首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The activities of glycogen phosphorylase and synthase during infusions of glucagon, isoproterenol, or cyanide in isolated liver of fed rats submitted to short-term insulin-induced hypoglycemia (IIH) was investigated. A condition of hyperinsulinemia/hypoglycemia was obtained with an intraperitoneal injection of regular insulin (1.0 U kg(-1)). The control group received ip saline. The experiments were carried out 60 min after insulin (IIH group) or saline (COG group) injection. The rats were anesthetized and after laparotomy, blood was collected from the vena cava for glucose and insulin measurements. The liver was then infused with glucagon (1 nM), isoproterenol (2 microM), or cyanide (0.5 mM) during 20 min and a sample of the organ was collected for determination of the activities of glycogen phosphorylase and synthase 5 min after starting and 10 min after stopping the infusions. The infusions of cyanide, glucagons, and isoproterenol did not change the activities of glycogen synthase and glycogen phosphorylase. However, glycogen catabolism was decreased during the infusions of glucagon and isoproterenol in IIH rats, being more intense with isoproterenol (p < 0.05), than glucagon. It was concluded that short-term IIH promoted changes in the liver responsiveness of glycogen degradation induced by glucagon and isoproterenol without a change in the activities of glycogen phosphorylase and synthase.  相似文献   

2.
The purpose of the present study was to test the hypothesis that a prior period of exercise is associated with an increase in hepatic glucagon sensitivity. Hepatic glucose production (HGP) was measured in four groups of anesthetized rats infused with glucagon (2 microg. kg(-1). min(-1) iv) over a period of 60 min. Among these groups, two were normally fed and, therefore, had a normal level of liver glycogen (NG). One of these two groups was killed at rest (NG-Re) and the other after a period of exercise (NG-Ex; 60 min of running, 15-26 m/min, 0% grade). The two other groups of rats had a high hepatic glycogen level (HG), which had been increased by a fast-refed diet, and were also killed either at rest (HG-Re) or after exercise (HG-Ex). Plasma glucagon and insulin levels were increased similarly in all four conditions. Glucagon-induced hyperglycemia was higher (P < 0.01) in the HG-Re group than in all other groups. HGP in the HG-Re group was not, however, on the whole more elevated than in the NG-Re group. Exercised rats (NG-Ex and HG-Ex) had higher hyperglycemia, HGP, and glucose utilization than rested rats in the first 10 min of the glucagon infusion. HG-Ex group had the highest HGP throughout the 60-min experiment. It is concluded that hyperglucagonemia-induced HGP is stimulated by a prior period of exercise, suggesting an increased sensitivity of the liver to glucagon during exercise.  相似文献   

3.
Nonlinear current-voltage relationships in cultured macrophages   总被引:2,自引:1,他引:1       下载免费PDF全文
Intracellular recordings of cultured mouse thioglycolate-induced peritoneal exudate macrophages reveal that these cells can exhibit two different types of electrophysiological properties characterized by differences in their current-voltage relationships and their resting membrane potentials. The majority of cells had low resting membrane potentials (-20 to -40 mV) and displayed current-voltage relationships that were linear for inward-going current pulses and rectifying for outward-going pulses. Small depolarizing transients, occurring either spontaneously or induced by current pulses, were seen in some cells with low resting membrane potentials. A second smaller group of cells exhibited more hyperpolarized resting membrane potentials (-60 to -90 mV) and S-shaped current-voltage relationships associated with a high- resistance transitional region. Cells with S-shaped current-voltage relationships sometimes exhibited two stable states of membrane potential on either side of the high-resistance transitional region. These data indicate that macrophages exhibit complex electrophysiological properties often associated with excitable cells.  相似文献   

4.
The effects of glucagon on blood flow and high-energy phosphates in control and in rat livers damaged by ischemia were studied using in vivo nuclear magnetic resonance (NMR) spectroscopy. Normal livers and livers which had been made ischemic for 20, 40, and 60 min followed by 60 min of reperfusion were studied. Ischemia led to a loss in adenosine triphosphate (ATP) within 30 min. Reperfusion after 20 min of ischemia led to complete recovery of ATP. 60 min of reperfusion after 40 or 60 min of ischemia led to only a 76% and 48% recovery of ATP, respectively. Glucagon, at doses up to 2.5 mg/kg body weight, caused no changes in the inorganic phosphate (Pi) to ATP ratio in normal livers as measured by 31P-NMR spectroscopy. In livers which had been made ischemic for 20, 40, or 60 min, glucagon caused an increase in the Pi/ATP ratio of 18%, 40%, and 40%, respectively. 19F-NMR detection of the washout of trifluoromethane from liver was used to measure blood flow. Glucagon-stimulated flow in the normal liver in a dose-dependent manner, with 2.5 mg glucagon/kg body weight leading to a 95% increase in flow. Ischemia for 20, 40, and 60 min followed by 60 min of reperfusion led to hepatic blood flows which were 63%, 68%, and 58% lower than control liver. In reperfused livers, blood flow after glucagon-stimulation was reduced to 56%, 43%, and 48% of control glucagon-stimulated flow after 20, 40, and 60 min of ischemia. These results indicate that ischemia followed by reperfusion leads to deceases in hepatic blood flow prior to alterations in ATP and the response of the liver to glucagon is altered in the reperfused liver.  相似文献   

5.
The time course of pancreatic effects of somatostatin was studied over a period of 2 h in unanesthetized unrestrained rats after administration of the peptide by intravenous infusion and by single and multiple subcutaneous injections. During infusion of 10 and 30 micrograms/kg per min, somatostatin continuously suppressed plasma insulin and plasma glucagon. Plasma glucose was significantly increased at the lower dose, but not affected at the higher dose. Single subcutaneous injections of 0.3 and 3 mg/kg decreased plasma insulin and glucagon dose-dependently for 20-60 min without affecting plasma glucose. Multiple subcutaneous injections of somatostatin (one to four doses of 3 mg/kg, administered at intervals of 30 min) caused an initial decrease of plasma insulin (at 30 min), a rebound-increase at 60 and 90 min, and a final return to control values by 120 min. Plasma glucagon remained continuously suppressed. Plasma glucose increased significantly at 60 and 90 min and tended to return towards control values thereafter. In conclusion, pancreatic B cells - but not A cells - of the rat develop tachyphylaxis to somatostatin within 2 h after multiple subcutaneous injections of the peptide. By this mode of administration, 'selective' suppression of plasma glucagon can be achieved with somatostatin in the rat.  相似文献   

6.
The short-term regulation of multidrug resistance-associated protein 3 (Mrp3/MRP3) by cAMP and PKC was investigated in sandwich-cultured rat and human hepatocytes and isolated perfused rat livers. The modulator glucagon (500 nM) and the phorbol ester PMA (0.1 muM) were utilized to increase intracellular cAMP and PKC levels, respectively. In glucagon-treated rat hepatocytes, efflux of the Mrp3 substrate 5-(6)-carboxy-2',7'-dichlorofluorescein (CDF) increased approximately 1.5-fold, even in hepatocytes treated with the organic anion transporter (Oatp) inhibitor sulfobromophthalein (BSP). Confocal microscopy revealed more concentrated Mrp3 fluorescence in the basolateral membrane (less diffuse staining pattern) with glucagon treatment. PMA had no effect on Mrp3 activity or localization in sandwich-cultured rat hepatocytes. Glucagon and PMA treatment in isolated perfused rat livers resulted in a threefold increase (14 +/- 4.6 mul.min(-1).g liver(-1)) and a fourfold decrease (1.3 +/- 0.3 mul.min(-1).g liver(-1)) in CDF basolateral clearance compared with control livers (4.7 +/- 2.3 mul.min(-1).g liver(-1)), whereas CDF biliary clearance was not statistically different. In sandwich-cultured human hepatocytes, glucagon treatment resulted in a 1.3-fold increase in CDF efflux and a concomitant increase in MRP3 fluorescence in the basolateral membrane. In summary, cAMP and PKC appear to be involved in the short-term regulation of Mrp3/MRP3, as demonstrated by alterations in activity and localization in rat and human hepatocytes.  相似文献   

7.
Infusion of bombesin stimulates plasma cholecystokinin (CCK) and pancreatic enzyme secretion in various species, including the rat. This study was undertaken in two groups of four conscious rats with a cannulated pancreatic duct to determine the role of endogenously released CCK in mediating the effect of bombesin on pancreatic enzyme secretion. Infusion of 2 ml CCK antiserum or normal rabbit serum for 40 min was followed 10 min later by infusion of 18 pmol/kg bombesin for 30 min and after an interval of 90 min by infusion of 24 pmol/kg CCK for 30 min. After administration of control rabbit serum, pancreatic protein secretion increased by 3.2 +/- 1.0 mg/30 min during bombesin and 4.0 +/- 1.5 mg/30 min during CCK, while the plasma CCK increments were 1.7 +/- 0.5 pM and 7.0 +/- 0.9 pM for the bombesin and CCK infusions, respectively. Immunoneutralisation with the CCK antiserum did not significantly affect bombesin-stimulated pancreatic protein secretion (3.6 +/- 1.3 mg/30 min), but almost abolished the pancreatic protein response to CCK (0.5 +/- 0.2 mg/30 min). It is therefore concluded that CCK is not an important mediator of the stimulatory effect of bombesin on the pancreas in the rat.  相似文献   

8.
Alpinia zerumbet, known popularly as "col?nia" in Northeastern Brazil, is a medicinal plant that has been used widely in folk medicine as teas and infusions for the treatment of intestinal and cardiovascular diseases, including arterial hypertension. Our previous studies have demonstrated that the essential oil of A. zerumbet (OEAZ) is very active on excitable tissues, such as smooth muscle, and in this study we verified its effects on the compound action potential (CAP) of rat sciatic nerve. EOAZ induced a dose-dependent blockade of the CAP. Control peak-to-peak amplitude and conduction velocity of CAPs were 7.6 +/- 0.43 mV and 80.6 +/- 3.19 m/s, respectively. At 60 microg/ml, EOAZ induced no demonstrable effect. Conduction velocity was significantly reduced at 180 min of preparation exposure to 100 microg/ml of EOAZ. At 300, 600 and 2000 microg/ml doses of EOAZ, the peak-to-peak amplitudes of CAPs following 180 min exposure of the nerve to the drug were reduced significantly, to 75.3 +/- 7.36%, 50.45 +/- 2.17% and 0% respectively, of control value. Conduction velocity was reduced significantly by 300, 600 and 2000 microg/ml of EOAZ, at 180 min, to 83.61 +/- 3.28%, 64.06 +/- 8.21% and 22.7 +/- 5.79%, respectively, of control value. All these effects developed slowly and were reversible upon a 180-min wash.  相似文献   

9.
Non-transferrin-bound iron is efficiently cleared from serum by the liver and may be primarily responsible for the hepatic damage seen in iron-overload states. We tested the hypothesis that transport of ionic iron is driven by the negative electrical potential difference across the liver cell membrane. Extraction of 55Fe-labeled ferrous iron (1 microM) from Krebs bicarbonate buffer by the perfused rat liver was continuously monitored as the transmembrane potential difference (measured using conventional microelectrodes) was altered over the physiologic range by isosmotic ion substitution. Resting membrane potential in Krebs bicarbonate buffer was -28 +/- 1 mV. Perfusion with 1 microM ferrous iron caused a reversible 3 +/- 1 mV depolarization, and higher concentrations of iron caused even greater depolarization. Conversely, depolarization of the liver cells consistently reduced iron extraction. Replacement of sodium with potassium (70 mM) or choline (131 mM) depolarized the hepatocytes to -15 and -20 mV and decreased iron extraction by 28 and 31%, respectively. Perfusion with bicarbonate-free solutions containing tricine buffer (10 mM) reduced the membrane potential to -23 mV and reduced iron extraction by 18%. In contrast, the high basal extraction of iron (91.1 +/- 1.4%) was not further increased by substitution of nitrate for chloride (-46 mV) or infusion of glucagon (-34 mV). All effects were reversible, suggesting that perfusion with 1 microM iron produced little toxicity. These findings are consistent with an electrogenic transport mechanism for uptake of non-transferrin-bound iron that is driven by the transmembrane potential difference.  相似文献   

10.
郑谦  东英穗 《生理学报》1989,41(6):543-554
用大鼠脑干脑片,给三叉神经中脑核79个神经元作了细胞内记录,测算了20个神经元膜的电学特性:静息电位-60.3±5.6mV;输入阻抗为10.5±5.4MΩ;时间常数1.3±0.5ms。电刺激可诱发动作电位,测算32个神经元的有关参数:阈电位-50—-55mV;波幅69.5±6.1mV;超射11.9±3.6mV;波宽0.8±0.2ms。TTX(0.3μmol/L)或无钠使之消失。通以长时程矩形波电流可引起200—250Hz的2—15个重复放电,但在通电停止前终止,TEA或4-AP可延长放电。膜电位-60—-55mV时在动作电位之后可看到阈下电位波动,它不受TTX的影响,无钙时消失,TEA或4-AP使波幅增大。静息电位去极化可使45个神经元中的40个发生外向整流作用,并被TEA,4-AP或无钙抑制,超极化则发生内向整流作用,Cs或无钠抑制之。灌流液中加入各种钾通道阻断药时神经元的稳态I-V曲线发生相应变化,提示I_(DR),l_A,I_(K(Ca))及I_Q可能都与静息时的膜电导有关。  相似文献   

11.
Glucose utilization increases markedly in the normal dog during stress induced by the intracerebroventricular (ICV) injection of carbachol. To determine the extent to which insulin, glucagon, and selective (alpha/beta)-adrenergic activation mediate the increment in glucose metabolic clearance rate (MCR) and glucose production (R(a)), we used five groups of normal mongrel dogs: 1) pancreatic clamp (PC; n = 7) with peripheral somatostatin (0.8 microg x kg(-1) x min(-1)) and intraportal replacement of insulin (1,482 +/- 84 pmol x kg(-1) x min(-1)) and glucagon (0.65 ng x kg(-1) x min(-1)) infusions; 2) PC plus combined alpha (phentolamine)- and beta (propranolol)-blockade (7 and 5 microg x kg(-1) x min(-1), respectively; alpha+beta; n = 5); 3) PC plus alpha-blockade (alpha; n = 6); 4) PC plus beta-blockade (beta; n = 5); and 5) a carbachol control group without PC (Con; n = 10). During ICV carbachol stress (0-120 min), catecholamines, ACTH, and cortisol increased in all groups. Baseline insulin and glucagon levels were maintained in all groups except Con, where glucagon rose 33%, and alpha, where insulin increased slightly but significantly. Stress increased (P < 0.05) plasma glucose in Con, PC, and alpha but decreased it in beta and alpha+beta. The MCR increment was greater (P < 0.05) in beta and alpha+beta than in Con, PC, and alpha. R(a) increased (P < 0.05) in all groups but was attenuated in alpha+beta. Stress-induced lipolysis was abolished in beta (P < 0.05). The marked rise in lactate in Con, PC, and alpha was abolished in alpha+beta and beta. We conclude that the stress-induced increase in MCR is largely independent of changes in insulin, markedly augmented by beta-blockade, and related, at least in part, to inhibition of lipolysis and glycogenolysis, and that R(a) is augmented by glucagon and alpha- and beta-catecholamine effects.  相似文献   

12.
We studied the potassium channel in the basolateral membrane of the rat proximal convoluted tubule as affected by cyclosporine A. Proximal convoluted tubules were dissected from the rat kidney under a stereoscopic microscope, without a preliminary enzyme treatment. The standard configuration for single-channel tight seal patch-clamp technique was used to record channel currents. A small conductance, stretch-sensitive potassium channel could be observed spontaneously in most of the cell-attached patches as the gigaohm seal was formed. In the inside-out configuration, channel activity was diminished. The K(+) channel appeared to be an inward rectifier. The limiting inward slope conductance was 28.3+/-1.7 pS (Vp was between 40 mV and 80 mV, n=6) and the outward chord conductance was 5.6+/-0.3 pS (Vp was between -40 and -60 mV, n=5). The open dwell time constants of the potassium channel were 0.524 ms and 5.087 ms, while the closed dwell time constants were 1.029 ms and 16.500 ms. The opening probability of the channel decreased when the extracellular fluid was acidified. Cyclosporine A had no significant effect on the potassium channel of the proximal tubular cell in the basolateral membrane at concentrations of 10 and 50 microg/ml, while at 100 microg/ml, it decreased the opening probability.  相似文献   

13.
The half-life (t1/2) and metabolic clearance rate (MCR) of exogenous natural porcine oxyntomodulin (porcine OXM) and the synthetic analog of rat oxyntomodulin, [Nle27]-OXM (rat OXM), were compared with that of glucagon in control, sham-operated and acutely nephrectomized rats using the primed-continuous infusion technique. The half-disappearance times for porcine OXM (8.2 +/- 0.5 min) and rat OXM (6.4 +/- 0.5 min) were 3-fold slower than that of glucagon (1.9 +/- 0.1 min). Acute bilateral nephrectomy significantly prolonged the half-disappearance time of rat OXM (8.2 +/- 0.7 min) and glucagon (3.6 +/- 0.4 min) compared with that of sham-operated animals (6.5 +/- 0.8 min and 2.5 +/- 0.2 min, respectively). The mean MCRs were similar for porcine and rat OXM (11.3 +/- 0.7 and 11.9 +/- 0.5 ml.kg-1.min-1) but were 3 times lower than that measured with glucagon (36 +/- 5 ml.kg-1.min-1). Bilateral nephrectomy reduced the MCR of OXM and glucagon by 38% and 34%, respectively. No significant increase in C-terminal glucagon immunoreactivity was noticed during infusion of either porcine or rat OXM, measured directly in plasma, with a specific C-terminal glucagon antiserum or after HPLC. In the course of the glucagon infusion, blood glucose was increased 2-fold, while the same dose of porcine OXM or of rat OXM induced only a small increase over the values in phosphate buffer-infused rats. 10 times higher doses of rat OXM were necessary to obtain a similar hyperglycemic effect. These results indicate that: (1) the metabolism of OXM is 3-fold slower than that of glucagon, (2) renal clearance contributed close to 35% of the overall metabolic plasma extraction for OXM and glucagon and (3) OXM, although effective at a higher dose, when compared with glucagon, displays a hyperglycemic effect probably through the glucagon receptors.  相似文献   

14.
Potassium currents play a key role in controlling the excitability of neurons. In this paper we describe the properties of a novel voltage-activated potassium current in neurons of the rat dorsal motor nucleus of the vagus (DMV). Intracellular recordings were made from DMV neurons in transverse slices of the medulla. Under voltage clamp, depolarization of these neurons from hyperpolarized membrane potentials (more negative than -80 mV) activated two transient outward currents. One had fast kinetics and had properties similar to A-currents. The other current had an activation threshold of around -95 mV (from a holding potential -110 mV) and inactivated with a time constant of about 3s. It had a reversal potential close to the potassium equilibrium potential. This current was not calcium dependent and was not blocked by 4-aminopyridine (5 mM), catechol (5 mM) or tetraethylammonium (20 mM). It was completely inactivated at the resting membrane potential. This current therefore represents a new type of voltage-activated potassium current. It is suggested that this current might act as a brake to repetitive firing when the neuron is depolarized from membrane potentials negative to the resting potential.  相似文献   

15.
The recent suggestion that secretin may be useful in treating autism and schizophrenia has begun to focus attention on the mechanisms underlying this gut-brain peptide's actions in the central nervous system (CNS). In vitro autoradiographic localization of (125)I-secretin binding sites in rat brain shows the highest binding density in the nucleus tractus solitarius (NTS). Recent evidence suggests that intravenous infusion of secretin causes fos activation in NTS, a relay station playing important roles in the central regulation of autonomic functions. In this study, whole cell patch-clamp recordings were obtained from 127 NTS neurons in rat medullary slices. The mean resting membrane potential of these neurons was -54.7 +/- 0.3 mV, the mean input resistance was 3.7 +/- 0.2 GOmega, and the action potential amplitude of these neurons was always >70 mV. Current-clamp studies showed that bath application of secretin depolarized the majority (80.8%; 42/52) of NTS neurons tested, whereas the remaining cells were either unaffected (17.3%; 9/52) or hyperpolarized (1.9%; 1/52). These depolarizing effects were maintained in the presence of 5 microM TTX and found to be concentration dependent from 10(-12) to 10(-7) M. Using voltage-clamp techniques, we also identified modulatory actions of secretin on specific ion channels. Our results demonstrate that while secretin is without effect on net whole cell potassium currents, it activates a nonselective cationic conductance (NSCC). These results show that NTS neurons are activated by secretin as a consequence of activation of a NSCC and support the emerging view that secretin can act as a neuropeptide within the CNS.  相似文献   

16.
Mechanotransduction is required for a wide variety of biological functions. The aim of this study was to determine the effect of activation of a mechanosensitive Ca(2+) channel, present in human jejunal circular smooth muscle cells, on whole cell currents and on membrane potential. Currents were recorded using patch-clamp techniques, and perfusion of the bath (10 ml/min, 30 s) was used to mechanoactivate the L-type Ca(2+) channel. Perfusion resulted in activation of L-type Ca(2+) channels and an increase in outward current from 664 +/- 57 to 773 +/- 72 pA at +60 mV. Membrane potential hyperpolarized from -42 +/- 4 to -50 +/- 5 mV. In the presence of nifedipine (10 microM), there was no increase in outward current or change in membrane potential with perfusion. In the presence of charybdotoxin or iberiotoxin, perfusion of the bath did not increase outward current or change membrane potential. A model is proposed in which mechanoactivation of an L-type Ca(2+) channel current in human jejunal circular smooth muscle cells results in increased Ca(2+) entry and cell contraction. Ca(2+) entry activates large-conductance Ca(2+)-activated K(+) channels, resulting in membrane hyperpolarization and relaxation.  相似文献   

17.
It has been suggested that insulin-induced suppression of endogenous glucose production (EGP) may be counteracted independently of increased epinephrine (Epi) or glucagon during moderate hypoglycemia. We examined EGP in nondiabetic (n = 12) and type 1 diabetic (DM1, n = 8) subjects while lowering plasma glucose (PG) from clamped euglycemia (5.6 mmol/l) to values just above the threshold for Epi and glucagon secretion (3.9 mmol/l). Individualized doses of insulin were infused to maintain euglycemia during pancreatic clamps by use of somatostatin (250 microg/h), glucagon (1.0 ng. kg(-1). min(-1)), and growth hormone (GH) (3.0 ng. kg(-1). min(-1)) infusions without need for exogenous glucose. Then, to achieve physiological hyperinsulinemia (HIns), insulin infusions were fixed at 20% above the rate previously determined for each subject. In nondiabetic subjects, PG was reduced from 5.4 +/- 0.1 mmol/l to 3.9 +/- 0.1 mmol/l in the experimental protocol, whereas it was held constant (5. 3 +/- 0.2 mmol/l and 5.5 mmol/l) in control studies. In the latter, EGP (estimated by [3-(3)H]glucose) fell to values 40% of basal (P < 0.01). In contrast, in the experimental protocol, at comparable HIns but with PG at 3.9 +/- 0.1 mmol/l, EGP was activated to values about twofold higher than in the euglycemic control (P < 0.01). In DM1 subjects, EGP failed to increase in the face of HIns and PG = 3.9 +/- 0.1 mmol/l. The decrease from basal EGP in DM1 subjects (4.4 +/- 1.0 micromol. kg(-1). min(-1)) was nearly twofold that in nondiabetics (2.5 +/- 0.8 micromol. kg(-1). min(-1), P < 0.02). When PG was lowered further to frank hypoglycemia ( approximately 3.1 mmol/l), the failure of EGP activation in DM1 subjects was even more profound but associated with a 50% lower plasma Epi response (P < 0. 02) compared with nondiabetics. We conclude that glucagon- or epinephrine-independent activation of EGP may accompany other counterregulatory mechanisms during mild hypoglycemia in humans and is impaired or absent in DM1.  相似文献   

18.
To elucidate the physiological significance of ketone bodies on insulin and glucagon secretion, the direct effects of beta-hydroxybutyrate (BOHB) and acetoacetate (AcAc) infusion on insulin and glucagon release from perfused rat pancreas were investigated. The BOHB or AcAc was administered at concentrations of 10, 1, or 0.1 mM for 30 min at 4.0 ml/min. High-concentration infusions of BOHB and AcAc (10 mM) produced significant increases in insulin release in the presence of 4.4 mM glucose, but low-concentration infusions of BOHB and AcAc (1 and 0.1 mM) caused no significant changes in insulin secretion from perfused rat pancreas. BOHB (10, 1, and 0.1 mM) and AcAc (10 and 1 mM) infusion significantly inhibited glucagon secretion from perfused rat pancreas. These results suggest that physiological concentrations of ketone bodies have no direct effect on insulin release but have a direct inhibitory effect on glucagon secretion from perfused rat pancreas.  相似文献   

19.
Guard cells are electrically isolated from other plant cells and therefore offer the unique possibility to conduct current- and voltage-clamp recordings on single cells in an intact plant. Guard cells in their natural environment were impaled with double-barreled electrodes and found to exhibit three physiological states. A minority of cells were classified as far-depolarized cells. These cells exhibited positive membrane potentials and were dominated by the activity of voltage-dependent anion channels. All other cells displayed both outward and inward rectifying K+-channel activity. These cells were either depolarized or hyperpolarized, with average membrane potentials of -41 mV (SD 16) and -112 mV (SD 19), respectively. Depolarized guard cells extrude K+ through outward rectifying channels, while K+ is taken up via inward rectifying channels in hyperpolarized cells. Upon a light/dark transition, guard cells that were hyperpolarized in the light switched to the depolarized state. The depolarization was accompanied by a 35 pA decrease in pump current and an increase in the conductance of inward rectifying channels. Both an increase in pump current and a decrease in the conductance of the inward rectifier were triggered by blue light, while red light was ineffective. From these studies we conclude that light modulates plasma membrane transport through large membrane potential changes, reversing the K+-efflux via outward rectifying channels to a K+-influx via inward rectifying channels.  相似文献   

20.
Upon treatment with 10−4 M IAA the membrane potential of an isolated cell from the main pulvinus, ofMimosa pudica L. depolarized by about 6 mV in 2–5 min, but later it gradually hyperpolarized by about 30 mV. The membrane potential of a motor cell in the main pulvinar tissue hyperpolarized by about 80 mV 1 hr after application of 10−4 M IAA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号