首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Endogenous and exogenous glucocorticoids influence fetal growth and development, and maternal administration of synthetic glucocorticoids may decrease the risk of perinatal morbidity including lung disease in preterm neonates. Because polymorphisms of the glucocorticoid receptor gene are known to influence the sensitivity to glucocorticoids, in the present study we examined whether any associations could exist among the BclI, N363S and ER22/23EK polymorphisms of the glucocorticoid receptor gene and gestational age, birth weight and/or perinatal morbidity of 125 preterm neonates born at 28-35 weeks' gestation with (n=57) or without maternal dexamethasone treatment (n=68). The prevalence of the three polymorphisms in the whole group of preterm infants was similar to that reported in healthy adult Hungarian population. However, we found that the BclI polymorphism significantly associated with higher birth weight adjusted for the gestational age (p=0.004, ANOVA analysis). None of the three polymorphisms showed an association with perinatal morbidities, including necrotizing enterocolitis, intraventricular hemorrhagia, patent ductus arteriosus, respiratory distress syndrome, bronchopulmonary dysplasia and sepsis in the two groups of preterm neonates with and without maternal dexamethasone treatment. These results suggest that the BclI polymorphism of the glucocorticoid receptor gene may have an impact on gestational age-adjusted birth weight, but it does not influence perinatal morbidities of preterm neonates.  相似文献   

3.

Introduction  

The glucocorticoid receptor (GR) plays an important regulatory role in the immune system. Four polymorphisms in the GR gene are associated with differences in glucocorticoid (GC) sensitivity; the minor alleles of the polymorphisms N363 S and BclI are associated with relative hypersensitivity to GCs, while those of the polymorphisms ER22/23EK and 9β are associated with relative GC resistance. Because differences in GC sensitivity may influence immune effector functions, we examined whether these polymorphisms are associated with the susceptibility to develop Rheumatoid Arthritis (RA) and RA disease severity.  相似文献   

4.
Exposure to stress activates the hypothalamic–pituitary–adrenal axis and leads to increased levels of glucocorticoid (GC) hormones. Prolonged elevation of GC levels causes neuronal dysfunction, decreases the density of synapses, and impairs neuronal plasticity. Decreased sensitivity to glucocorticoids (glucocorticoid resistance) that develops as a result of chronic stress is one of the characteristic features of stress-induced psychopathologies. In this article, we reviewed the published data on proposed molecular mechanisms that contribute to the development of glucocorticoid resistance in brain, including changes in the expression of the glucocorticoid receptor (GR) gene, biosynthesis of GR isoforms, and GR posttranslational modifications. We also present data on alterations in the expression of the FKBP5 gene encoding the main component of cell ultra-short negative feedback loop of GC signaling regulation. Recent discoveries on stressand GRinduced changes in epigenetic modification patterns as well as normalizing action of antidepressants are discussed. GR and FKBP5 gene polymorphisms associated with stress-induced psychopathologies are described, and their role in glucocorticoid resistance is discussed.  相似文献   

5.
Bronchial asthma is a disease of multi - factored etiology. Current data show that multiple genes may be involved in the pathogenesis of asthma. Corticosteroids (GCS) are the most effective anti-inflammatory therapy for inflammatory disease such as bronchial asthma. There are 2 major types of GCS-resistant asthma to treatment of high doses of inhaled and oral glucocorticoids. Type I GCS-resistant asthma is cytokine-induced or acquired. Type II GCS resistance involves generalized primary cortisol resistance, which affects all tissues and is likely associated with a mutation in the GCR gene or in genes that modulate GCR function. There are clear examples of glucocorticoid gene h-GCR/NR3C1 polymorphisms that can influence responses and sensitivity to glucocorticosteroids. This article may lead to holistic the development analysis of the factors determining the progress of the glucocorticoid resistance in the severe bronchial asthma with special acknowledgement of the influence of polymorphisms of the glucocorticoid receptor gene h-GCR/NR3C1 to formation GCS resistance.  相似文献   

6.
7.
Glucocorticoid resistance is a rare condition characterized by generalized, partial, target-tissue insensitivity to glucocorticoids. Compensatory elevations in circulating adrenocorticotropic hormone (ACTH) concentrations lead to increased secretion of cortisol and adrenal steroids with mineralocorticoid and/or androgenic activity, but no clinical evidence of hypercortisolism. The clinical spectrum of the condition is broad, ranging from asymptomatic to severe cases of hyperandrogenism, fatigue and/or mineralocorticoid excess. The molecular basis of glucocorticoid resistance has been ascribed to mutations in the human glucocorticoid receptor (hGR) gene, which impair glucocorticoid signal transduction, thereby altering tissue sensitivity to glucocorticoids. The study of functional defects of natural hGR mutants enhances our understanding of the molecular mechanisms of hGR action and highlights the importance of integrated cellular and molecular signaling mechanisms for maintaining homeostasis and preserving normal physiology.  相似文献   

8.
9.
10.
Targeted mutagenesis of the glucocorticoid receptor has revealed an essential function for survival and the regulation of multiple physiological processes. To investigate the effects of an increased gene dosage of the receptor, we have generated transgenic mice carrying two additional copies of the glucocorticoid receptor gene by using a yeast artificial chromosome. Interestingly, overexpression of the glucocorticoid receptor alters the basal regulation of the hypothalamo-pituitary-adrenal axis, resulting in reduced expression of corticotropin-releasing hormone and adrenocorticotrope hormone and a fourfold reduction in the level of circulating glucocorticoids. In addition, primary thymocytes obtained from transgenic mice show an enhanced sensitivity to glucocorticoid-induced apoptosis. Finally, analysis of these mice under challenge conditions revealed that expression of the glucocorticoid receptor above wild-type levels leads to a weaker response to restraint stress and a strongly increased resistance to lipopolysaccharide-induced endotoxic shock. These results underscore the importance of tight regulation of glucocorticoid receptor expression for the control of physiological and pathological processes. Furthermore, they may explain differences in the susceptibility of humans to inflammatory diseases and stress, depending on individual prenatal and postnatal experiences known to influence the expression of the glucocorticoid receptor.  相似文献   

11.
Polymorphisms in the glucocorticoid receptor (GR) gene have been associated with altered sensitivity to glucocorticoids. We designed a high-resolution melting (HRM) assay to detect, simultaneously, the three most intriguing GR polymorphisms, selected on the bases of clinical relevance and frequencies in caucasian population as described in literature. HRM enables the detection of ER22/23EK and N363S genotypes but fails to discriminate homozygous mutant for the BclI polymorphism from wild-type samples, however a simple spike experiment leads to a clear discrimination between these genotypes. The analyses were performed on a cohort of 70 healthy Caucasian subjects. The method was validated by restriction fragment length polymorphisms; HRM results were found to be in 100% concordance with those observed with the restriction enzymes. We also employed this method on a population of 40 Crohn Disease patients; the analysis demonstrated a significantly higher frequency of the BclI polymorphism in patients than in healthy volunteers.This is, at now, the less expensive and time-and work-saving method to detect GR mutations, providing precision, fast screening and high throughput capabilities.  相似文献   

12.
13.
14.
15.
Glucocorticoid receptor gene polymorphisms are associated with glucocorticoid hypersensitivity and visceral obesity. Perturbations in HPA axis sensitivity to glucocorticoids implicated in the pathogenesis of major depression may result from functional alterations in the glucocorticoid receptor gene. We 1) examined the prevalence of genotype distribution of specific polymorphisms of the glucocorticoid receptor gene (Bcl1, N363S, rs33388, rs33389) in a subset of women from the P.O.W.E.R. Study (which enrolled 21- to 45-year-old premenopausal women with major depression and healthy controls) and 2) explored whether such polymorphisms were associated with visceral obesity and insulin resistance. Women with major depression had a higher body mass index, a higher waist:hip ratio, and more body fat than did controls. No differences were observed in plasma and urinary cortisol or in insulin sensitivity. The G/G genotype of the Bcl1 polymorphism was significantly more common (p<0.03) in women with major depression (n=52) than in controls (n=29). In addition, GG homozygotes (depressed n=10; controls n=2) had higher waist:hip ratios than did non-GG carriers (p<0.02). N363S, rs33388, and rs33389 polymorphisms were not different between groups. In conclusion, premenopausal women with both major depression and the GG genotype of the Bcl1 polymorphism had greater abdominal obesity compared with non-GG carriers.  相似文献   

16.
Yu CY  Mayba O  Lee JV  Tran J  Harris C  Speed TP  Wang JC 《PloS one》2010,5(12):e15188
Glucocorticoids play important roles in the regulation of distinct aspects of adipocyte biology. Excess glucocorticoids in adipocytes are associated with metabolic disorders, including central obesity, insulin resistance and dyslipidemia. To understand the mechanisms underlying the glucocorticoid action in adipocytes, we used chromatin immunoprecipitation sequencing to isolate genome-wide glucocorticoid receptor (GR) binding regions (GBRs) in 3T3-L1 adipocytes. Furthermore, gene expression analyses were used to identify genes that were regulated by glucocorticoids. Overall, 274 glucocorticoid-regulated genes contain or locate nearby GBR. We found that many GBRs were located in or nearby genes involved in triglyceride (TG) synthesis (Scd-1, 2, 3, GPAT3, GPAT4, Agpat2, Lpin1), lipolysis (Lipe, Mgll), lipid transport (Cd36, Lrp-1, Vldlr, Slc27a2) and storage (S3-12). Gene expression analysis showed that except for Scd-3, the other 13 genes were induced in mouse inguinal fat upon 4-day glucocorticoid treatment. Reporter gene assays showed that except Agpat2, the other 12 glucocorticoid-regulated genes contain at least one GBR that can mediate hormone response. In agreement with the fact that glucocorticoids activated genes in both TG biosynthetic and lipolytic pathways, we confirmed that 4-day glucocorticoid treatment increased TG synthesis and lipolysis concomitantly in inguinal fat. Notably, we found that 9 of these 12 genes were induced in transgenic mice that have constant elevated plasma glucocorticoid levels. These results suggested that a similar mechanism was used to regulate TG homeostasis during chronic glucocorticoid treatment. In summary, our studies have identified molecular components in a glucocorticoid-controlled gene network involved in the regulation of TG homeostasis in adipocytes. Understanding the regulation of this gene network should provide important insight for future therapeutic developments for metabolic diseases.  相似文献   

17.
18.
Peter J. Schoonheim 《Steroids》2010,75(12):918-1451
Glucocorticoids regulate a wide range of systems in vertebrate organisms, and their effects are mediated by the glucocorticoid receptor (GR). The responsiveness to glucocorticoids differs largely between individuals. Resistance to glucocorticoids is an important medical problem, since it limits the efficacy of glucocorticoids when they are used to treat immune-related diseases like asthma and rheumatoid arthritis. Glucocorticoid resistance also contributes to the pathogenesis of other diseases, like major depression because of the decreased negative feedback on the hypothalamic pituitary adrenal axis. In this review, we present the zebrafish as an excellent in vivo model system to study glucocorticoid resistance. First, the zebrafish is the only non-primate animal model in which a β-isoform of GR occurs, which is a splice variant with dominant-negative activity. Zebrafish are easily genetically modified, so the expression of GRβ can be varied, creating an in vivo model for GRβ-induced glucocorticoid resistance. Second, by performing a forward-genetic screen using the glucocorticoid-induced decrease in POMC expression in the pituitary gland as a readout, several zebrafish mutants have been obtained which appear to be resistant to glucocorticoid treatment. We present here two types of in vivo models for studying glucocorticoid resistance, that will be used to study the molecular mechanism of glucocorticoid signaling and resistance. Finally these models will be used to screen for small molecules that can alleviate glucocorticoid resistance.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号