首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability to taste phenylthiocarbamide (PTC) shows complex inheritance in humans. We obtained a quantitative measure of PTC tasting ability in 267 members of 26 large three-generation families that were part of a set of CEPH families that had been used for genetic mapping. Significant bimodality was found for the distribution of age and gender adjusted scores (P<0.001), with estimated means of 3.16 (SD=1.80) and 9.26 (SD=1.54). Using the extensive genotyping available in these families from the genetic mapping efforts, we performed a genome scan by using 1324 markers with an average spacing of 4 cM. Analyses were first carried out with a recessive genetic model that has traditionally been assumed for the trait, and a threshold score of 8.0 delineating tasters from non-tasters. In this qualitative analysis, the maximum genome-wide lod score was 4.74 at 246 cM on chromosome 7; 17 families showed segregation of the dichotomous PTC phenotype. No other lod scores were significant; the next highest score was on chromosome 10 (lod=1.64 at 85 cM), followed by chromosome 3 (lod=1.29 at 267 cM). Because PTC taste ability exhibited substantial quantitative variation, the quantitative trait was also analyzed by using a variance components approach in SOLAR. The maximum quantitative genome-wide lod score was 8.85 at 246 cM on chromosome 7. Evidence for other possible quantitative loci was found on chromosomes 1 (lod=2.31 at 344 cM) and 16 (lod=2.01 at 14 cM). A subsequent two-locus whole-genome scan conditional on the chromosome 7 quantitative trait locus identified the chromosome 16 locus (two-locus lod=3.33 at 14 cM).  相似文献   

2.
The National Heart, Lung, and Blood Institute Family Heart Study (FHS) genome‐wide linkage scan identified a region of chromosome 7q31–34 with a lod score of 4.9 for BMI at D7S1804 (131.9 Mb). We report the results of linkage and association to BMI in this region for two independent FHS samples. The first sample includes 225 FHS pedigrees with evidence of linkage to 7q31–34, using 1,132 single‐nucleotide polymorphisms (SNPs) and 7 microsatellites. The second represents a case–control sample (318 cases; BMI >25 and 325 controls; BMI <25) derived from unrelated FHS participants who were not part of the genome scan. The latter set was genotyped for 606 SNPs, including 37 SNPs with prior evidence for association in the linked families. Although variance components linkage analysis using only SNPs generated a peak lod score that coincided with the original linkage scan at 131.9 Mb, a conditional linkage analysis showed evidence of a second quantitative trait locus (QTL) near 143 cM influencing BMI. Three SNPs (rs161339, rs12673281, and rs1993068) located near the three genes pleiotrophin (PTN), diacylglycerol (DAG) kinase iota (DGKι), and cholinergic receptor, muscarinic 2 (CHRM2) demonstrated significant association in both linked families (P = 0.0005, 0.002, and 0.03, respectively) and the case–control sample (P = 0.01, 0.0003, and 0.03, respectively), regardless of the genetic model tested. These findings suggest that several genes may be associated with BMI in the 7q31–34 region.  相似文献   

3.
The AMELX gene located at Xp22.1-p22.3 encodes for the enamel protein amelogenin and has been implicated as the gene responsible for the inherited dental abnormality X-linked amelogenesis imperfecta (XAI). Three families with XAI have been investigated using polymorphic DNA markers flanking the position of AMELX. Using two-point linkage analysis, linkage was established between XAI and several of these markers in two families, with a combined lod score of 6.05 for DXS16 at theta = 0.04. This supports the involvement of AMELX, located close to DXS16, in the XAI disease process (AIH1) in those families. Using multipoint linkage analysis, the combined maximum lod score for these two families was 7.30 for a location of AIH1 at 2 cM distal to DXS16. The support interval around this location extended about 8 cM proximal to DXS92, and the AIH1 location could not be precisely defined by multipoint mapping. Study of recombination events indicated that AIH1 lies in the interval between DXS143 and DXS85. There was significant evidence against linkage to this region in the third family, indicating locus heterogeneity in XAI. Further analysis with markers on the long arm of the X chromosome showed evidence of linkage to DXS144E and F9 with no recombination with either of these markers. Two-point analysis gave a peak lod score at DXS144E with a maximum lod score of 2.83 at theta = 0, with a peak lod score in multipoint linkage analysis of 2.84 at theta = 0. The support interval extended 9 cM proximal to DXS144E and 14 cM distal to F9.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
A genome scan for serum triglyceride in obese nuclear families   总被引:6,自引:0,他引:6  
Serum triglyceride (TG) levels are increased in extremely obese individuals, indicating abnormalities in lipid metabolism and insulin resistance. We carried out a genome scan for serum TG in 320 nuclear families segregating extreme obesity and normal weight. Three hundred eighty-two Marshfield microsatellite markers (Screening Set 11) were genotyped. Quantitative linkage analyses were performed using family regression and variance components methods. We found linkage on the 7q36 region [D7S3058, 174 centimorgan (cM), Logarithm of Odds (LOD) = 2.98] for log-transformed TG. We also found suggestive linkages on chromosomes 20 (D20S164, 101 cM, LOD = 2.34), 13 (111 cM, LOD = 2.00), and 9 (104 cM, LOD = 1.90) as well as some weaker trends for chromosomes 1, 3, 5, 10, 12, and 22. In 58 African American families, LOD scores of 3.66 and 2.62 were observed on two loci on chromosome 16: D16S3369 (64 cM) and MFD466 (100 cM). To verify the 7q36 linkage, we added 60 nuclear families, and the LOD score increased to 3.52 (empirical P < 0.002) on marker D7S3058.  相似文献   

5.
A genome wide linkage analysis of nonsyndromic deafness segregating in a consanguineous Pakistani family (PKDF537) was used to identify DFNB63, a new locus for congenital profound sensorineural hearing loss. A maximum two-point lod score of 6.98 at θ = 0 was obtained for marker D11S1337 (68.55 cM). Genotyping of 550 families revealed three additional families (PKDF295, PKDF702 and PKDF817) segregating hearing loss linked to chromosome 11q13.2-q13.3. Meiotic recombination events in these four families define a critical interval of 4.81 cM bounded by markers D11S4113 (68.01 cM) and D11S4162 (72.82 cM), and SHANK2, FGF-3, TPCN2 and CTTN are among the candidate genes in this interval. Positional identification of this deafness gene should reveal a protein necessary for normal development and/or function of the auditory system.  相似文献   

6.
Polled, or the absence of horns, is a desirable trait for many cattle breeders. However, the presence of scurs, which are small horn-like structures that are not attached to the skull, can lower the value of an animal. The scurs trait has been reported as sex influenced. Using a genome scan with 162 autosomal microsatellite markers genotyped across three full-sib families, the scurs locus was mapped near BMS2142 on cattle chromosome 19 (LOD = 4.21). To more precisely map scurs, the families from the initial analysis and three additional families were genotyped for 16 microsatellite markers and SNPs in three genes on chromosome 19. In this subsequent analysis, the scurs locus was mapped 4 cM distal of BMS2142 (LOD = 4.46) and 6 cM proximal to IDVGA46 (LOD = 2.56). ALOX12 and MFAP4 were the closest genes proximal and distal, respectively, to the scurs locus. Three microsatellite markers on the X chromosome were genotyped across these six families but were not linked to scurs, further demonstrating that this trait was not sex linked. Because the polled locus has been mapped to the centromeric end of chromosome 1 and scurs has now been mapped to chromosome 19, these two traits are not linked in Bos taurus.  相似文献   

7.
The genetic loci affecting the commonly used BMI have been intensively investigated using linkage approaches in multiple populations. This study aims at performing the first genome‐wide linkage scan on BMI in the Chinese population in mainland China with hypothesis that heterogeneity in genetic linkage could exist in different ethnic populations. BMI was measured from 126 dizygotic twins in Qingdao municipality who were genotyped using high‐resolution Affymetrix Genome‐Wide Human SNP arrays containing about 1 million single‐nucleotide polymorphisms (SNPs). Nonparametric linkage analysis was performed with Merlin software package for linkage analysis using variance components approach for quantitative trait loci mapping. We identified a strong linkage peak at the end of chromosome 7 (7q36 at 186 cM) with a lod score of 4.06 which overlaps with that reported by a large multicenter study in western countries. Multiple loci showing suggestive linkage were found on chromosome 1 (lod score 2.38 at 242 cM), chromosome 8 (2.48 at 95 cM), and chromosome 14 (2.2 at 89.4 cM). The strong linkage identified in the Chinese subjects that is consistent with that found in populations of European origin could suggest the existence of evolutionarily preserved genetic mechanisms for BMI whereas the multiple suggestive loci could represent genetic effect from gene—environment interaction as a result of population‐specific environmental adaptation.  相似文献   

8.
OBJECTIVES: A recent linkage analysis of 360 families at high risk for prostate cancer identified the q27-28 region on chromosome X as the potential location of a gene involved in prostate cancer susceptibility. Here we report on linkage analysis at this putative HPCX locus in an independent set of 186 prostate cancer families participating in the Prostate Cancer Genetic Research Study (PROGRESS). METHODS: DNA samples from these families were genotyped at 8 polymorphic markers spanning 14.3 cM of the HPCX region. RESULTS: Two-point parametric analysis of the total data set resulted in positive lod scores at only two markers, DXS984 and DXS1193, with scores of 0.628 at a recombination fraction (theta) of 0.36 and 0.012 at theta = 0.48, respectively. The stratification of pedigrees according to the assumed mode of transmission increased the evidence of linkage at DXS984 in 81 families with no evidence of male-to-male transmission (lod = 1.062 at theta = 0.28). CONCLUSIONS: Although this analysis did not show statistically significant evidence for the linkage of prostate cancer susceptibility to Xq27-28, the results are consistent with a small percentage of families being linked to this region. The analysis further highlights difficulties in replicating linkage results in an etiologically heterogeneous, complexly inherited disease.  相似文献   

9.
A comprehensive male linkage map was generated by adding 359 new, informative microsatellites to the International Equine Gene Map half-sibling reference families and by combining genotype data from three independent mapping resources: a full sibling family created at the Animal Health Trust in Newmarket, United Kingdom, eight half-sibling families from Sweden and two half-sibling families from the University of California, Davis. Because the combined data were derived primarily from half-sibling families, only autosomal markers were analyzed. The map was constructed from a total of 766 markers distributed on the 31 equine chromosomes. It has a higher marker density than that of previously reported maps, with 626 markers linearly ordered and 140 other markers assigned to a chromosomal region. Fifty-nine markers (7%) failed to meet the criteria for statistical evidence of linkage and remain unassigned. The map spans 3,740 cM with an average distance of 6.3 cM between markers. Fifty-five percent of the intervals are < or = 5 cM and only 3% > or = 20 cM. The present map demonstrates the cohesiveness of the different data sets and provides a single resource for genome scan analyses and integration with the radiation hybrid map.  相似文献   

10.
C. Zhu  J. Tong  X. Yu  W. Guo  X. Wang  H. Liu  X. Feng  Y. Sun  L. Liu  B. Fu 《Animal genetics》2014,45(5):699-708
Bighead carp (Aristichthys nobilis) is an important aquaculture fish worldwide. Genetic linkage maps for the species were previously reported, but map resolution remained to be improved. In this study, a second‐generation genetic linkage map was constructed for bighead carp through a pseudo‐testcross strategy using interspecific hybrids between bighead carp and silver carp. Of the 754 microsatellites genotyped in two interspecific mapping families (with 77 progenies for each family), 659 markers were assigned to 24 linkage groups, which were equal to the chromosome numbers of the haploid genome. The consensus map spanned 1917.3 cM covering 92.8% of the estimated bighead carp genome with an average marker interval of 2.9 cM. The length of linkage groups ranged from 52.2 to 133.5 cM with an average of 79.9 cM. The number of markers per linkage group varied from 11 to 55 with an average of 27.5 per linkage group. Normality tests on interval distances of the map showed a non‐normal marker distribution; however, significant correlation was found between the length of linkage group and the number of markers below the 0.01 significance level (two‐tailed). The length of the female map was 1.12 times that of the male map, and the average recombination ratio of female to male was 1.10:1. Visual inspection showed that distorted markers gathered in some linkage groups and in certain regions of the male and female maps. This well‐defined genetic linkage map will provide a basic framework for further genome mapping of quantitative traits, comparative mapping and marker‐assisted breeding in bighead carp.  相似文献   

11.
A substantial proportion of familial colorectal cancer (CRC) is not a consequence of known susceptibility loci, such as mismatch repair (MMR) genes, supporting the existence of additional loci. To identify novel CRC loci, we conducted a genome-wide linkage scan in 356 white families with no evidence of defective MMR (i.e., no loss of tumor expression of MMR proteins, no microsatellite instability (MSI)-high tumors, or no evidence of linkage to MMR genes). Families were ascertained via the Colon Cancer Family Registry multi-site NCI-supported consortium (Colon CFR), the City of Hope Comprehensive Cancer Center, and Memorial University of Newfoundland. A total of 1,612 individuals (average 5.0 per family including 2.2 affected) were genotyped using genome-wide single nucleotide polymorphism linkage arrays; parametric and non-parametric linkage analysis used MERLIN in a priori-defined family groups. Five lod scores greater than 3.0 were observed assuming heterogeneity. The greatest were among families with mean age of diagnosis less than 50 years at 4q21.1 (dominant HLOD?=?4.51, α?=?0.84, 145.40 cM, rs10518142) and among all families at 12q24.32 (dominant HLOD?=?3.60, α?=?0.48, 285.15 cM, rs952093). Among families with four or more affected individuals and among clinic-based families, a common peak was observed at 15q22.31 (101.40 cM, rs1477798; dominant HLOD?=?3.07, α?=?0.29; dominant HLOD?=?3.03, α?=?0.32, respectively). Analysis of families with only two affected individuals yielded a peak at 8q13.2 (recessive HLOD?=?3.02, α?=?0.51, 132.52 cM, rs1319036). These previously unreported linkage peaks demonstrate the continued utility of family-based data in complex traits and suggest that new CRC risk alleles remain to be elucidated.  相似文献   

12.
Macrothrombocytopenia with leukocyte inclusions (May-Hegglin anomaly) is a rare autosomal dominant disorder characterized by thrombocytopenia, giant platelets, and D?hle body-like inclusions in leukocytes. To determine the genetic basis of this disorder, we performed a genome-wide screen for linkage in three families with May-Hegglin anomaly. For the pooled analysis of the three families, three markers on chromosome 22 had two-point logarithm-of-difference (lod) scores greater than 3, with a maximum lod score of 3.91 at a recombination fraction (theta) of 0.076 for marker D22S683. Within the largest family (MHA-1), the maximum lod score was 5.36 at theta=0 at marker D22S445. Fine mapping of recombination events using eight adjacent markers indicated that the minimal disease region of family MHA-1 alone is in the approximately 26 cM region from D22S683 to the telomere. The maximum lod score for the three families combined was 5.84 at theta=0 for marker IL2RB. With the assumption of locus homogeneity, haplotype analysis of family MHA-4 indicated the disease region is centromeric to marker D22S1045. These data best support a minimal disease region from D22S683 to D22S1045, a span of about 1 Mb of DNA that contains 17 known genes and 4 predicted genes. Further analysis of this region will identify the genetic basis of May-Hegglin anomaly, facilitating subsequent characterization of the biochemical role of the disease gene in platelet formation.  相似文献   

13.
It has been recognized that obese individuals are intrinsically in a state of chronic inflammation, as indicated by positive correlations between serum levels of C‐reactive protein (CRP) and various anthropometric measures of obesity. To explore the hypothesis that a gene(s) may underlie this relationship, we conducted bivariate linkage analyses of BMI and CRP in white and African‐American (AA) families of the National Heart, Lung, and Blood Institute (NHLBI) Family Heart Study (FHS). Variance components linkage analysis as implemented in SOLAR was performed in 1,825 whites (840 men and 985 women) and 548 AAs (199 men and 351 women). CRP exhibited significant genetic correlations with BMI in women (0.54 ± 0.10 for white and 0.53 ± 0.14 for AA) and the combined samples (0.37 ± 0.09 for white and 0.56 ± 0.13 for AA), but not in men. We detected a maximum bivariate lod score of 3.86 on chromosome 12q24.2–24.3 at 139 cM and a suggestive linkage signal (lod = 2.19) on chromosome 19p13.1 (44 cM) in white women. Both bivariate peaks were substantially higher than their respective univariate lods at the same locus for each trait. No significant lod scores were detected in AAs. Our results indicate that chromosome 12q may harbor quantitative trait loci (QTLs) jointly regulating BMI and CRP in white women.  相似文献   

14.
The objective of this study was to locate quantitative trait loci (QTL) causing variation in birth weight and age of puberty of doe kids in a population of Rayini cashmere goats. Four hundred and thirty kids from five half‐sib families were genotyped for 116 microsatellite markers located on the caprine autosomes. The traits recorded were birth weight of the male and female kids, body weight at puberty, average daily gain from birth to age of puberty and age at puberty of the doe kids. QTL analysis was conducted using the least squares interval mapping approach. Linkage analysis indicated significant QTL for birth weight on Capra hircus chromosomes (CHI) 4, 5, 6, 18 and 21. Five QTL located on CHI 5, 14 and 29 were associated with age at puberty. Across‐family analysis revealed evidence for overlapping QTL affecting birth weight (78 cM), body weight at puberty (72 cM), average daily gain from birth to age of puberty (72 cM) and age at puberty (76 cM) on CHI 5 and overlapping QTL controlling body weight at puberty and age at puberty on CHI 14 at 18–19 cM. The proportion of the phenotypic variance explained by the detected QTL ranged between 7.9% and 14.4%. Confirming some of the previously reported results for birth weight and growth QTL in goats, this study identified more QTL for these traits and is the first report of QTL for onset of puberty in doe kids.  相似文献   

15.
We have previously reported linkage of systemic lupus erythematosus to chromosome 2q37 in multicase families from Iceland and Sweden. This locus (SLEB2) was identified by linkage to the markers D2S125 and D2S140. In the present study we have analyzed additional microsatellite markers and SNPs covering a region of 30 cM around D2S125 in an extended set of Nordic families (Icelandic, Swedish, and Norwegian). Two-point linkage analysis in these families gave a maximum lod score at the position of markers D2S2585 and D2S2985 (Z = 4.51, PIC = 0.65), by applying a "model-free" pseudo-marker linkage analysis. Based on multipoint linkage analysis in the Nordic families, the most likely location of the SLEB2 locus is estimated to be in the interval between D2S125 and the position of markers D2S2585 and D2S2985, with a peak multipoint lod score of Z = 6.03, assuming a dominant pseudo-marker model. Linkage disequilibrium (LD) analysis was performed using the data from the multicase families and 89 single-case families of Swedish origin, using the same set of markers. The LD analysis showed evidence for association in the single-case and multicase families with locus GAAT3C11 (P < 0.0003), and weak evidence for association was obtained for several markers located telomeric to D2S125 in the multicase families. Thirteen Mexican families were analyzed separately and found not to have linkage to this region. Our results support the presence of the SLEB2 locus at 2q37.  相似文献   

16.
Of the nonprimate mammalian species with developing comparative gene maps, the feline gene map (Felis catus, Order Carnivora, 2N = 38) displays the highest level of syntenic conservation with humans, with as few as 10 translocation exchanges discriminating the human and feline genome organization. To extend this model, a genetic linkage map of microsatellite loci in the feline genome has been constructed including 246 autosomal and 7 X-linked loci. Two hundred thirty-five dinucleotide (dC. dA)n. (dG. dT)n and 18 tetranucleotide repeat loci were identified and genotyped in a two-family, 108-member multigeneration interspecies backcross pedigree between the domestic cat (F. catus) and the Asian leopard cat (Prionailurus bengalensis). Two hundred twenty-nine loci were linked to at least one other marker with a lod score >/=3.0, identifying 34 linkage groups. Representative markers from each linkage group were assigned to specific cat chromosomes by somatic cell hybrid analysis, resulting in chromosomal assignments to 16 of the 19 feline chromosomes. Genome coverage spans approximately 2900 cM, and we estimate a genetic length for the sex-averaged map as 3300 cM. The map has an average intragroup intermarker spacing of 11 cM and provides a valuable resource for mapping phenotypic variation in the species and relating it to gene maps of other mammals, including human.  相似文献   

17.
18.
Manic-depressive illness (MDI), also known as "bipolar affective disorder," is a common and devastating neuropsychiatric illness. Although pivotal biochemical alterations underlying the disease are unknown, results of family, twin, and adoption studies consistently implicate genetic transmission in the pathogenesis of MDI. In order to carry out linkage analysis, we ascertained eight moderately sized pedigrees containing multiple cases of the disease. For a four-allele marker mapping 5 cM from the disease gene, the pedigree sample has > 97% power to detect a dominant allele under genetic homogeneity and has > 73% power under 20% heterogeneity. To date, the eight pedigrees have been genotyped with 328 polymorphic DNA loci throughout the genome. When autosomal dominant inheritance was assumed, 273 DNA markers gave lod scores < -2.0 at recombination fraction (theta) = .0, 174 DNA loci produced lod scores < -2.0 at theta = .05, and 4 DNA marker loci yielded lod scores > 1 (chromosome 5--D5S39, D5S43, and D5S62; chromosome 11--D11S85). Of the markers giving lod scores > 1, only D5S62 continued to show evidence for linkage when the affected-pedigree-member method was used. The D5S62 locus maps to distal 5q, a region containing neurotransmitter-receptor genes for dopamine, norepinephrine, glutamate, and gamma-aminobutyric acid. Although additional work in this region may be warranted, our linkage results should be interpreted as preliminary data, as 68 unaffected individuals are not past the age of risk.  相似文献   

19.
Members of an international consortium for linkage analysis of the facioscapulohumeral muscular dystrophy (FSHD) gene have pooled data for joint analyses, in an attempt to determine the precise location of the FSHD gene and the order of four DNA markers on 4q35 region. Six laboratories determined a total of 3,078 genotypes in 65 families, consisting of a total of 504 affected subjects and 559 unaffected subjects. For each marker, a mean of 648 meioses were informative. D4S139 and D4S163 were identified as the closest linked markers to the FSHD locus, with 99% upper confidence intervals of recombination fractions of .08 and .10, respectively. We have used the CRI-MAP program to construct the most likely order of cen-D4S171-F11-D4S163-D4S139-FSHD-tel, with favorable odds of 10(8)-10(114) over all other orders except that in which F11 and D4S171 are reversed, for which the odds ratio was 191:1. With this order, the genetic map of this region extends 25.5 cM in males and 13.8 cM in females (averaging 19.5 cM for sexes combined); the sex difference was statistically significant (P = .0013). Comparison between families for the two-point and multipoint lod scores involving FSHD showed no evidence for heterogeneity of this disorder. However, after the completion of this analysis, one large family which might show heterogeneity was identified. In view of this and the fact that all of the linked markers reside on the same side of the FSHD locus, the clinical application of these markers is not recommended at this time.  相似文献   

20.
Prostate cancer is the most common malignancy diagnosed in men in the US. Genetic susceptibility to prostate cancer has been well documented. A region at chromosome 20q13 (HPC20) has been reported to be linked to a prostate cancer susceptibility gene. To confirm this finding, we genotyped 16 markers spanning approximately 95 cM on chromosome 20 in 159 hereditary prostate cancer (HPC) families. Positive (but not statistically significant) linkage scores were observed from 20pter to 20q11, with the highest non-parametric linkage (NPL) score for the complete dataset of 1.02 (P=0.15) being observed at D20S195 at 20q11. Evidence for linkage from parametric analyses with a dominant or a recessive model was weak. Interestingly, consistent with the original findings of linkage to 20 g higher linkage scores were observed in the subsets of families with a later age at diagnosis (> or =65 years; n=80, NPL=1.94, P=0.029 at D20S186), fewer than five affected family members (n=69, NPL=1.74, P=0.037 at D20S889), or without male-to-male disease transmission (n=60, NPL=1.01, P=0.15 at D20S117). The region with positive linkage scores spanned approximately 60 cM from 20pter to 20q11 in these subsets of families. Our results are consistent with a prostate cancer susceptibility locus on chromosome 20.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号