首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Brain recovery after prolonged wakefulness is characterized by increased density, amplitude and slope of slow waves (SW, <4 Hz) during non-rapid eye movement (NREM) sleep. These SW comprise a negative phase, during which cortical neurons are mostly silent, and a positive phase, in which most neurons fire intensively. Previous work showed, using EEG spectral analysis as an index of cortical synchrony, that Morning-types (M-types) present faster dynamics of sleep pressure than Evening-types (E-types). We thus hypothesized that single SW properties will also show larger changes in M-types than in E-types in response to increased sleep pressure. SW density (number per minute) and characteristics (amplitude, slope between negative and positive peaks, frequency and duration of negative and positive phases) were compared between chronotypes for a baseline sleep episode (BL) and for recovery sleep (REC) after two nights of sleep fragmentation. While SW density did not differ between chronotypes, M-types showed higher SW amplitude and steeper slope than E-types, especially during REC. SW properties were also averaged for 3 NREM sleep periods selected for their decreasing level of sleep pressure (first cycle of REC [REC1], first cycle of BL [BL1] and fourth cycle of BL [BL4]). Slope was significantly steeper in M-types than in E-types in REC1 and BL1. SW frequency was consistently higher and duration of positive and negative phases constantly shorter in M-types than in E-types. Our data reveal that specific properties of cortical synchrony during sleep differ between M-types and E-types, although chronotypes show a similar capacity to generate SW. These differences may involve 1) stable trait characteristics independent of sleep pressure (i.e., frequency and durations) likely linked to the length of silent and burst-firing phases of individual neurons, and 2) specific responses to increased sleep pressure (i.e., slope and amplitude) expected to depend on the synchrony between neurons.  相似文献   

2.
The human sleep-wake cycle is generated by a circadian process, originating from the suprachiasmatic nuclei, in interaction with a separate oscillatory process: the sleep homeostat. The sleep-wake cycle is normally timed to occur at a specific phase relative to the external cycle of light-dark exposure. It is also timed at a specific phase relative to internal circadian rhythms, such as the pineal melatonin rhythm, the circadian sleep-wake propensity rhythm, and the rhythm of responsiveness of the circadian pacemaker to light. Variations in these internal and external phase relationships, such as those that occur in blindness, aging, morning and evening, and advanced and delayed sleep-phase syndrome, lead to sleep disruptions and complaints. Changes in ocular circadian photoreception, interindividual variation in the near-24-h intrinsic period of the circadian pacemaker, and sleep homeostasis can contribute to variations in external and internal phase. Recent findings on the physiological and molecular-genetic correlates of circadian sleep disorders suggest that the timing of the sleep-wake cycle and circadian rhythms is closely integrated but is, in part, regulated differentially.  相似文献   

3.
In order to study the cognitive function rhythm related to the auditory frequency system for people who prefer to be active in the morning and at night, we conducted an experiment during morning (09:00), evening (17:00) and late-night (01:00) periods. On the basis of a morningness/eveningness questionnaire, six moderately morning-type subjects (M-types) and seven evening-type subjects (E-types) were selected. Diurnal variation of event-related potential (ERP) were assessed under low-frequency (250/500 Hz) and high-frequency (1000/2000 Hz) condition using an oddball task. M-types were tested during the morning (09:00) and evening (17:00) periods, and E-types were tested during the evening (17:00) and midnight (01:00) periods. Subjects were asked to press a button when the target stimulus was detected. We found that the P300 amplitude at 09:00 was significantly greater than that at 17:00 for M-types, was significantly greater at 17:00 than that at 01:00 for E-types. A significant difference of P300 latency and P300 amplitude was observed at 17:00 between M-types and E-types. The P300 amplitude obtained after a low-frequency stimulus was significantly greater than that after a high-frequency stimulus at 09:00 for M-types, and at 01:00 for E-types. These results revealed that stimulus frequency had effects on the diurnal changes of human cognitive function, and circadian typology had a direct effect on the diurnal change of human cognitive function. This study has extended the previous findings of auditory P300 studies on diurnal variations in terms of circadian typology and stimulus parameter.  相似文献   

4.
Human expeditions to Mars will require adaptation to the 24.65-h Martian solar day-night cycle (sol), which is outside the range of entrainment of the human circadian pacemaker under lighting intensities to which astronauts are typically exposed. Failure to entrain the circadian time-keeping system to the desired rest-activity cycle disturbs sleep and impairs cognitive function. Furthermore, differences between the intrinsic circadian period and Earth's 24-h light-dark cycle underlie human circadian rhythm sleep disorders, such as advanced sleep phase disorder and non-24-hour sleep-wake disorders. Therefore, first, we tested whether exposure to a model-based lighting regimen would entrain the human circadian pacemaker at a normal phase angle to the 24.65-h Martian sol and to the 23.5-h day length often required of astronauts during short duration space exploration. Second, we tested here whether such prior entrainment to non-24-h light-dark cycles would lead to subsequent modification of the intrinsic period of the human circadian timing system. Here we show that exposure to moderately bright light ( approximately 450 lux; approximately 1.2 W/m(2)) for the second or first half of the scheduled wake episode is effective for entraining individuals to the 24.65-h Martian sol and a 23.5-h day length, respectively. Estimations of the circadian periods of plasma melatonin, plasma cortisol, and core body temperature rhythms collected under forced desynchrony protocols revealed that the intrinsic circadian period of the human circadian pacemaker was significantly longer following entrainment to the Martian sol as compared to following entrainment to the 23.5-h day. The latter finding of after-effects of entrainment reveals for the first time plasticity of the period of the human circadian timing system. Both findings have important implications for the treatment of circadian rhythm sleep disorders and human space exploration.  相似文献   

5.
The aim of the present study was to examine levels of energetic arousal (EA), tense arousal (TA), and hedonic tone (HT) in individuals with different circadian preferences. Subjects were males with extreme either morning (M-type) or evening (E-type) preferences (N=31), selected using the Morningness-Eveningness Questionnaire cutoff points derived from the Polish population norms. They completed the UWIST Mood Adjective Check List every 1.5 h between 08:00 to 20:00 h in laboratory conditions. The obtained data showed higher levels of TA and lower levels of HT in E-types over the whole day as compared to M-types. As for EA, M-types showed higher levels than E-types between 08:00 to 17:00 h, but the two groups showed no differences during the later hours of the day. Both groups were found to exhibit similar diurnal patterns in TA and HT, and dissimilarity between M-types and E-types appeared in the daily course of EA. The results show the three-dimensional model of mood is more advantageous in M-types than in E-types during the hours of typical human activity.  相似文献   

6.
Light exposure was measured in 30 permanent night nurses to determine if specific light/dark profiles could be associated with a better circadian adaptation. Circadian adaptation was defined as a significant shift in the timing of the episode of melatonin secretion into the daytime. Light exposure was continuously recorded with ambulatory wrist monitors for 56 h, including 3 consecutive nights of work. Participants were then admitted to the laboratory for 24 h where urine was collected every 2 h under dim light for the determination of 6-sulphatoxymelatonin concentration. Cosinor analysis was used to estimate the phase position of the episode of melatonin secretion. Five participants showed a circadian adaptation by phase delay ("delayed participants") and 3 participants showed a circadian adaptation by phase advance ("advanced participants"). The other 22 participants had a timing of melatonin secretion typical of day-oriented people ("nonshifters"). There was no significant difference between the 3 groups for total light exposure or for bright light exposure in the morning when traveling home. However, the 24-h profiles of light exposure were very distinctive. The timing of the main sleep episode was associated with the timing of light exposure. Delayed participants, however, slept in darker bedrooms, and this had a major impact on their profile of light/dark exposure. Delayed and advanced participants scored as evening and morning types, respectively, on a morningness-eveningness scale. This observation suggests that circadian phase prior to night work may contribute to the initial step toward circadian adaptation, later reinforced by specific patterns of light exposure.  相似文献   

7.
《Chronobiology international》2013,30(6):1242-1258
Sleep restriction commonly experienced by adolescents can stem from a slower increase in sleep pressure by the homeostatic processes and from phase delays of the circadian system. With regard to the latter potential cause, the authors hypothesized that because there is more natural evening light during the spring than winter, a sample of adolescent students would be more phase delayed in spring than in winter, would have later sleep onset times, and because of fixed school schedules would have shorter sleep durations. Sixteen eighth-grade subjects were recruited for the study. The authors collected sleep logs and saliva samples to determine their dim light melatonin onset (DLMO), a well-established circadian marker. Actual circadian light exposures experienced by a subset of 12 subjects over the course of 7 days in winter and in spring using a personal, head-worn, circadian light measurement device are also reported here. Results showed that this sample of adolescents was exposed to significantly more circadian light in spring than in winter, especially during the evening hours when light exposure would likely delay circadian phase. Consistent with the light data, DLMO and sleep onset times were significantly more delayed, and sleep durations were significantly shorter in spring than in winter. The present ecological study of light, circadian phase, and self-reported sleep suggests that greater access to evening daylight in the spring may lead to sleep restriction in adolescents while attending school. Therefore, lighting schemes that reduce evening light in the spring may encourage longer sleep times in adolescents. (Author correspondence: )  相似文献   

8.
A physiological dose of orally administered melatonin shifts circadian rhythms in humans according to a phase-response curve (PRC) that is nearly opposite in phase with the PRCs for light exposure: melatonin delays circadian rhythms when administered in the morning and advances them when administered in the afternoon or early evening. The human melatonin PRC provides critical information for using melatonin to treat circadian phase sleep and mood disorders, as well as maladaptation to shift work and transmeridional air travel. The human melatonin PRC also provides the strongest evidence to date for a function of endogenous melatonin and its suppression by light in augmenting entrainment of circadian rhythms by the light-dark cycle.  相似文献   

9.
A physiological dose of orally administered melatonin shifts circadian rhythms in humans according to a phase-response curve (PRC) that is nearly opposite in phase with the PRCs for light exposure: melatonin delays circadian rhythms when administered in the morning and advances them when administered in the afternoon or early evening. The human melatonin PRC provides critical information for using melatonin to treat circadian phase sleep and mood disorders, as well as maladaptation to shift work and transmeridional air travel. The human melatonin PRC also provides the strongest evidence to date for a function of endogenous melatonin and its suppression by light in augmenting entrainment of circadian rhythms by the light-dark cycle.  相似文献   

10.
Light exposure during the early and late subjective night generally phase delays and advances circadian rhythms, respectively. However, this generality was recently questioned in a photic entrainment study in Octodon degus. Because degus can invert their activity phase preference from diurnal to nocturnal as a function of activity level, assessment of phase preference is critical for computations of phase reference [circadian time (CT) 0] toward the development of a photic phase response curve. After determining activity phase preference in a 24-h light-dark cycle (LD 12:12), degus were released in constant darkness. In this study, diurnal (n = 5) and nocturnal (n = 7) degus were randomly subjected to 1-h light pulses (30-35 lx) at many circadian phases (CT 1-6: n = 7; CT 7-12: n = 8; CT 13-18: n = 8; and CT 19-24: n = 7). The circadian phase of body temperature (Tb) onset was defined as CT 12 in nocturnal animals. In diurnal animals, CT 0 was determined as Tb onset + 1 h. Light phase delayed and advanced circadian rhythms when delivered during the early (CT 13-16) and late (CT 20-23) subjective night, respectively. No significant phase shifts were observed during the middle of the subjective day (CT 3-10). Thus, regardless of activity phase preference, photic entrainment of the circadian pacemaker in Octodon degus is similar to most other diurnal and nocturnal species, suggesting that entrainment mechanisms do not determine overt diurnal and nocturnal behavior.  相似文献   

11.
The light-dark cycle is the primary synchronizing factor that keeps the internal circadian pacemaker appropriately aligned with the environmental 24-h day. Although it is known that ocular light exposure can effectively shift the human circadian pacemaker and do so in an intensity-dependent manner, the curve that describes the relationship between light intensity and pacemaker response has not been fully characterized for light exposure in the late biological night. We exposed subjects to 3 consecutive days of 5 h of experimental light, centered 1.5 h after the timing of the fitted minimum of core body temperature, and show that such light can phase advance shift the human circadian pacemaker in an intensity-dependent manner, with a logistic model best describing the relationship between light intensity and phase shift. A similar sigmoidal relationship is also observed between light intensity and the suppression of plasma melatonin concentrations that occurs during the experimental light exposure. As with a simpler, 1-day light exposure during the early biological night, our data indicate that the human circadian pacemaker is highly sensitive even to typical room light intensities during the late biological night, with approximately 100 lux evoking half of the effects observed with light 10 times as bright.  相似文献   

12.
At Arctic and Antarctic latitudes, personnel are deprived of natural sunlight in winter and have continuous daylight in summer: light of sufficient intensity and suitable spectral composition is the main factor that maintains the 24-h period of human circadian rhythms. Thus, the status of the circadian system is of interest. Moreover, the relatively controlled artificial light conditions in winter are conducive to experimentation with different types of light treatment. The hormone melatonin and/or its metabolite 6-sulfatoxymelatonin (aMT6s) provide probably the best index of circadian (and seasonal) timing. A frequent observation has been a delay of the circadian system in winter. A skeleton photoperiod (2 × 1-h, bright white light, morning and evening) can restore summer timing. A single 1-h pulse of light in the morning may be sufficient. A few people desynchronize from the 24-h day (free-run) and show their intrinsic circadian period, usually >24 h. With regard to general health in polar regions, intermittent reports describe abnormalities in various physiological processes from the point of view of daily and seasonal rhythms, but positive health outcomes are also published. True winter depression (SAD) appears to be rare, although subsyndromal SAD is reported. Probably of most concern are the numerous reports of sleep problems. These have prompted investigations of the underlying mechanisms and treatment interventions. A delay of the circadian system with "normal" working hours implies sleep is attempted at a suboptimal phase. Decrements in sleep efficiency, latency, duration, and quality are also seen in winter. Increasing the intensity of ambient light exposure throughout the day advanced circadian phase and was associated with benefits for sleep: blue-enriched light was slightly more effective than standard white light. Effects on performance remain to be fully investigated. At 75°S, base personnel adapt the circadian system to night work within a week, in contrast to temperate zones where complete adaptation rarely occurs. A similar situation occurs on high-latitude North Sea oil installations, especially when working 18:00-06:00 h. Lack of conflicting light exposure (and "social obligations") is the probable explanation. Many have problems returning to day work, showing circadian desynchrony. Timed light treatment again has helped to restore normal phase/sleep in a small number of people. Postprandial response to meals is compromised during periods of desynchrony with evidence of insulin resistance and elevated triglycerides, risk factors for heart disease. Only small numbers of subjects have been studied intensively in polar regions; however, these observations suggest that suboptimal light conditions are deleterious to health. They apply equally to people living in temperate zones with insufficient light exposure.  相似文献   

13.
In this combined field and laboratory investigation, the authors tested the efficacy of an intervention designed to promote circadian adaptation to night-shift work. Fifteen nurses working permanent night schedules (> or = 8 shifts/ 15 days) were recruited from area hospitals. Following avacation period of > or = 10 days on a regular daytime schedule, workers were admitted to the laboratory for the assessment of circadian phase via a 36-h constant routine. They returned to work approximately 12 night shifts on their regular schedules under one of two conditions. Treatment group workers (n = 10, mean age +/- SD = 41.7 +/- 8.8 years) received an intervention including 6 h of intermittent bright-light exposure in the workplace (approximately 3,243 lux) and shielding from bright morning outdoor light with tinted goggles (15% visual light transmission). Control group workers (n = 9, mean age +/- SD = 42.0 +/- 7.2 years) were observed in their habitual work environments. On work days, participants maintained regular sleep/wake schedules including a single 8-h sleep/darkness episode beginning 2 h after the end of the night shift. A second 36-h constant routine was performed following the series of night shifts. In the presence of the intervention, circadian rhythms of core body temperature and salivary melatonin cycles were delayed by an average (+/- SEM) of -9.32 +/- 1.06 h and -11.31 +/- 1.13 h, respectively. These were significantly greater than the phase delays of -4.09 +/- 1.94 h and -5.08 +/- 2.32 h displayed by the control group (p = 0.03 and p = 0.02, respectively). The phase angle between circadian markers and the shifted schedule was reestablished to its baseline position only in the treatment group of workers. These results support the efficacy of a practical intervention for promoting circadian adaptation to night-shift work under field conditions. They also underline the importance of controlling the overall pattern of exposure to light and darkness in circadian adaptation to shifted sleep/wake schedules.  相似文献   

14.
At Arctic and Antarctic latitudes, personnel are deprived of natural sunlight in winter and have continuous daylight in summer: light of sufficient intensity and suitable spectral composition is the main factor that maintains the 24-h period of human circadian rhythms. Thus, the status of the circadian system is of interest. Moreover, the relatively controlled artificial light conditions in winter are conducive to experimentation with different types of light treatment. The hormone melatonin and/or its metabolite 6-sulfatoxymelatonin (aMT6s) provide probably the best index of circadian (and seasonal) timing. A frequent observation has been a delay of the circadian system in winter. A skeleton photoperiod (2?×?1-h, bright white light, morning and evening) can restore summer timing. A single 1-h pulse of light in the morning may be sufficient. A few people desynchronize from the 24-h day (free-run) and show their intrinsic circadian period, usually >24?h. With regard to general health in polar regions, intermittent reports describe abnormalities in various physiological processes from the point of view of daily and seasonal rhythms, but positive health outcomes are also published. True winter depression (SAD) appears to be rare, although subsyndromal SAD is reported. Probably of most concern are the numerous reports of sleep problems. These have prompted investigations of the underlying mechanisms and treatment interventions. A delay of the circadian system with “normal” working hours implies sleep is attempted at a suboptimal phase. Decrements in sleep efficiency, latency, duration, and quality are also seen in winter. Increasing the intensity of ambient light exposure throughout the day advanced circadian phase and was associated with benefits for sleep: blue-enriched light was slightly more effective than standard white light. Effects on performance remain to be fully investigated. At 75°S, base personnel adapt the circadian system to night work within a week, in contrast to temperate zones where complete adaptation rarely occurs. A similar situation occurs on high-latitude North Sea oil installations, especially when working 18:00–06:00?h. Lack of conflicting light exposure (and “social obligations”) is the probable explanation. Many have problems returning to day work, showing circadian desynchrony. Timed light treatment again has helped to restore normal phase/sleep in a small number of people. Postprandial response to meals is compromised during periods of desynchrony with evidence of insulin resistance and elevated triglycerides, risk factors for heart disease. Only small numbers of subjects have been studied intensively in polar regions; however, these observations suggest that suboptimal light conditions are deleterious to health. They apply equally to people living in temperate zones with insufficient light exposure. (Author correspondence: )  相似文献   

15.
The circadian rhythm of rectal temperature was continuously recorded over several consecutive days in young men and women on regular nocturnal sleep schedules. There were 50 men, 21 women with natural menstrual cycles [i.e., not taking oral contraceptives (OCs) (10 in the follicular phase and 11 in the luteal phase)], and 14 women using OCs (6 in the pseudofollicular phase and 8 in the pseudoluteal phase). Circadian phase and amplitude were estimated using a curve-fitting procedure, and temperature levels were determined from the raw data. A two-way analysis of variance (ANOVA) on the data from the four groups of women, with factors menstrual cycle phase (follicular, luteal) and OC use (yes, no), showed that temperature during sleep was lower during the follicular phase than during the luteal phase. Since waking temperatures were similar in the two phases, the circadian amplitude was also larger during the follicular phase. The lower follicular phase sleep temperature also resulted in a lower 24-h temperature during the follicular phase. The two-way ANOVA showed that temperature during sleep and 24-h temperature were lower in naturally cycling women than in women taking OCs. A one-way ANOVA on the temperature rhythm parameters from the five groups of subjects showed that the temperature rhythms of the men and of the naturally cycling women in the follicular phase were not significantly different. Both of these groups had lower temperatures during sleep, lower 24-h temperatures, and larger circadian amplitudes than the other groups. There were no significant differences in circadian phase among the five groups studied. In conclusion, menstrual cycle phase, OC use, and sex affect the amplitude and level, but not the phase, of the overt circadian temperature rhythm.  相似文献   

16.
The internal circadian clock and sleep-wake homeostasis regulate the timing of human brain function, physiology, and behavior so that wakefulness and its associated functions are optimal during the solar day and that sleep and its related functions are optimal at night. The maintenance of a normal phase relationship between the internal circadian clock, sleep-wake homeostasis, and the light-dark cycle is crucial for optimal neurobehavioral and physiological function. Here, the authors show that the phase relationship between these factors-the phase angle of entrainment (psi)-is strongly determined by the intrinsic period (tau) of the master circadian clock and the strength of the circadian synchronizer. Melatonin was used as a marker of internal biological time, and circadian period was estimated during a forced desynchrony protocol. The authors observed relationships between the phase angle of entrainment and intrinsic period after exposure to scheduled habitual wakefulness-sleep light-dark cycle conditions inside and outside of the laboratory. Individuals with shorter circadian periods initiated sleep and awakened at a later biological time than did individuals with longer circadian periods. The authors also observed that light exposure history influenced the phase angle of entrainment such that phase angle was shorter following exposure to a moderate bright light (approximately 450 lux)-dark/wakefulness-sleep schedule for 5 days than exposure to the equivalent of an indoor daytime light (approximately 150 lux)-dark/wakefulness-sleep schedule for 2 days. These findings demonstrate that neurobiological and environmental factors interact to regulate the phase angle of entrainment in humans. This finding has important implications for understanding physiological organization by the brain's master circadian clock and may have implications for understanding mechanisms underlying circadian sleep disorders.  相似文献   

17.
The circadian rhythm of rectal temperature was continuously recorded over several consecutive days in young men and women on regular nocturnal sleep schedules. There were 50 men, 21 women with natural menstrual cycles [i.e., not taking oral contraceptives (OCs) (10 in the follicular phase and 11 in the luteal phase)], and 14 women using OCs (6 in the pseudofollicular phase and 8 in the pseudoluteal phase). Circadian phase and amplitude were estimated using a curve-fitting procedure, and temperature levels were determined from the raw data. A two-way analysis of variance (ANOVA) on the data from the four groups of women, with factors menstrual cycle phase (follicular, luteal) and OC use (yes, no), showed that temperature during sleep was lower during the follicular phase than during the luteal phase. Since waking temperatures were similar in the two phases, the circadian amplitude was also larger during the follicular phase. The lower follicular phase sleep temperature also resulted in a lower 24-h temperature during the follicular phase. The two-way ANOVA showed that temperature during sleep and 24-h temperature were lower in naturally cycling women than in women taking OCs. A one-way ANOVA on the temperature rhythm parameters from the five groups of subjects showed that the temperature rhythms of the men and of the naturally cycling women in the follicular phase were not significantly different. Both of these groups had lower temperatures during sleep, lower 24-h temperatures, and larger circadian amplitudes than the other groups. There were no significant differences in circadian phase among the five groups studied. In conclusion, menstrual cycle phase, OC use, and sex affect the amplitude and level, but not the phase, of the overt circadian temperature rhythm.  相似文献   

18.
Significant disruptions in sleep–wake cycles have been found in advanced cancer patients in prior research. However, much remains to be known about specific sleep–wake cycle variables that are impaired in patients with a significantly altered performance status. More studies are also needed to explore the extent to which disrupted sleep–wake cycles are related to physical and psychological symptoms, time to death, maladaptive sleep behaviors, quality of life and 24-h light exposure. This study conducted in palliative cancer patients was aimed at characterizing patients’ sleep–wake cycles using various circadian parameters (i.e. amplitude, acrophase, mesor, up-mesor, down-mesor, rhythmicity coefficient). It also aimed to compare rest–activity rhythm variables of participants with a performance status of 2 vs. 3 on the Eastern Cooperative Oncology Group scale (ECOG) and to evaluate the relationships of sleep–wake cycle parameters with several possible correlates. The sample was composed of 55 community-dwelling cancer patients receiving palliative care with an ECOG of 2 or 3. Circadian parameters were assessed using an actigraphic device for seven consecutive 24-h periods. A light recording and a daily pain diary were completed for the same period. A battery of self-report scales was also administered. A dampened circadian rhythm, a low mean activity level, an early mean time of peak activity during the day, a late starting time of activity during the morning and an early time of decline of activity during the evening were observed. In addition, a less rhythmic sleep–wake cycle was associated with a shorter time to death (from the first home visit) and with a lower 24-h light exposure. Sleep–wake cycles are markedly disrupted in palliative cancer patients, especially, near the end of life. Effective non-pharmacological interventions are needed to improve patients’ circadian rhythms, including perhaps bright light therapy.  相似文献   

19.
Jet lag is caused by a misalignment between circadian rhythms and local destination time. As humans typically take longer to re-entrain after a phase advance than a phase delay, eastward travel is often more difficult than westward travel. Previous strategies to reduce jet lag have focused on shaping the perceived light-dark cycle after arrival, in order to facilitate a phase shift in the appropriate direction. Here we tested treatments that travelers could use to phase advance their circadian rhythms prior to eastward flight. Thus, travelers would arrive with their circadian rhythms already partially re-entrained to local time. We determined how far the circadian rhythms phase advanced, and the associated side effects related to sleep and mood. Twenty-eight healthy young subjects participated in 1 of 3 different treatments, which all phase advanced each subject's habitual sleep schedule by 1 h/day for 3 days. The 3 treatments differed in morning light exposure for the 1st 3.5 h after waking on each of the 3 days: continuous bright light (> 3000 lux), intermittent bright light (> 3000 lux, 0.5 h on, 0.5 off, etc.), or ordinary dim indoor light (< 60 lux). A phase assessment in dim light (< 10 lux) was conducted before and after the treatments to determine the endogenous salivary dim light melatonin onset (DLMO). The mean DLMO phase advances in the dim, intermittent, and continuous light groups were 0.6, 1.5, and 2.1 h, respectively. The intermittent and continuous light groups advanced significantly more than the dim light group (p < 0.01) but were not significantly different from each other. The side effects as assessed with actigraphy and logs were small. A 2-h phase advance may seem small compared to a 6- to 9-h time zone change, as occurs with eastward travel from the USA to Europe. However, a small phase advance will not only reduce the degree of re-entrainment required after arrival, but may also increase postflight exposure to phase-advancing light relative to phase-delaying light, thereby reducing the risk of antidromic re-entrainment. More days of preflight treatment could be used to produce even larger phase advances and potentially eliminate jet lag.  相似文献   

20.
Patients with delayed sleep phase syndrome (DSPS) experience a chronic mismatch between the usual daily schedule required by the individual's environment and their circadian sleep-wake pattern, resulting in major academic, work, and social problems. Although functional abnormalities of the circadian pacemaker system have been reported in patients with DSPS, the etiology of DSPS has not been fully elucidated. One hypothesis proposed to explain why patients with DSPS fail to synchronize their 24h sleep-wake cycle to their environment is that they might have reduced sensitivity to environmental time cues, most notably light-dark cycles. Therefore, we compared the sensitivity of melatonin suppression in response to light in patients with DSPS and normal control subjects. Fifteen patients with DSPS and age- and sex-matched healthy controls were studied. As the melatonin secretion rhythm in patients with DSPS was expected to be delayed compared to the controls, the time of peak melatonin secretion was determined in each subject in the first session. In the second session, each subject was exposed to light with an intensity of 1000 lux for 2h beginning 2h prior to his or her peak melatonin secretion. Melatonin was measured by radioimmunoassay in saliva sampled every 30 minutes during the period of light exposure. Suppression of the melatonin concentration in saliva was dependent on duration of light exposure. In addition, the suppressive effect of light on the melatonin concentration was significantly greater in patients with DSPS than in control subjects. The results suggest hypersensitivity to nighttime light exposure in patients with this syndrome. Our findings therefore suggest that evening light restriction is important for preventing patients with DSPS from developing a sleep phase delay. (Chronobiology International, 18(2), 263-271, 2001)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号