   

15.
Three chiral derivatives of the alkaloid sparteine (bispidines), characterized by the 3,7‐diazabicyclo[3.3.1]nonane moiety, were designed as efficient ligands in a number of enantioselective reactions due to their metal coordination properties. A full evaluation of the 3D properties of the compounds was carried out, as the geometrical features of the bicyclic framework are strictly related to the efficiency of the ligands in the asymmetric catalysis. The selected molecules have different molecular complexity for investigating the effects of different chiral groups on the bicycle conformation. We report here a thorough analysis of their molecular arrangement, by NMR spectroscopy, single crystal X‐ray crystallography, and computational techniques, which put in evidence their conformational preferences and the parameters needed for the design of more efficient ligands in asymmetric synthetic routes. The results confirmed the high molecular flexibility of the compounds, and indicated how to achieve a control of the chair–chair/boat–chair conformational ratio, by adjusting the relative size of the substituents on the piperidine nitrogens. Chirality 28:332–339, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

16.
Integrin alpha(IIb)beta(3), a platelet fibrinogen receptor, is critically involved in thrombosis and hemostasis. However, how ligands interact with alpha(IIb)beta(3) has been controversial. Ligand-mimetic anti-alpha(IIb)beta(3) antibodies (PAC-1, LJ-CP3, and OP-G2) contain the RGD-like RYD sequence in their CDR3 in the heavy chain and have structural and functional similarities to native ligands. We have located binding sites for ligand-mimetic antibodies in alpha(IIb) and beta(3) using human-to-mouse chimeras, which we expect to maintain functional integrity of alpha(IIb)beta(3). Here we report that these antibodies recognize several discontinuous binding sites in both the alpha(IIb) and beta(3) subunits; these binding sites are located in residues 156-162 and 229-230 of alpha(IIb) and residues 179-183 of beta(3). In contrast, several nonligand-mimetic antibodies (e.g. 7E3) recognize single epitopes in either subunit. Thus, binding to several discontinuous sites in both subunits is unique to ligand-mimetic antibodies. Interestingly, these binding sites overlap with several (but not all) of the sequences that have been reported to be critical for fibrinogen binding (e.g. N-terminal repeats 2-3 but not repeats 4-7, of alpha(IIb)). These results suggest that ligand-mimetic antibodies and probably native ligands may make direct contact with these discontinuous binding sites in both subunits, which may constitute a ligand-binding pocket.  相似文献   

17.
Our previous study has revealed 4-(4-(4-chlorophenyl)-1,4-diazepan-1-yl)-1-(4-fluorophenyl)butan-1-one·2HCl (SYA013) 1 as a sigma ligand with moderate selectivity for the sigma-2 receptor. Given the overexpression of sigma receptors in solid tumors and reports of sigma ligands with anticancer activities, we selected 1 for evaluation in several solid tumor cell lines. In addition, we have synthesized new analogs of 1 and now report that several of them bind preferentially at the sigma-2 receptor and have shown inhibition of several cancer cell lines including MDA-MB-231, MDA-MB-486, A549, PC-3, MIA PaCa-2 and Panc-1 cells. In particular, compounds 1 and 12 have demonstrated sub-micromolar activity against the Panc-1 cell line. It has also been observed that several of these compounds demonstrate selective toxicity toward cancer cells, when compared to normal cells.  相似文献   

18.
19.
Inhibition of multiple signaling pathways in a cancer cell with a single molecule could result in better therapies that are simpler to administer. Efficacy may be achieved with reduced potency against individual targets if there is synergy through multiple pathway inhibition. To achieve this, it is necessary to be able to build multi-component ligands by joining together key pharmacophores in a way which maintains sufficient activity against the individual pathways. In this work, designed triple inhibiting ligands are explored aiming to block three completely different target types: a kinase (JAK2), an epigenetic target (HDAC) and a chaperone (HSP90). Although these enzymes have totally different functions they are related through inter-dependent pathways in the developing cancer cell. Synthesis of several complex multi-inhibiting ligands are presented along with initial enzyme inhibition data against 3 biological target classes of interest. A lead compound, 47, was discovered which had low micromolar activity for all 3 targets. Further development of these complex trispecific designed multiple ligands could result in a ‘transient drug’, an alternative combination therapy for treating cancer mediated via a single molecule.  相似文献   

20.
Evidence suggests that endogenous benzodiazepine receptor ligands such as diazepam binding inhibitor (DBI) and its metabolite octadecaneuropeptide (ODN) may be implicated in the pathogenesis of hepatic encephalopathy. Using an immunocytochemical technique and an antibody of high specific activity to synthetic ODN, we studied the effects of portacaval anastomosis (PCA) on ODN distribution in rat brain. Four weeks after PCA, ODN immunolabeling was increased in several brain regions including cerebral cortex, hippocampus, hypothalamus and thalamus. Increased ODN immunolabeling was confined to nonneuronal elements such as astrocytes and ependymal cells. Neuropathological evaluation of brain following PCA reveals astrocytic rather than neuronal changes. These results are consistent with a role for endogenous neuropeptide ligands for astrocytic benzodiazepine receptors in the pathogenesis of hepatic encephalopathy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号