首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ion transport and regulation of Na(+)-Ca(2+) exchange were examined for two alternatively spliced isoforms of the canine cardiac Na(+)-Ca(2+) exchanger, NCX1.1, to assess the role(s) of the mutually exclusive A and B exons. The exchangers examined, NCX1.3 and NCX1.4, are commonly referred to as the kidney and brain splice variants and differ only in the expression of the BD or AD exons, respectively. Outward Na(+)-Ca(2+) exchange activity was assessed in giant, excised membrane patches from Xenopus laevis oocytes expressing the cloned exchangers, and the characteristics of Na(+)(i)- (i.e., I(1)) and Ca(2+)(i)- (i.e., I(2)) dependent regulation of exchange currents were examined using a variety of experimental protocols. No remarkable differences were observed in the current-voltage relationships of NCX1.3 and NCX1.4, whereas these isoforms differed appreciably in terms of their I(1) and I(2) regulatory properties. Sodium-dependent inactivation of NCX1.3 was considerably more pronounced than that of NCX1.4 and resulted in nearly complete inhibition of steady state currents. This novel feature could be abolished by proteolysis with alpha-chymotrypsin. It appears that expression of the B exon in NCX1.3 imparts a substantially more stable I(1) inactive state of the exchanger than does the A exon of NCX1.4. With respect to I(2) regulation, significant differences were also found between NCX1.3 and NCX1.4. While both exchangers were stimulated by low concentrations of regulatory Ca(2+)(i), NCX1.3 showed a prominent decrease at higher concentrations (>1 microM). This does not appear to be due solely to competition between Ca(2+)(i) and Na(+)(i) at the transport site, as the Ca(2+)(i) affinities of inward currents were nearly identical between the two exchangers. Furthermore, regulatory Ca(2+)(i) had only modest effects on Na(+)(i)-dependent inactivation of NCX1.3, whereas I(1) inactivation of NCX1.4 could be completely eliminated by Ca(2+)(i). Our results establish an important role for the mutually exclusive A and B exons of NCX1 in modulating the characteristics of ionic regulation and provide insight into how alternative splicing tailors the regulatory properties of Na(+)-Ca(2+) exchange to fulfill tissue-specific requirements of Ca(2+) homeostasis.  相似文献   

2.
μ-Calpain is a Ca(2+)-activated protease abundant in mammalian tissues. Here, we examined the effects of μ-calpain on three alternatively spliced variants of NCX1 using the giant, excised patch technique. Membrane patches from Xenopus oocytes expressing either heart (NCX1.1), kidney (NCX1.3), or brain (NCX1.4) variants of NCX1 were exposed to μ-calpain and their Na(+)-dependent (I(1)) and Ca(2+)-dependent (I(2)) regulatory phenotypes were assessed. For these exchangers, I(1) inactivation is evident as a Na(+)(i)-dependent decay of peak outward currents whereas I(2) regulation manifests as outward current activation by micromolar Ca(2+)(i) concentrations. Notably, with NCX1.1 and NCX1.4 but not in NCX1.3, higher Ca(2+)(i) levels alleviate I(1) inactivation. Our results show that (i) μ-calpain selectively ablates Ca(2+)-dependent (I(2)) regulation leading to a constitutive activation of exchange current, (ii) μ-calpain has much smaller effects on Na(+)-dependent (I(1)) regulation, produced by a slight destabilization of the I(1) state, and (iii) Ca(2+)-dependent regulation (I(2)) and Ca(2+)-mediated alleviation of I(1) appear to be functionally distinct mechanisms, the latter of which is left largely intact after μ-calpain treatment. The ability of μ-calpain to selectively and constitutively activate Na(+)-Ca(2+) exchange currents may have important pathophysiological implications in tissue where these splice variants are expressed.  相似文献   

3.
The Na(+)-Ca(2+) exchanger (NCX) links transmembrane movements of Ca(2+) ions to the reciprocal movement of Na(+) ions. It normally functions primarily as a Ca(2+) efflux mechanism in excitable tissues such as the heart, but it can also mediate Ca(2+) influx under certain conditions. Na(+) and Ca(2+) ions exert complex regulatory effects on NCX activity. Ca(2+) binds to two regulatory sites in the exchanger's central hydrophilic domain, and this interaction is normally essential for activation of exchange activity. High cytosolic Na(+) concentrations, however, can induce a constitutive activity that by-passes the need for allosteric Ca(2+) activation. Constitutive NCX activity can also be induced by high levels of phopshotidylinositol-4,5-bisphosphate (PIP?) and by mutations affecting the regulatory calcium binding domains. In addition to promoting constitutive activity, high cytosolic Na(+) concentrations also induce an inactivated state of the exchanger (Na(+)-dependent inactivation) that becomes dominant when cytosolic pH and PIP? levels fall. Na(+)-dependent inactivation may provide a means of protecting cells from Ca(2+) overload due to NCX-mediated Ca(2+) influx during ischemia.  相似文献   

4.
The activity of the cardiac Na(+)/Ca(2+) exchanger (NCX1.1) undergoes continuous modulation during the contraction-relaxation cycle because of the accompanying changes in the electrochemical gradients for Na(+) and Ca(2+). In addition, NCX1.1 activity is also modulated via secondary, ionic regulatory mechanisms mediated by Na(+) and Ca(2+). In an effort to evaluate how ionic regulation influences exchange activity under pulsatile conditions, we studied the behavior of the cloned NCX1.1 during frequency-controlled changes in intracellular Na(+) and Ca(+) (Na(i)(+) and Ca(i)(2+)). Na(+)/Ca(2+) exchange activity was measured by the giant excised patch-clamp technique with conditions chosen to maximize the extent of Na(+)- and Ca(2+)-dependent ionic regulation so that the effects of variables such as pulse frequency and duration could be optimally discerned. We demonstrate that increasing the frequency or duration of solution pulses leads to a progressive decline in pure outward, but not pure inward, Na(+)/Ca(2+) exchange current. However, when the exchanger is permitted to alternate between inward and outward transport modes, both current modes exhibit substantial levels of inactivation. Changes in regulatory Ca(2+), or exposure of patches to limited proteolysis by alpha-chymotrypsin, reveal that this "coupling" is due to Na(+)-dependent inactivation originating from the outward current mode. Under physiological ionic conditions, however, evidence for modulation of exchange currents by Na(i)(+)-dependent inactivation was not apparent. The current approach provides a novel means for assessment of Na(+)/Ca(2+) exchange ionic regulation that may ultimately prove useful in understanding its role under physiological and pathophysiological conditions.  相似文献   

5.
SEA0400 is a potent and selective Na(+)/Ca(2+) exchanger (NCX) inhibitor. We evaluated the inhibitory effects of SEA0400 on Na(+)(i)-dependent (45)Ca(2+) uptake and whole-cell Na(+)/Ca(2+) exchange currents in NCX-transfected fibroblasts. SEA0400 preferentially inhibited (45)Ca(2+) uptake by NCX1 compared with inhibitions by NCX2, NCX3, and NCKX2. SEA0400 also selectively blocked outward exchange currents from NCX1 transfectants. We searched for regions that may form the SEA0400 receptor in the NCX1 molecule by NCX1/NCX3 chimeric analysis. The results suggest that the first intracellular loop and the fifth transmembrane segment are mostly responsible for the differential drug responses between NCX1 and NCX3. Further site-directed mutagenesis revealed that multiple mutations at Phe-213 markedly reduced sensitivity to SEA0400 without affecting that to KB-R7943. We also found that Gly-833-to-Cys mutation (within the alpha-2 repeat) greatly reduced the inhibition by SEA0400, but unexpectedly the NCX1 chimera with an alpha-2 repeat from NCKX2 possessed normal drug sensitivity. In addition, exchangers with mutated exchanger inhibitory peptide regions, which display either undetectable or accelerated Na(+)-dependent inactivation, had a markedly reduced sensitivity or hypersensitivity to SEA0400, respectively. To verify the efficacy of the NCX inhibitor, we examined the renoprotective effect of SEA0400 in a hypoxic injury model using porcine renal tubular cells. SEA0400 protected against hypoxia/reoxygenation-induced cell damage in tubular cells expressing wild-type NCX1 but not in cells expressing SEA0400-insensitive mutants. These results suggest that Phe-213, Gly-833, and residues that eliminate Na(+)-dependent inactivation are critical determinants for the inhibition by SEA0400, and their mutants are very useful for checking the pharmacological importance of NCX inhibition by SEA0400.  相似文献   

6.
Inhibition of Na(+),K(+)-ATPase during NMDA applications greatly increased NMDA-induced excitotoxicity in primary cultures of forebrain neurons (FNs), but not in cerebellar granule cells (CGCs). Because Na(+),K(+)-ATPase inhibition promotes reversal of plasmalemmal Na(+)/Ca(2+) exchangers, we compared the activities of reversed K(+)-independent (NCX) and K(+)-dependent (NCKX) Na(+)/Ca(2+) exchangers in these cultures. To this end, we measured gramicidin-induced and Na(+)-dependent elevation in cytosolic [Ca(2+)] ([Ca(2+)](c)) that represents Ca(2+) influx via reversed NCX and NCKX; NCX activity was dissected out by removing external K(+). The [Ca(2+)](c) elevations mediated by NCX alone, and NCX plus NCKX combined, were 17 and 6 times more rapid in FNs than in CGCs, respectively. Northern blot analysis showed that FNs preferentially express NCX1 whereas CGCs expressed NCX3. Differences in expression of other isoforms (NCX2, NCKX2, NCKX3 and NCKX4) were less pronounced. We tested whether the NCX or NCKX family of exchangers contributes most to the toxic NMDA-induced Ca(2+) influx in depolarized neurons. We found that in FNs, inhibition of NCX alone was sufficient to significantly limit NMDA excitotoxicity, whereas in CGCs, inhibition of both NCX and NCKX was required. The data suggest that the high activity of NCX isoforms expressed in FNs, possibly NCX1, sensitizes these neurons to NMDA excitotoxicity.  相似文献   

7.
The Na(+)-Ca(2+) exchanger is a plasma membrane protein expressed at high levels in cardiomyocytes. It extrudes 1 Ca(2+) for 3 Na(+) ions entering the cell, regulating intracellular Ca(2+) levels and thereby contractility. Na(+)-Ca(2+) exchanger activity is regulated by intracellular Ca(2+), which binds to a region (amino acids 371-508) within the large cytoplasmic loop between transmembrane segments 5 and 6. Regulatory Ca(2+) activates the exchanger and removes Na(+)-dependent inactivation. The physiological role of intracellular Ca(2+) regulation of the exchanger is not yet established. Yellow (YFP) and cyan (CFP) fluorescent proteins were linked to the NH(2)- and CO(2)H-termini of the exchanger Ca(2+) binding domain (CBD) to generate a construct (YFP-CBD-CFP) capable of responding to changes in intracellular Ca(2+) concentrations by FRET efficiency measurements. The two fluorophores linked to the CBD are sufficiently close to generate FRET. FRET efficiency was reduced with increasing Ca(2+) concentrations. Titrations of Ca(2+) concentration versus FRET efficiency indicate a K(D) for Ca(2+) of approximately 140 nM, which increased to approximately 400 nM in the presence of 1 mM Mg(2+). Expression of YFP-CBD-CFP in myocytes, generated changes in FRET associated with contraction, suggesting that NCX is regulated by Ca(2+) on a beat-to-beat basis during excitation-contraction coupling.  相似文献   

8.
Recent evidence suggests the expression of a Na(+)/Ca(2+) exchanger (NCX) in vascular endothelial cells. To elucidate the functional role of endothelial NCX, we studied Ca(2+) signaling and Ca(2+)-dependent activation of endothelial nitric-oxide synthase (eNOS) at normal, physiological Na(+) gradients and after loading of endothelial cells with Na(+) ions using the ionophore monensin. Monensin-induced Na(+) loading markedly reduced Ca(2+) entry and, thus, steady-state levels of intracellular free Ca(2+) ([Ca(2+)](i)) in thapsigargin-stimulated endothelial cells due to membrane depolarization. Despite this reduction of overall [Ca(2+)](i), Ca(2+)-dependent activation of eNOS was facilitated as indicated by a pronounced leftward shift of the Ca(2+) concentration response curve in monensin-treated cells. This facilitation of Ca(2+)-dependent activation of eNOS was strictly dependent on the presence of Na(+) ions during treatment of the cells with monensin. Na(+)-induced facilitation of eNOS activation was not due to a direct effect of Na(+) ions on the Ca(2+) sensitivity of the enzyme. Moreover, the effect of Na(+) was not related to Na(+) entry-induced membrane depolarization or suppression of Ca(2+) entry, since neither elevation of extracellular K(+) nor the Ca(2+) entry blocker 1-(beta-[3-(4-methoxyphenyl)-propoxy]-4-methoxyphenethyl)-1H-imidazol e hydrochloride (SK&F 96365) mimicked the effects of Na(+) loading. The effects of monensin were completely blocked by 3', 4'-dichlorobenzamil, a potent and selective inhibitor of NCX, whereas the structural analog amiloride, which barely affects Na(+)/Ca(2+) exchange, was ineffective. Consistent with a pivotal role of Na(+)/Ca(2+) exchange in Ca(2+)-dependent activation of eNOS, an NCX protein was detected in caveolin-rich membrane fractions containing both eNOS and caveolin-1. These results demonstrate for the first time a crucial role of cellular Na(+) gradients in regulation of eNOS activity and suggest that a tight functional interaction between endothelial NCX and eNOS may take place in caveolae.  相似文献   

9.
Reverse-mode activity of the Na(+)/Ca(2+) exchanger (NCX) has been previously shown to play a prominent role in excitation-contraction coupling in the neonatal rabbit heart, where we have proposed that a restricted subsarcolemmal domain allows a Na(+) current to cause an elevation in the Na(+) concentration sufficiently large to bring Ca(2+) into the myocyte through reverse-mode NCX. In the present study, we tested the hypothesis that there is an overlapping expression and distribution of voltage-gated Na(+) (Na(v)) channel isoforms and the NCX in the neonatal heart. For this purpose, Western blot analysis, immunocytochemistry, confocal microscopy, and image analyses were used. Here, we report the robust expression of skeletal Na(v)1.4 and cardiac Na(v)1.5 in neonatal myocytes. Both isoforms colocalized with the NCX, and Na(v)1.5-NCX colocalization was not statistically different from Na(v)1.4-NCX colocalization in the neonatal group. Western blot analysis also showed that Na(v)1.4 expression decreased by sixfold in the adult (P < 0.01) and Na(v)1.1 expression decreased by ninefold (P < 0.01), whereas Na(v)1.5 expression did not change. Although Na(v)1.4 underwent large changes in expression levels, the Na(v)1.4-NCX colocalization relationship did not change with age. In contrast, Na(v)1.5-NCX colocalization decreased ~50% with development. Distance analysis indicated that the decrease in Na(v)1.5-NCX colocalization occurs due to a statistically significant increase in separation distances between Na(v)1.5 and NCX objects. Taken together, the robust expression of both Na(v)1.4 and Na(v)1.5 isoforms and their colocalization with the NCX in the neonatal heart provides structural support for Na(+) current-induced Ca(2+) entry through reverse-mode NCX. In contrast, this mechanism is likely less efficient in the adult heart because the expression of Na(v)1.4 and NCX is lower and the separation distance between Na(v)1.5 and NCX is larger.  相似文献   

10.
Asterosap, a group of equally active isoforms of sperm-activating peptides from the egg jelly of the starfish Asterias amurensis, functions as a chemotactic factor for sperm. It transiently increases the intracellular cGMP level of sperm, which in turn induces a transient elevation of intracellular Ca(2+) concentration ([Ca(2+)](i)). Using a fluorescent Ca(2+)-sensitive dye, Fluo-4 AM, we measured the changes in sperm [Ca(2+)](i) in response to asterosap. KB-R7943 (KB), a selective inhibitor of Na(+)/Ca(2+) exchanger (NCX), significantly inhibited the asterosap-induced transient elevation of [Ca(2+)](i), suggesting that asterosap influences [Ca(2+)](i) through activation of a K+-dependent NCX (NCKX). An NCKX activity of starfish sperm also shows K(+) dependency like other NCKXs. Therefore, we cloned an NCKX from the starfish testes and predicted that it codes for a 616 amino acid protein that is a member of the NCKX family. Pharmacological evidence suggests that this exchanger participates in the asterosap-induced Ca(2+) entry into sperm.  相似文献   

11.
12.
Ca(2+), which enters cardiac myocytes through voltage-dependent Ca(2+) channels during excitation, is extruded from myocytes primarily by the Na(+)/Ca(2+) exchanger (NCX1) during relaxation. The increase in intracellular Ca(2+) concentration in myocytes by digitalis treatment and after ischemia/reperfusion is also thought to result from the reverse mode of the Na(+)/Ca(2+) exchange mechanism. However, the precise roles of the NCX1 are still unclear because of the lack of its specific inhibitors. We generated Ncx1-deficient mice by gene targeting to determine the in vivo function of the exchanger. Homozygous Ncx1-deficient mice died between embryonic days 9 and 10. Their hearts did not beat, and cardiac myocytes showed apoptosis. No forward mode or reverse mode of the Na(+)/Ca(2+) exchange activity was detected in null mutant hearts. The Na(+)-dependent Ca(2+) exchange activity as well as protein content of NCX1 were decreased by approximately 50% in the heart, kidney, aorta, and smooth muscle cells of the heterozygous mice, and tension development of the aortic ring in Na(+)-free solution was markedly impaired in heterozygous mice. These findings suggest that NCX1 is required for heartbeats and survival of cardiac myocytes in embryos and plays critical roles in Na(+)-dependent Ca(2+) handling in the heart and aorta.  相似文献   

13.
The cardiac Na(+)/Ca(2+) exchanger (NCX1) is the predominant mechanism for the extrusion of Ca(2+) from beating cardiomyocytes. The role of protein phosphorylation in the regulation of NCX1 function in normal and diseased hearts remains unclear. In our search for proteins that interact with NCX1 using a yeast two-hybrid screen, we found that the C terminus of calcineurin Abeta, containing the autoinhibitory domain, binds to the beta1 repeat of the central cytoplasmic loop of NCX1 that presumably constitutes part of the allosteric Ca(2+) regulatory site. The association of NCX1 with calcineurin was significantly increased in the BIO14.6 cardiomyopathic hamster heart compared with that in the normal control. In hypertrophic neonatal rat cardiomyocytes subjected to chronic phenylephrine treatment, we observed a marked depression of NCX activity measured as the rate of Na(+)(i)-dependent (45)Ca(2+) uptake or the rate of Na(+)(o)-dependent (45)Ca(2+) efflux. Depressed NCX activity was partially and independently reversed by the acute inhibition of calcineurin and protein kinase C activities with little effect on myocyte hypertrophic phenotypes. Studies of NCX1 deletion mutants expressed in CCL39 cells were consistent with the view that the beta1 repeat is required for the action of endogenous calcineurin and that the large cytoplasmic loop may be required to maintain the interaction of the enzyme with its substrate. Our data suggest that NCX1 is a novel regulatory target for calcineurin and that depressed NCX activity might contribute to the etiology of in vivo cardiac hypertrophy and dysfunction occurring under conditions in which both calcineurin and protein kinase C are chronically activated.  相似文献   

14.
We investigated the role of Na(+)-K(+)-Cl(-) co-transporter isoform 1 (NKCC1) and reversal of Na(+)/Ca(2+) exchanger (NCX(rev)) in glutamate-mediated excitotoxicity in oligodendrocytes obtained from rat spinal cords (postnatal day 6-8). An immunocytochemical characterization showed that these cultures express NKCC1 and Na(+)/Ca(2+) exchanger isoforms 1, 2, and 3 (NCX1, NCX2, NCX3). Exposing the cultures to alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) plus cyclothiazide (CTZ) led to a transient rise in intracellular (), which was followed by a sustained overload, NKCC1 phosphorylation, and a NKCC1-mediated Na(+) influx. In the presence of a specific AMPA receptor inhibitor 6-cyano-7-nitroquinoxaline-2, 3-dione (CNQX), the AMPA/CTZ failed to elicit any changes in . The AMPA/CTZ-induced sustained rise led to mitochondrial Ca(2+) accumulation, release of cytochrome c from mitochondria, and cell death. The AMPA/CTZ-elicited increase, mitochondrial damage, and cell death were significantly reduced by inhibiting NKCC1 or NCX(rev). These data suggest that in cultured oligodendrocytes, activation of AMPA receptors leads to NKCC1 phosphorylation that enhances NKCC1-mediated Na(+) influx. The latter triggers NCX(rev) and NCX(rev)-mediated overload and compromises mitochondrial function and cellular viability.  相似文献   

15.
The purpose of this study was to physiologically characterize the basolateral Na(+)/Ca(2+) exchanger (NCX) in basolateral membrane vesicles (BLMVs) of hepatopancreas and antennal gland of intermolt crayfish. Conditions were optimized to measure Na(+)-dependent Ca(2+) uptake and retention in the BLMV including use of intravesicular (IV) oxalate and measuring initial uptake rates at 20 s. Na(+)-dependent Ca(2+) uptake rate into BLMV was temperature insensitive. Na(+)-dependent Ca(2+) uptake rate was dependent upon free Ca(2+) with saturable Michaelis-Menten kinetics determined as follows: hepatopancreas, maximal uptake rate (J(max))=2.45 nmol/mg per min, concentration at which carrier operates at half-maximal uptake rate (K(m))=0.69 microM Ca(2+); antennal gland, J(max)=13.2 nmol/mg per min, K(m)=0.59 microM Ca(2+). The two vesicle populations exhibited different sensitivity to putative NCX inhibitors. Benzamil had no effect on Na(+)-dependent Ca(2+) uptake rate in hepatopancreas; in antennal gland it was inhibitory at concentrations up to 30 microM and was stimulatory at higher concentrations. Conversely the inhibitor quinacrine was inhibitory at 10 microM in hepatopancreas and was stimulatory at 1000 microM; meanwhile it was ineffective in antennal gland BLMV. Short circuiting the BLMV had no effect on Na(+)-dependent Ca(2+) uptake rate suggesting that the process may be electroneutral. Compared with another prominent basolateral transporter in hepatopancreas the plasma membrane Ca(2+) ATPase (PMCA), the NCX has 70-fold greater J(max) (at comparable temperature) and a lower affinity. In antennal gland the NCX has 40-fold greater J(max) and a lower affinity. In hepatopancreas and antennal gland BLMV NCX appears to determine the rate of basolateral Ca(2+) efflux in intermolt.  相似文献   

16.
Phospholemman (PLM) is a small sarcolemmal protein that modulates the activities of Na(+)/K(+)-ATPase and the Na(+)/Ca(2+) exchanger (NCX), thus contributing to the maintenance of intracellular Na(+) and Ca(2+) homeostasis. We characterized the expression and subcellular localization of PLM, NCX, and the Na(+)/K(+)-ATPase alpha1-subunit during perinatal development. Western blotting demonstrates that PLM (15kDa), NCX (120kDa), and Na(+)/K(+)-ATPase alpha-1 (approximately 100kDa) proteins are all more than 2-fold higher in ventricular membrane fractions from newborn rabbit hearts (1-4-day old) compared to adult hearts. Our immunocytochemistry data demonstrate that PLM, NCX, and Na(+)/K(+)-ATPase are all expressed at the sarcolemma of newborn ventricular myocytes. Taken together, our data indicate that PLM, NCX, and Na(+)/K(+)-ATPase alpha-1 proteins have similar developmental expression patterns in rabbit ventricular myocardium. Thus, PLM may have an important regulatory role in maintaining cardiac Na(+) and Ca(2+) homeostasis during perinatal maturation.  相似文献   

17.
Externally applied Ni(2+), which apparently competes with Ca(2+) in all three isoforms of Na(+)/Ca(2+) exchanger, inhibits exchange activity of NCX1 or NCX2 with a 10-fold higher affinity than that of NCX3, whereas stimulation of exchange by external Li(+) is significantly greater in NCX2 and NCX3 than in NCX1 (Iwamoto, T., and Shigekawa, M. (1998) Am. J. Physiol. 275, C423-C430). Here we identified structural domains in the exchanger that confer differential sensitivity to Ni(2+) or Li(+) by measuring intracellular Na(+)-dependent (45)Ca(2+) uptake in CCL39 cells stably expressing NCX1/NCX3 chimeras or mutants. We found that two segments in the exchanger corresponding mostly to the internal alpha-1 and alpha-2 repeats are individually responsible for the alteration of Ni(2+) sensitivity, both together accounting for approximately 80% of the difference between NCX1 and NCX3. In contrast, the segment corresponding to the alpha-2 repeat fully accounts for the differential Li(+) sensitivity between the isoforms. The Ni(2+) sensitivity was mimicked, respectively, by simultaneous substitution of two amino acids in the alpha-1 repeat (N125G/T127I in NCX1 and G159N/I161T in NCX3) and substitution of one amino acid in the alpha-2 repeat (V820A in NCX1 and A809V in NCX3). On the other hand, the Li(+) sensitivity was mimicked by double substitution mutation in the alpha-2 repeat (V820A/Q826V in NCX1 and A809V/V815Q in NCX3). Single substitution mutations at Asn(125) and Val(820) of NCX1 caused significant alterations in the interactions of the exchanger with Ca(2+) and Ni(2+), and Ni(2+) and Li(+), respectively, although the extent of alteration varied depending on the nature of side chains of substituted residues. Since the above four important residues are mostly in the putative loops of the alpha repeats, these regions might form an ion interaction domain in the exchanger.  相似文献   

18.
19.
Using bovine heart sarcolemma vesicles we studied the effects of protons and phosphatidylinositol-4,5-bisphosphate (PtdIns-4,5-P2) on the affinity of the mammalian Na(+)/Ca(2+) exchanger (NCX1) for intracellular Ca(2+). By following the effects of extravesicular ligands in inside-out vesicles, their interactions with sites of NCX1 facing the intracellular medium were investigated. Two Na(+)-gradient-dependent fluxes were studied: Ca(2+) uptake and Ca(2+) release. PtdIns-4,5-P2 binding to NCX1 was investigated in parallel. Without MgATP (no 'de novo' synthesis of PtdIns-4,5-P2), alkalinization increased the affinity for Ca(2+) and the PtdIns-4,5-P2 bound to NCX1. Vesicles depleted of phosphoinositides were insensitive to alkalinization, but became responsive following addition of exogenous PtdIns-4,5-P2 or PtdIns plus MgATP. Acidification reduced the affinity for Ca(2+)(ev); this was only partially reversed by MgATP, despite the increase in bound PtdIns-4,5-P2 to levels observed with alkalinization. Inhibition of Ca(2+) uptake by increasing extravesicular [Na(+)] indicates that it is related to H(+)(i) and Na(+)(i) synergistic inhibition of the Ca(2+)(i) regulatory site. Therefore, the affinity of the NCX1 Ca(2+)(i) regulatory site for Ca(2+) was maximal when both intracellular alkalinization and an increase in PtdIns-4,5-P2 bound to NCX1 (not just of the total membrane PtdIns-4,5-P2) occurred simultaneously. In addition, protons influenced the distribution, or the exposure, of PtdIns-4,5-P2 molecules in the surroundings and/or on the exchanger protein.  相似文献   

20.
PC12 cells were stably transfected with cDNA encoding the Na(+)/Ca(2+) exchanger (NCX1.4). A robust Na(+)-dependent Ca(2+) uptake confirmed the functional expression of the protein. When NCX1. 4 expressing cells (NO) and vector transfected control cells (VC) were exposed to 0.5-20 microM ionomycin for 6 h, a dose-dependent increase in LDH release was observed. LDH release was significantly reduced in NO when compared with VC. When either VC and NO were treated with 3 microM ionomycin and 1.1 mM EGTA, the increase in LDH release was nearly abolished. However, when VC and NO were treated with ionomycin and then EGTA was added 2 min later, LDH release remained elevated. These data suggest ionomycin-induced cell death was Ca(2+) dependent and expressing NCX1.4 may have ameliorated cell death by reducing elevated [Ca(2+)](I).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号