首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
The parabrachial nucleus (PBN) is regarded as an important locus for the processing and integration of sensory inputs from oral, gastrointestinal, and postabsorptive receptor sites and is thus thought to play an important role in regulating food intake. Gastric distension is an important satiation cue; however, such responses have been qualitatively characterized only over a limited area of the PBN. To more fully characterize gastric distension responses throughout the PBN, the responses of single units to gastric distension were tested using computer-controlled balloon inflation (3-18 ml air) in pentobarbital sodium- and/or urethan-anesthetized male rats. Distension-responsive neurons were indeed distributed throughout the nucleus from rostral areas typically considered to be visceral to more caudal areas associated with gustatory function, providing further anatomical support for the hypothesis that the PBN integrates taste and visceral signals that control feeding. Most PBN neurons had thresholds of 6 ml or less, similar to vagal afferent fibers. However, in contrast to the periphery, there were both excitatory and inhibitory responses. Increases in volume were associated with two distinct effects. First, as volume increased, the response rate increased; second, the duration of the response increased. In fact, in a subset of cells, responses to gastric distension lasted well beyond the stimulation period, particularly at larger volumes. Prolonged gastric distension responses are not common in the periphery and may constitute a central mechanism that contributes to satiation processes.  相似文献   

2.
Kang Y  Yan JQ  Huang T 《生理学报》2003,55(3):317-323
应用细胞外记录的电生理学方法,在乌拉坦麻醉的大鼠观察了电损毁双侧杏仁中央核前后脑桥臂旁核味觉神经元对四种基本味觉刺激(即氯化钠、盐酸、奎宁和蔗糖)反应的变化。根据对味觉刺激的优势反应,29个记录的味觉神经元中,有14个NaCl优势、9个HCl优势、3个QH2SO4优势和3个蔗糖优势反应神经元。损毁杏仁中央核明显增强臂旁核味觉神经元对盐酸和硫酸奎宁的反应(P<0.01)。氯化钠优势、盐酸优势和奎宁优势反应神经元对盐酸和硫酸奎宁的反应在电损毁杏仁中央核后也明显增强。在破坏杏仁中央核后,臂旁核味觉神经元对氯化钠和硫酸奎宁苦味的分辨能力降低。以上结果提示,杏仁中央核在大鼠脑桥水平的味觉编码中发挥重要作用,它可能是通过参与对味觉的影响来调节机体的摄食行为。  相似文献   

3.
Evidence suggests that GABA might mediate the inhibitory influence of centrifugal inputs on taste-evoked responses in the parabrachial nucleus (PBN). Previous studies show that activation of the gustatory cortex (GC), bed nucleus of the stria terminalis (BNST), central nucleus of the amygdala (CeA), and lateral hypothalamus (LH) inhibits PBN taste responses, GABAergic neurons are present in these forebrain regions, and GABA reduces the input resistance of PBN neurons. The present study investigated the expression of glutamic acid decarboxylase immunoreactivity (GAD_67 ir) in GC, BNST, CeA, and LH neurons that project to the PBN in rats. After anesthesia (50 mg/kg ip Nembutal), injections of the retrograde tracer Fluorogold (FG) were made in the physiologically defined gustatory PBN. Brain tissue containing the above forebrain structures was processed and examined for FG and GAD_67 ir. Similar to previous studies, each forebrain site contained retrogradely labeled neurons. Our results suggest further that the major source of input to the PBN taste region is the CeA (608 total cells) followed by GC (257 cells), LH (106 cells), and BNST (92 cells). This suggests a differential contribution to centrifugal control of PBN taste processing. We further show that despite the presence of GAD_67 neurons in each forebrain area, colocalization was extremely rare, occurring only in 3 out of 1,063 FG-labeled cells. If we assume that the influence of centrifugal input is mediated by direct projections to the gustatory region of the PBN, then GABAergic forebrain neurons apparently are not part of this descending pathway.  相似文献   

4.
阻断大鼠杏仁中央核AMPA受体对臂旁核味觉反应的影响   总被引:1,自引:0,他引:1  
Kang Y  Yan JQ  Huang T 《生理学报》2004,56(6):671-677
以往的研究表明,电刺激或损毁杏仁中央核明显改变臂旁核味觉神经元的活动。为了研究杏仁中央核内的兴奋性受体是否参与此调节,本实验应用细胞外记录方法,在乌拉坦麻醉的大鼠观察了杏仁中央核内微量注射6-氰基-7-硝基喹喔啉-2,3- 二酮(CNQX)前后臂旁核味觉神经元对四种基本味觉刺激反应的变化。结果表明,杏仁中央核内注射 CNQX 对 30% 的臂旁核神经元产生时间依赖性的抑制作用,此抑制作用以对盐酸和盐酸奎宁刺激引起的反应尤为明显(P<0.05)。根据对味觉刺激的优势反应,40% 的NaCl优势、30% 的HCl优势和20% 的奎宁优势反应神经元在注射CNQX 后对至少一种味觉刺激的反应降低;盐酸优势和奎宁优势反应神经元对各自的优势反应在杏仁中央核内注药后均明显降低(P<0.01)。相关性分析表明,在注射 CNQX 后,臂旁核味觉神经元对 NaCl 和其它三种味觉刺激物之间的分辨能力降低。以上结果表明,杏仁中央核内的AMPA 受体可能参与杏仁核对臂旁核味觉神经元的下行调控。  相似文献   

5.
Primary gustatory afferents from the oropharynx of the goldfish, Carassius auratus, terminate in the vagal lobe, a laminated structure in the dorsal medulla comparable to the gustatory portion of the nucleus of the solitary tract in mammals. We utilized an in vitro brain slice preparation to test the role of different ionotropic glutamate receptor subtypes in synaptic transmission of gustatory information by recording changes in field potentials after application of various glutamate receptor antagonists. Electrical stimulation of the vagus nerve (NX) evokes two short-latency postsynaptic field potentials from sensory layers of the vagal lobe. 6,7-Dinitroquinoxaline-2,3-dione and 6-nitro-7-sulphamoylbenzo[f]quinoxaline-2,3-dione, two non-N-methyl-D-aspartate (NMDA) ionotropic receptor antagonists, blocked these short-latency potentials. Slower potentials that were revealed under Mg2+ -free conditions, were abolished by the NMDA receptor antagonist, D(-)-2-amino-5-phosphonovaleric acid (APV). Repetitive stimulation produced short-term facilitation, which was attenuated by application of APV. These results indicate that the synaptic responses in the vagal lobe produced by stimulation of the gustatory roots of the NX involve both NMDA and non-NMDA receptors. An NMDA receptor-mediated facilitation may serve to amplify incoming bursts of primary afferent activity.  相似文献   

6.
Tumor necrosis factor-alpha (TNF-alpha) is liberated as part of the immune response to antigenic challenge, carcinogenesis, and radiation therapy. Previous studies have implicated elevated circulating levels of this cytokine in the gastric hypomotility associated with these disease states. Our earlier studies suggest that a site of action of TNF-alpha may be within the medullary dorsal vagal complex. In this study, we describe the role of TNF-alpha as a neuromodulator affecting neurons in the nucleus of the solitary tract that are involved in vago-vagal reflex control of gastric motility. The results presented herein suggest that TNF-alpha may induce a persistent gastric stasis by functioning as a hormone that modulates intrinsic vago-vagal reflex pathways during illness.  相似文献   

7.
Electrical stimulation of the waist area (W) of the parabrachial nucleus (PBN) in conscious rats elicits stereotypical oromotor behaviors (Galvin et al. 2004). To identify neurons possibly involved in these behavioral responses, we used Fos immunohistochemistry to locate populations of neurons within central gustatory and oromotor centers activated by PBN stimulation. Dramatic increases in the numbers of Fos-like immunoreactive neurons were observed in the ipsilateral PBN, nucleus of the solitary tract (NST), and central amygdala. The increase in neurally-activated cells within the ventral subdivision (V) of the rostral NST is particularly noteworthy because of its projections to medullary oromotor centers. A modest increase in labeled neurons occurred bilaterally within the gustatory cortex. Although there were trends for an increase in Fos-labeled neurons in the gustatory thalamus and medullary reticular formation, most changes in labeled neurons in these areas were not statistically significant. Linear regression analysis revealed a relationship between the number of taste reactivity (TR) behaviors performed during PBN stimulation and the number of Fos-like immunoreactive neurons in the caudal PBN and V of the rostral NST. These data support a role for neurons in W of the PBN and the ventral rostral NST in the initiation of TR behaviors.  相似文献   

8.
Activation of the renin-angiotensin system in the brain is considered important in the arousal and expression of sodium appetite. To clarify the effects of directly activating this hormonal cascade, taste neurons in the nucleus of the solitary tract of rats were tested with a battery of sapid stimuli after intracerebroventricular injection of renin or its vehicle. The rats were chronically prepared but lightly anesthetized during the recording procedure. Eighty-five taste neurons were tested: 46 after renin injections and 39 after vehicle. Neural activity was counted for 5.0-s periods without stimulation (spontaneous) and during stimulation with water and sapid chemicals. The averaged responses to each of the standard stimuli (0.1 M NaCl, 0.3 M sucrose, 0.01 M citric acid, and 0.01 M quinine hydrochloride) did not differ significantly between the two conditions. When the rats were tested with a concentration range of NaCl, however, after renin the average responses to the hypertonic 0.3 and 1.0 M stimuli were reduced to 74 and 70%, respectively, compared with those after vehicle injections. A similar tendency was evident for the subsample of neurons that responded best to NaCl, but the effect was smaller. These data are consistent with, but not as dramatic as, those reported after dietary-induced sodium appetite.  相似文献   

9.
This study investigated the involvement of serotonergic mechanisms of the lateral parabrachial nucleus (LPBN) in the control of sodium (Na+) excretion, potassium (K+) excretion, and urinary volume in unanesthetized rats subjected to acute isotonic blood volume expansion (0.15 M NaCl, 2 ml/100 g of body wt over 1 min) or control rats. Plasma oxytocin (OT), vasopressin (VP), and atrial natriuretic peptide (ANP) levels were also determined in the same protocol. Male Wistar rats with stainless steel cannulas implanted bilaterally into the LPBN were used. In rats treated with vehicle in the LPBN, blood volume expansion increased urinary volume, Na+ and K+ excretion, and also plasma ANP and OT. Bilateral injections of serotonergic receptor antagonist methysergide (1 or 4 microg/200 etal) into the LPBN reduced the effects of blood volume expansion on increased Na+ and K+ excretion and urinary volume, while LPBN injections of serotonergic 5-HT(2a)/HT(2c) receptor agonist, 2.5-dimetoxi-4-iodoamphetamine hydrobromide (DOI; 1 or 5 microg/200 etal) enhanced the effects of blood volume expansion on Na+ and K+ excretion and urinary volume. Methysergide (4 microg) into the LPBN decreased the effects of blood volume expansion on plasma ANP and OT, while DOI (5 microg) increased them. The present results suggest the involvement of LPBN serotonergic mechanisms in the regulation of urinary sodium, potassium and water excretion, and hormonal responses to acute isotonic blood volume expansion.  相似文献   

10.
The responses of 64 neurons in the nucleus of the solitary tract(NST) of the rat were recorded while independently stimulatingthe anterior tongue (AT) and the nasoincisor ducts (NID) withsucrose and NaCl. The time course of this activity has beenanalyzed by averaging the responses (500 ms bins) to each stimulus:receptorsubpopulation combination across neurons. Regardless of thesite of stimulus application, the average time course of theNaCl responses was similar: both peaked rapidly (1.0–1.5s), with a peak/tonic ratio of >2:1. On the other hand, whenthe AT or NID was stimulated with sucrose, the average timecourse of the responses varied. The mean sucrose:NID responserose rapidly (1.0–1.5 s) to its maximum, which was 2.Oxthe magnitude of the tonic response. Sucrose on the anteriortongue elicited a response with a time course that differedfrom all other responses studied: it peaked slowly (3.5–4.0s), and exhibited a peak/tonic ratio of only 1.5:1. In distinctionto what had been observed for peripheral fibers, a finer-grainedanalysis of individual NST responses evoked by stimulating theAT and NID with sucrose revealed minimal evidence for regularbursting.  相似文献   

11.
Central cholinergic mechanisms are suggested to participate in osmoreceptor-induced water intake. Therefore, central injections of the cholinergic agonist carbachol usually produce water intake (i.e., thirst) and are ineffective in inducing the intake of hypertonic saline solutions (i.e., the operational definition of sodium appetite). Recent studies have indicated that bilateral injections of the serotonin receptor antagonist methysergide into the lateral parabrachial nucleus (LPBN) markedly increases salt intake in models involving the activation of the renin-angiotensin system or mineralocorticoid hormones. The present studies investigated whether sodium appetite could be induced by central cholinergic activation with carbachol (an experimental condition where only water is typically ingested) after the blockade of LPBN serotonergic mechanisms with methysergide treatment in rats. When administered intracerebroventricularly in combination with injections of vehicle into both LPBN, carbachol (4 nmol) caused water drinking but insignificant intake of hypertonic saline. In contrast, after bilateral LPBN injections of methysergide (4 microg), intracerebroventricular carbachol induced the intake of 0.3 M NaCl. Water intake stimulated by intracerebroventricular carbachol was not changed by LPBN methysergide injections. The results indicate that central cholinergic activation can induce marked intake of hypertonic NaCl if the inhibitory serotonergic mechanisms of the LPBN are attenuated.  相似文献   

12.
13.
The pontine parabrachial nucleus (PBN) has been implicated in regulating ingestion and contains opioids that promote feeding elsewhere in the brain. We tested the actions of the selective mu-opioid receptor (mu-OR) agonist [d-Ala2,N-Me-Phe4,Gly5-ol]enkephalin (DAMGO) in the PBN on feeding in male rats with free access to food. Infusing DAMGO (0.5-4.0 nmol/0.5 microl) into the lateral parabrachial region (LPBN) increased food intake. The hyperphagic effect was anatomically specific to infusions within the LPBN, dose and time related, and selective for ingestion of chow compared with (nonnutritive) kaolin. The nonselective opioid antagonist naloxone (0.1-10.0 nmol intra-PBN) antagonized DAMGO-induced feeding, with complete blockade by 1.0 nmol and no effect on baseline. The highly selective mu-opioid antagonist d-Phe-Cys-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP; 1.0 nmol) also prevented this action of DAMGO, but the kappa-antagonist nor-binaltorphimine did not. Naloxone and CTAP (10.0 nmol) decreased intake during scheduled feeding. Thus stimulating mu-ORs in the LPBN increases feeding, whereas antagonizing these sites inhibits feeding. Together, our results implicate mu-ORs in the LPBN in the normal regulation of food intake.  相似文献   

14.
15.
The present study investigated the role of corticotropin-releasing hormone (CRH) in the lateral parabrachial nucleus (LPBN) in the behavioral control of body fluid homeostasis by determining the effect of bilateral injections of the CRH receptor antagonist, alpha-helical corticotropin-releasing factor (CRF)(9-41), and the CRH receptor agonist, CRH, on sodium chloride (salt appetite) and water (thirst) intake. Groups of adult, male Sprague-Dawley rats had stainless-steel cannulas implanted bilaterally into the LPBN and were sodium depleted or water deprived. Bilateral injections of alpha-helical CRF(9-41) into the LPBN significantly potentiated water and salt intake in the sodium-depleted rats when access to fluids was restored. Bilateral injections of alpha-helical CRF(9-41) into the LPBN (1.0 microg) also increased sodium appetite in water-deprived rats. Conversely, in sodium-depleted animals, bilateral injections of CRH inhibited sodium chloride intake. These results suggest that there is an endogenous CRH inhibitory mechanism operating in the LPBN to modulate the intake of sodium (salt appetite). This mechanism may contribute to the behavioral control of restoration of body fluid homeostasis in sodium-deficient states.  相似文献   

16.
17.
The endopiriform nucleus (EPN) is a large group of multipolar cells located in the depth of the piriform cortex (PC). Although many studies have suggested that the EPN plays a role in temporal lobe epilepsy, the normal function of the EPN remains to be elucidated. By using optical imaging of coronal brain slice preparations with voltage-sensitive dye, we found signal propagation from the PC or gustatory cortex (GC) to the EPN in normal medium. In our previous research, we failed to elicit a reliable signal reproducibly in the EPN by single stimulation either to the PC or GC. In our current research, we found that a double-pulse stimulation to either the PC or GC (interpulse interval: 20-100 ms) induced robust signal propagation to the EPN through excitation in the agranular division of the insular cortex (AI), with further extension to the claustrum. Finally, double site paired-pulse stimulation to the PC and GC also evoked excitation in the AI, claustrum, and EPN. These results suggest that the EPN has dual roles: 1) further processing of modality-specific olfactory and gustatory information from the PC and GC, respectively and 2) synergistic integration of PC-derived olfactory information and GC-derived gustatory information.  相似文献   

18.
Serotonin [5-hydroxytryptamine (5-HT)] and CCK injected into the lateral parabrachial nucleus (LPBN) inhibit NaCl and water intake. In this study, we investigated interactions between 5-HT and CCK into the LPBN to control water and NaCl intake. Male Holtzman rats with cannulas implanted bilaterally in the LPBN were treated with furosemide + captopril to induce water and NaCl intake. Bilateral LPBN injections of high doses of the 5-HT antagonist methysergide (4 microg) or the CCK antagonist proglumide (50 microg), alone or combined, produced similar increases in water and 1.8% NaCl intake. Low doses of methysergide (0.5 microg) + proglumide (20 microg) produced greater increases in NaCl intake than when they were injected alone. The 5-HT(2a/2c) agonist 2,5-dimetoxy-4-iodoamphetamine hydrobromide (DOI; 5 microg) into the LPBN reduced water and NaCl intake. After proglumide (50 microg) + DOI treatment, the intake was not different from vehicle treatment. CCK-8 (1 microg) alone produced no effect. CCK-8 combined with methysergide (4 microg) reduced the effect of methysergide on NaCl intake. The data suggest that functional interactions between 5-HT and CCK in the LPBN may be important for exerting inhibitory control of NaCl intake.  相似文献   

19.
20.
C H Block  G Hoffman  B S Kapp 《Peptides》1989,10(2):465-471
The present investigation was undertaken to examine the organization of peptidergic projections that exist between the parabrachial nuclear complex (PB) and the central nucleus of the amygdala (CNA). The retrograde tracer True Blue was injected into the CNA of adult rats. The brain tissue was then reacted immunocytochemically to localize neurotensin (NT), substance P (SP), methionine enkephalin (ENK), vasoactive intestinal polypeptide (VIP), somatostatin (SS), and cholecystokinin octapeptide (CCK). Following microinjection of True Blue in the CNA, retrogradely-labeled neurons were located primarily in the external lateral subnucleus, abutting the brachium conjunctivum. In animals that received colchicine pretreatment, two populations of neurons, containing either SP or NT, were found to project to the CNA. In addition, cells containing CCK, ENK, VIP, or SS were not found to be a part of this projection system. These data suggest that neurons in the PB project to the CNA and are, in part peptide-containing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号