首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hypoxia in brain may lead to cell death by apoptosis and necrosis. Concomitant is the formation of purine nucleosides, e.g. adenosine, a powerful endogenous neuroprotectant. Despite vigorous studies, many aspects of the mechanisms involved in purine-based protection are still unclear. In this study, we wanted to investigate the effect of purine nucleosides on cellular responses to chemical hypoxia. O(2)-sensitive neuronal pheochromocytoma (PC12)-cells, which are widely used as a model system for sympathetic ganglion-like neurons, were subjected to chemical hypoxia induced with rotenone, an inhibitor of mitochondrial complex I. Adenosine and its relatives guanosine and inosine were tested for their neuroprotective capability to improve neurite outgrowth and viability. In addition, cell lysates were analyzed for mitogen-activated-protein-kinases (MAPK) activation by anti-active and anti-total MAPKinase immunoblotting. Adenosine, guanosine and inosine significantly inhibited the loss of viability after hypoxic insult. In combination with NGF, purine nucleosides also partially rescued neurite outgrowth. The MEK-1/-2 inhibitor PD098059 inhibited purine nucleoside-mediated protection up to 85.23% and also markedly decreased neurite formation induced by NGF and purine nucleosides in hypoxic cells. Immunoblot analysis revealed a strong activation of MAPKinase upon incubation of cells with adenosine, guanosine or inosine. In combination with NGF an additive effect was observed. Results suggested that activation of the MAPKinase pathway plays a vital role in purine nucleoside-mediated protection of neuronal cells following hypoxic insult.  相似文献   

2.
Abstract: The purpose of this study was to determine the mechanism by which adenosine, inosine, and guanosine delay cell death in glial cells (ROC-1) that are subjected to g lucose d eprivation and m itochondrial respiratory chain inhibition with amobarbital (GDMI). ROC-1 cells are hybrid cells formed by fusion of a rat oligodendrocyte and a rat C6 glioma cell. Under GDMI, ATP was depleted rapidly from ROC-1 cells, followed on a much larger time scale by a loss of cell viability. Restoration of ATP synthesis during this interlude between ATP depletion and cell death prevented further loss of viability. Moreover, the addition of adenosine, inosine, or guanosine immediately before the amobarbital retarded the decline in ATP and preserved cell viability. The protective effects on ATP and viability were dependent on nucleoside concentration between 50 and 1,500 µ M . Furthermore, protection required nucleoside transport into the cell and the continued presence of nucleoside during GDMI. A significant positive correlation between ATP content at 16 min and cell viability at 350 min after the onset of GDMI was established ( r = 0.98). Modest increases in cellular lactate levels were observed during GDMI (1.2 nmol/mg/min lactate produced); however, incubation with 1,500 µ M inosine or guanosine increased lactate accumulation sixfold. The protective effects of inosine and guanosine on cell viability and ATP were >90% blocked after treatment with 50 µ M BCX-34, a nucleoside phosphorylase inhibitor. Accordingly, lactate levels also were lower in BCX-34-treated cells incubated with inosine or guanosine. We conclude that under GDMI, the ribose moiety of inosine and guanosine is converted to phosphorylated glycolytic intermediates via the pentose phosphate pathway, and its subsequent catabolism in glycolysis provides the ATP necessary for maintaining plasmalemmal integrity.  相似文献   

3.
The ability of mature oligodendrocytes (OLs) to recover from insult is important in repair of damage following demyelination. Since regulation of Ca2+ levels within cells plays a critical role in function and survival, this study investigates the effects of changes in cytoplasmic Ca2+ on the viability of cultured mouse OLs and their ability to maintain membrane sheets. Mature OLs in culture respond rapidly to the calcium ionophore A23187 and promptly return to resting Ca2+ levels when the ionophore is removed. Longer exposure to 0.1–1.0 μM A23187 leads to microtubule disruption, membrane sheet retraction and eventual cell death; nuclear lysis occurs in many of the OLs, as reported by Scolding, et al. (1) for rat OLs. In our cultures, mature OLs were more susceptible to nuclear lysis than were immature OLs or astroglia. Release of intracellular Ca2+ stores with thapsigargin at 5–10 μM also leads to retraction of membrane sheets. Following 6 hours of continuous exposure to thapsigargin, the effects on membrane sheets are reversed over the next 12 hours. After 18 hours of continuous exposure to thapsigargin, only occasional nuclear lysis is observed, but a number of the mature OLs show signs of DNA fragmentation, indicating that apoptotic death is occurring. Our results suggest that mature OLs cannot survive a prolonged influx of extracellular calcium as readily as immature OLs and astroglia, but have mechanisms to withstand similar increases in cytoplasmic Ca2+ following sustained release of intracellular stores. Special issue dedicated to Dr. Marion E. Smith.  相似文献   

4.
Acute tubular necrosis is a clinical problem that lacks specific therapy and is characterized by high mortality rate. The ischemic renal injury affects the proximal tubule cells causing dysfunction and cell death after severe hypoperfusion. We utilized a cell-based screening approach in a hypoxia-reoxygenation model of tubular injury to search for cytoprotective action using a library of pharmacologically active compounds. Oxygen-glucose deprivation (OGD) induced ATP depletion, suppressed aerobic and anaerobic metabolism, increased the permeability of the monolayer, caused poly(ADP-ribose) polymerase cleavage and caspase-dependent cell death. The only compound that proved cytoprotective either applied prior to the hypoxia induction or during the reoxygenation was adenosine. The protective effect of adenosine required the coordinated actions of adenosine deaminase and adenosine kinase, but did not requisite the purine receptors. Adenosine and inosine better preserved the cellular ATP content during ischemia than equimolar amount of glucose, and accelerated the restoration of the cellular ATP pool following the OGD. Our results suggest that radical changes occur in the cellular metabolism to respond to the energy demand during and following hypoxia, which include the use of nucleosides as an essential energy source. Thus purine nucleoside supplementation holds promise in the treatment of acute renal failure.  相似文献   

5.
Isolated adult mouse cardiomyocytes are an important tool in cardiovascular research, but are challenging to prepare. Because the energy supply determines cell function and viability, we compared total creatine ([Cr]) and [ATP] in isolated cardiomyocytes with the intact mouse heart. Isolated myocytes suffered severe losses of Cr (−70%) and ATP (−53%). Myocytes were not able to replete [Cr] during a 5 h incubation period in medium supplemented with 1 mM Cr. In contrast, adding 20 mM Cr to the digestion buffers was sufficient to maintain normal [Cr]. Supplementing buffers with 5 mM of inosine (Ino) and adenosine (Ado) to prevent loss of cellular nucleosides partially protected against loss of ATP. To test whether maintaining [ATP] and [Cr] improves contractile function, myocytes were challenged by varying pacing rate from 0.5 to 10 Hz and by adding isoproterenol (Iso) at 5 and 10 Hz. All groups performed well up to 5 Hz, showing a positive cell shortening–frequency relationship; however, only 16% of myocytes isolated under standard conditions were able to sustain pacing with Iso challenge at 10 Hz. In contrast, 30–50% of the myocytes with normal Cr levels were able to contract and maintain low diastolic [Ca2+]. Cell yield also improved in Cr and the Cr/Ino/Ado-treated groups (85–90% vs. 70–75% rod shaped in untreated myocytes). These data suggest that viability and performance of isolated myocytes are improved when they are protected from the severe loss of Cr and ATP during the isolation, making them an even better research tool.  相似文献   

6.
Mature mouse oligodendrocytes (OLs) are susceptible to death in demyelinating diseases such as multiple sclerosis and in brain injury following neurotrauma, ischemia, or stroke. To understand mechanisms leading to death of mature OLs and develop strategies for protection, we utilized cultures of mature mouse OLs to investigate the role of caspases and calpains in OL cell death mediated by different mechanisms. The agents used were (i) staurosporine, which induces apoptotic death via inhibition of protein kinases; (ii) kainate, which activates non-NMDA glutamate receptors; (iii) thapsigargin, which releases intracellular calcium stores; and (iv) SNAP, which releases active NO species and causes necrotic cell death. Inhibitors blocking primary effector caspases (including caspase 3), the FAS (death receptor)-mediated initiator caspases (including caspase 8), and stress-induced caspases (including caspase 9), were tested for their protective effects. Inhibition of caspases 3, 8, and 9 each robustly protected OLs following insult with staurosporine, thapsigargin, or kainate when added at optimal times. The time of addition of the inhibitors for maximal protection varied with the agent, from 1 h of preincubation before addition of staurosporine to 6 h after addition of kainate. Much less protection was seen for the NO generator SNAP under any condition. The role of calcium in OL death in each model was investigated by chelating extracellular Ca++ with EGTA, and by inhibiting the Ca++-activated calpain proteases. Calcium chelation did not protect against staurosporine, but decreased OL death initiated by kainate, thapsigargin, or NO. The calpain inhibitors PD150606 and calpain inhibitor I protected from cell death initiated by staurosporine, kainate, and thapsigargin, but not from cell death initiated by the NO donor SNAP.  相似文献   

7.
L Virág  C Szabó 《FASEB journal》2001,15(1):99-107
Purines such as adenosine, inosine, and hypoxanthine are known to have potent antiinflammatory effects. These effects generally are believed to be mediated by cell surface adenosine receptors. Here we provide evidence that purines protect against oxidant-induced cell injury by inhibiting the activation of the nuclear enzyme poly(ADP-ribose) polymerase (PARP). Upon binding to broken DNA, PARP cleaves NAD+ into nicotinamide and ADP-ribose and polymerizes the latter on nuclear acceptor proteins such as histones and PARP itself. Overactivation of PARP depletes cellular NAD+ and ATP stores and causes necrotic cell death. We have identified some purines (hypoxanthine, inosine, and adenosine) as potential endogenous PARP inhibitors. We have found that purines (hypoxanthine > inosine > adenosine) dose-dependently inhibited PARP activation in peroxynitrite-treated macrophages and also inhibited the activity of the purified PARP enzyme. Consistently with their PARP inhibitory effects, the purines also protected interferon gamma + endotoxin (IFN/LPS) -stimulated RAW macrophages from the inhibition of mitochondrial respiration and inhibited nitrite production from IFN/LPS-stimulated macrophages. We have selected hypoxanthine as the most potent cytoprotective agent and PARP inhibitor among the three purine compounds, and investigated the mechanism of its cytoprotective effect. We have found that hypoxanthine protects thymocytes from death induced by the cytotoxic oxidant peroxynitrite. In line with the PARP inhibitory effect of purines, hypoxanthine has prevented necrotic cell death while increasing caspase activity and DNA fragmentation. As previously shown with other PARP inhibitors, hypoxanthine acted proximal to mitochondrial alterations as hypoxanthine inhibited the peroxynitrite-induced mitochondrial depolarization and secondary superoxide production. Our data imply that purines may serve as endogenous PARP inhibitors. We propose that, by affecting PARP activation, purines may modulate the pattern of cell death during shock, inflammation, and reperfusion injury.  相似文献   

8.
Liver ischemia reperfusion injury is associated with both local damage to the hepatic vasculature and systemic inflammatory responses. CD39 is the dominant vascular endothelial cell ectonucleotidase and rapidly hydrolyses both adenosine triphosphate (ATP) and adenosine diphosphate to adenosine monophosphate. These biochemical properties, in tandem with 5′-nucleotidases, generate adenosine and potentially illicit inflammatory vascular responses and thrombosis. We have evaluated the role of CD39 in total hepatic ischemia reperfusion injury (IRI). Wildtype mice, Cd39-hemizygous mice (+/−) and matched Cd39-null mice (−/−); (n = 25 per group) underwent 45 min of total warm ischemia with full inflow occlusion necessitating partial hepatectomy. Soluble nucleoside triphosphate diphosphohydrolase (NTPDases) or adenosine/amrinone were administered to wildtype (n = 6) and Cd39-null mice (n = 6) in order to study protective effects in vivo. Parameters of liver injury, systemic inflammation, hepatic ATP determinations by P31-NMR and parameters of lung injury were obtained. All wildtype mice survived up to 7 days with minimal biochemical disturbances and minor evidence for injury. In contrast, 64% of Cd39+/− and 84% of Cd39-null mice required euthanasia or died within 4 h post-reperfusion with liver damage and systemic inflammation associated with hypercytokinemia. Hepatic ATP depletion was pronounced in Cd39-null mice posthepatic IRI. Soluble NTPDase or adenosine administration protected Cd39-deficient mice from acute reperfusion injury. We conclude that CD39 is protective in hepatic IRI preventing local injury and systemic inflammation in an adenosine dependent manner. Our data indicate that vascular CD39 expression has an essential protective role in hepatic IRI.  相似文献   

9.
Oligodendrocytes (OLs) form myelin within the central nervous system and are targets in numerous demyelinating diseases and injuries. OLs grown in culture maintain the developmental timetable which occurs in vivo and mature into cells with a relatively normal phenotype. In this study, cultured cells are used to test whether EGF can modulate process formation in OLs both before and after transection injury. EGF had no effect on the formation of new processes by OLs at any stage of development. To test the effect of EGF on process outgrowth after injury, mature OLs were selected and injured by laser transection of a single process, then imaged at 24-h intervals for 120 h. EGF promoted the recovery and regrowth of injured processes and also significantly increased outgrowth in uninjured processes. As well, it increased the number of new sprouts formed by OLs after injury. Results suggest that the effects of EGF on process outgrowth are a consequence of EGF interaction with a signaling pathway that is specifically activated within injured OLs. The potent effect of EGF on OL process formation after an injury suggests that modulation of the signaling pathways involved might provide a mechanism to promote remyelination.  相似文献   

10.
Adenosine (ADO) is a well-known regulator of a variety of physiological functions in the heart. In stress conditions, like hypoxia or ischemia, the concentration of adenosine in the extracellular fluid rises dramatically, mainly through the breakdown of ATP. The degradation of adenosine in the ischemic myocytes induced damage in these cells, but it may simultaneously exert protective effects in the heart by activation of the adenosine receptors. The contribution of ADO to stimulation of protective effects was reported in human and animal hearts, but not in rat hearts. The aim of this study was to evaluate the role of adenosine A1 and A3 receptors (A1R and A3R), in protection of isolated cardiac myocytes of newborn rats from ischemic injury. The hypoxic conditions were simulated by exposure of cultured rat cardiomyocytes (4–5 days in vitro), to an atmosphere of a N2 (95%) and CO2 (5%) mixture, in glucose-free medium for 90 min. The cardiotoxic and cardioprotective effects of ADO ligands were measured by the release of lactate dehydrogenase (LDH) into the medium. Morphological investigation includes immunohistochemistry, image analysis of living and fixed cells and electron microscopy were executed. Pretreatment with the adenosine deaminase considerably increased the hypoxic damage in the cardiomyocytes indicating the importance of extracellular adenosine. Blocking adenosine receptors with selective A1 and A3 receptor antagonists abolished the protective effects of adenosine. A1R and A3R activation during the hypoxic insult delays onset of irreversible cell injury and collapse of mitochondrial membrane potential as assessed using DASPMI fluorochrom. Cardioprotection induced by the A1R agonist, CCPA, was abolished by an A1R antagonist, DPCPX, and was not affected by an A3R antagonist, MRS1523. Cardioprotection caused by the A3R agonist, Cl-IB-MECA, was antagonized completely by MRS1523 and only partially by DPCPX. Activation of both A1R and A3R together was more efficient in protection against hypoxia than by each one alone. Our study indicates that activation of either A1 or A3 adenosine receptors in the rat can attenuate myocyte injury during hypoxia. Highly selective A1R and A3R agonists may have potential as cardioprotective agents against ischemia or heart surgery.  相似文献   

11.
Mitochondrial dysfunction plays a principal role in hypoxia-induced endothelial injury, which is involved in hypoxic pulmonary hypertension and ischemic cardiovascular diseases. Recent studies have identified mitochondria-associated membranes (MAMs) that modulate mitochondrial function under a variety of pathophysiological conditions such as high-fat diet-mediated insulin resistance, hypoxia reoxygenation-induced myocardial death, and hypoxia-evoked vascular smooth muscle cell proliferation. However, the role of MAMs in hypoxia-induced endothelial injury remains unclear. To explore this further, human umbilical vein endothelial cells and human pulmonary artery endothelial cells were exposed to hypoxia (1% O2) for 24 hours. An increase in MAM formation was uncovered by immunoblotting and immunofluorescence. Then, we performed small interfering RNA transfection targeted to MAM constitutive proteins and explored the biological effects. Knockdown of MAM constitutive proteins attenuated hypoxia-induced elevation of mitochondrial Ca2+ and repressed mitochondrial impairment, leading to an increase in mitochondrial membrane potential and ATP production and a decline in reactive oxygen species. Then, we found that MAM disruption mitigated cell apoptosis and promoted cell survival. Next, other protective effects, such as those pertaining to the repression of inflammatory response and the promotion of NO synthesis, were investigated. With the disruption of MAMs under hypoxia, inflammatory molecule expression was repressed, and the eNOS-NO pathway was enhanced. This study demonstrates that the disruption of MAMs might be of therapeutic value for treating endothelial injury under hypoxia, suggesting a novel strategy for preventing hypoxic pulmonary hypertension and ischemic injuries.  相似文献   

12.
We found that several nitric oxide donors had similar potency in killing mature and immature forms of oligodendrocytes (OLs). Because of the possibility of interaction of nitric oxide with intracellular thiols, we tested the effect of the nitrosonium ion donor S-nitrosylglutathione (SNOG) in OL cultures in the setting of cystine deprivation, which has been shown to cause intracellular glutathione depletion. Surprisingly, the presence of 200 microM SNOG completely protected OLs against the toxicity of cystine depletion. This protection appeared to be due to nitric oxide, because it could be blocked by hemoglobin and potentiated by inclusion of superoxide dismutase. We tested the effect of three additional NO* donors and found that protection was not seen with diethylamine NONOate, a donor with a half-life measured in minutes, but was seen with dipropylenetriamine NONOate and diethylaminetriamine NONOate, donors with half-lives measured in hours. This need for donors with longer half-lives for the protective effect suggested that NO* was required when intracellular thiol concentrations were falling, a process evolving over hours in medium depleted of cystine. These studies suggest a novel protective role for nitric oxide in oxidative stress injury and raise the possibility that intracerebral nitric oxide production might be a mechanism of defense against oxidative stress injury in OLs.  相似文献   

13.
14.
Summary Isolated hepatocytes from rat liver in primary culture rapidly lost viability under hypoxic conditions. In the presence of glycine, L-alanine or L-serine loss of viability under hypoxic conditions was greatly retarded. Glycine and L-serine already showed significant protection from hypoxic injury at a concentration of 0.1 mM; at 10 mM, all three amino acids offered almost complete protection. Beside these standard amino acids, 1-aminocyclopropane-1-carboxylic acid (ACPC) and sarcosine significantly decreased hypoxic injury of the hepatocytes, although to a lesser extent. Other amino acids tested provided only slight protection or had no effect on hypoxic injury of the hepatocytes. In the presence of the protective amino acids neither the ATP content nor the lactate production of the hypoxic hepatocytes were significantly affected. The addition of glycine, L-alanine and L-serine led to marked membrane alterations (blebs). These alterations, however, occurred without loss of viability and were reversible upon reoxygenation after up to 4 h of hypoxia.Abbreviations LDH lactate dehydrogenase - ACPC 1-amino-cyclopropane-1-carboxylic acid - HEPES 2-(4-(2-hydroxyethyl)-1-piperazinyl)-ethanesulfonic acid  相似文献   

15.
Activation of either the A1 adenosine receptor (A1R) or the A3 adenosine receptor (A3R), by their specific agonists CCPA and Cl-IB-MECA, respectively, protects cardiac cells in culture against ischemic injury. Yet the full protective mechanism remains unclear. In this study, we therefore examined the involvement of p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinases (ERK) phosphorylation in this protective intracellular signaling mechanism. Furthermore, we investigated whether p38 MAPK phosphorylation occurs upstream or downstream from the opening of mitochondrial ATP-sensitive potassium (KATP) channels. The role of p38 MAPK activation in the intracellular signaling process was studied in cultured cardiomyocytes subjected to hypoxia, that were pretreated with CCPA or Cl-IB-MECA or diazoxide (a mitochondrial KATP channel opener) with and without SB203580 (a specific inhibitor of phosphorylated p38 MAPK). Cardiomyocytes were also pretreated with anisomycin (p38 MAPK activator) with and without 5-hydroxy decanoic acid (5HD) (a mitochondrial KATP channel blocker). SB203580 together with the CCPA, Cl-IB-MECA or diazoxide abrogated the protection against hypoxia as shown by the level of ATP, lactate dehydrogenase (LDH) release, and propidium iodide (PI) staining. Anisomycin protected the cardiomyocytes against ischemic injury and this protection was abrogated by SB203580 but not by 5HD. Conclusions Activation of A1R or A3R by CCPA or Cl-IB-MECA, respectively, protects cardiomyocytes from hypoxia via phosphorylation of p38 MAPK, which is located downstream from the mitochondrial KATP channel opening. Elucidating the signaling pathway by which adenosine receptor agonists protect cardiomyocytes from hypoxic damage, will facilitate the development of anti ischemic drugs.  相似文献   

16.
Adenosine is formed during conditions that deplete ATP, such as ischemia. Adenosine deaminase converts adenosine into inosine, and both adenosine and inosine can be beneficial for postischemic recovery. This study investigated adenosine and inosine release from astrocytes and neurons during chemical hypoxia or oxygen-glucose deprivation. In both cell types, 2-deoxyglucose was the most effective stimulus for depleting cellular ATP and for evoking inosine release; in contrast, oxygen-glucose deprivation evoked the greatest adenosine release. alpha,beta-Methylene ADP, an inhibitor of ecto-5'nucleotidase, significantly reduced adenosine release from astrocytes but not neurons. Dipyridamole, an inhibitor of equilibrative nucleoside transporters, inhibited both adenosine and inosine release from neurons. Erythro-9-(2-hydroxy-3-nonyl)adenine, an inhibitor of adenosine deaminase, reduced neuronal inosine release evoked by oxygen-glucose deprivation but not by 2-deoxyglucose treatment. These data indicate that (1). astrocytes release adenine nucleotides that are hydrolyzed extracellularly to adenosine, whereas neurons release adenosine per se, (2). inosine is formed intracellularly and released via nucleoside transporters, and (3). inosine is formed by an adenosine deaminase-dependent pathway during oxygen-glucose deprivation but not during 2-deoxyglucose treatment. In summary, the metabolic pathways for adenosine formation and release were cell-type dependent whereas the pathways for inosine formation were stimulus dependent.  相似文献   

17.
Nitroxides block DNA scission and protect cells from oxidative damage.   总被引:1,自引:0,他引:1  
The protective effect of cyclic stable nitroxide free radicals, having SOD-like activity, against oxidative damage was studied by using Escherichia coli xthA DNA repair-deficient mutant hypersensitive to H2O2. Oxidative damage induced by H2O2 was assayed by monitoring cell survival. The metal chelator 1,10-phenanthroline (OP), which readily intercalates into DNA, potentiated the H2O2-induced damage. The extent of in vivo DNA scission and degradation was studied and compared with the loss of cell viability. The extent of DNA breakage correlated with cell killing, supporting previous suggestions that DNA is the crucial cellular target of H2O2 cytotoxicity. The xthA cells were protected by catalase but not by superoxide dismutase (SOD). Both five- and six-membered ring nitroxides, having SOD-like activity, protected growing and resting cells from H2O2 toxicity, without lowering H2O2 concentration. To check whether nitroxides protect against O2.(-)-independent injury also, experiments were repeated under hypoxia. These nitroxides also protected hypoxic cells against H2O2, suggesting alternative modes of protection. Since nitroxides were found to reoxidize DNA-bound iron(II), the present results suggest that nitroxides protect by oxidizing reduced transition metals, thus interfering with the Fenton reaction.  相似文献   

18.
Abstract: The protooncogene bcl-2 rescues cells from a wide variety of insults. Recent evidence suggests that the mechanism of action of Bcl-2 involves antioxidant activity. The involvement of free radicals in ischemia/reperfusion injury to neural cells has led us to investigate the effect of Bcl-2 in a model of delayed neural cell death. We have examined the survival of control and bcl-2 transfectants of a hypothalamic tumor cell line, GT1-7, exposed to potassium cyanide in the absence of glucose (chemical hypoxia/aglycemia). After 30 min of treatment, no loss of viability was evident in control or bcl-2 transfectants; however, Bcl-2-expressing cells were protected from delayed cell death measured following 24–72 h of reoxygenation. Under these conditions, the rate and extent of ATP depletion in response to treatment with cyanide in the absence of glucose and the rate of recovery of ATP during reenergization were similar in control and Bcl-2-expressing cells. Bcl-2-expressing cells were protected from oxidative damage resulting from this treatment, as indicated by significantly lower levels of oxidized lipids. Mitochondrial respiration in control but not Bcl-2-expressing cells was compromised immediately following hypoxic treatment. These results indicate that Bcl-2 can protect neural cells from delayed death resulting from chemical hypoxia and reenergization, and may do so by an antioxidant mechanism. The results thereby provide evidence that Bcl-2 or a Bcl-2 mimetic has potential therapeutic application in the treatment of neuropathologies involving oxidative stress, including focal and global cerebral ischemia.  相似文献   

19.

Background

Brain ischemia is the underlying cause of neuron death during stroke and brain trauma. Neural cells exposed to ischemia can undergo apoptosis. Adrenomedullin (AM) in combination with its enhancing binding protein, AMBP-1, has been shown to reduce tissue damage in inflammation.

Methods

To evaluate a beneficial effect of AM/AMBP-1 administration in brain ischemia, we employed an in vitro model of neuronal hypoxia using differentiated human neuroblastoma SH-SY5Y cells.

Results

After exposure to 1% O2 for 20 h, neural cells were injured with decreased ATP levels and increased LDH release. Pre-administration of AM/AMBP-1 significantly reduced hypoxia-induced cell injury. Moreover, AM/AMBP-1 treatment reduced the number of TUNEL-positive cells and activation of caspase-3, compared to cells exposed to hypoxia alone. AM/AMBP-1 prevented a reduction of cAMP levels and protein kinase A (PKA) activity in neural cells after hypoxia exposure. Correspondingly, an elevation of cAMP levels by forskolin protected neural cells from hypoxia-induced injury. Inhibition of PKA by KT5720 abolished the protective effect of AM/AMBP-1 on hypoxia-induced apoptosis.

Conclusions

AM/AMBP-1 elevates cAMP levels, followed by activating PKA, to protect neural cells from the injury caused by hypoxia.

General significance

AM/AMBP-1 may be used as therapeutic agents to prevent neuron damage from brain ischemia.  相似文献   

20.
Inosine is an endogenous purine nucleoside, which is formed by adenosine deaminidase during adenosine breakdown and is released into the extracellular space from the sympathetic nervous system or injured cells. Here, we studied the biological activity of inosine on human dendritic cells (DC), which are specialized antigen presenting cells characterized by their ability to migrate from the blood to peripheral tissues, and then to secondary lymphoid organs where they initiate adaptive immune responses. In immature DC, inosine concentration-dependently stimulated Ca(2+)-transients, actin polymerization, and chemotaxis. Experiments with adenosine receptor antagonists and pertussis toxin (PTX) as well as desensitization studies suggested that the activity of inosine was mediated by a G protein-coupled receptor pathway independent of adenosine receptors. DC, induced to mature by lipopolysaccharide, lost their ability to respond towards inosine with these activities. Moreover, inosine did neither influence membrane expression of CD54, CD80, CD83, CD86, HLA-DR, and MHC class I molecules nor modulated secretion of interleukin (IL)-12, IL-10, and tumor necrosis factor alpha in immature and lipopolysaccharide-matured DC. In aggregate, our study indicates that inosine may be involved in the trafficking control system of immature DC, and mediates its chemotactic activity by a PTX-sensitive mechanism independent of adenosine receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号