首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
1. Inhibition of volume restoration by ouabain in rabbit kidney cortex slices is related to an increase in Na+ concentration which may reach levels higher than equilibrium with the external medium. 2. The uphill accumulation of Na+ is not sensitive to amiloride and furosemide. It is dependent on the level of K+ in the external medium. 3. Bringing the slices from cold to normal temperature induces a large increase in Rb86 efflux. 4. It is concluded that the Na+ entry inhibiting volume restoration is driven by an increase in K+ expel occurring upon tissue rewarming.  相似文献   

2.
Summary Slices of rat kidney cortex were induced to swell by preincubation at 1°C in an isotonic Ringer's solution, and their capacity to reverse swelling, by net extrusion of cellular water, was studied during subsequent incubation at 25°C. The recovery from swelling was prevented by the respiratory inhibitor, antimycin A. On the other hand, extrusion of water was little affected by ouabain. The extrusion of water continuing in the presence of ouabain (but not that in its absence) was significantly reduced when furosemide was added or when medium Cl was replaced by NO 3 , or I. There was substantial variability in the morphological appearance of cells within the cortical slices. Different segments of the nephron showed different structural changes during swelling and its reversal, the proximal tubules being most markedly affected. Proximal tubular cells of swollen slices showed disorganization of brush borders and expansion of their apical surfaces, and contained vesicles in their apical cytoplasm. Upon recovery at 25°C, the apical portions of these cells showed reversal of the expansion, but some apical vesicles remained. These vesicles were much more numerous after recovery in the presence of ouabain, but they were much reduced in numbers, or totally absent, when recovery took place in the presence of furosemide or absence of Cl, with or without ouabain. The vesicles seen in the presence of ouabain alone appeared to fuse with each other and with infoldings of the basolateral plasma membrane. Rather similar results were obtained with distal tubular cells in the slices. We suggest that volume regulation in the proximal and distal tubular cells proceeds by way of two mechanisms. The first consists of extrusion of water coupled to the ouabain-sensitive transport of Na+ and K+. The other proceeds by way of an ouabain-resistant entry of water into apical cytoplasmic vesicles, following furosemide-sensitive movements of Cl and Na+; the vesicles then expel their contents by exocytosis at the basolateral cell borders.  相似文献   

3.
The apparent extracellular space in incubated slices of rat renal cortex, medulla and papilla has been measured using three differently sized marker molecules, mannitol, sucrose and inulin. Cellular volumes have been estimated by following the efflux of 3-O-methyl-D-glucose from equilibrated slices. Sucrose appears to be the most accurate extracellular marker in each of the regions examined, in that the sum of its volume of distribution plus cellular volume approximates most closely to the total slice fluid volume. Inulin has the same volume of distribution as sucrose in cortical slices, but under-penetrates medullary and papillary tissue. Mannitol overestimates the extracellular space in all three regions, although its larger volume of distribution, relative to that of sucrose, was not statistically significant in papillary slices. When cell volume and composition are estimated (a) using sucrose as extracellular marker and (b) making appropriate allowance for the presence of bound tissue electrolytes, it is found that cells in each region have low Na+ and high K+ concentrations and contents. When papillary slices are incubated in medium of very high osmolality (NaCl plus urea, 2000 mosmol/kg H2O) there is a moderate (approx. 23%) decrease in cell volume and an increase in cell fluid Na+ and Cl- concentrations equal to approx. 50% of the increase in the extracellular concentrations. Cell K+ concentrations remain unchanged. The results show that cells in renal slices are able to maintain high K+-to-Na+ ratios when incubated in isosmotic (cortex) or moderately hyperosmotic media (medulla and papilla), and suggest that regulation of papillary cell volume following hyperosmotic shock can only partly be ascribed to uptake of extracellular electrolytes.  相似文献   

4.
5.
Rat brain membranes were incubated with bee venom phospholipase A2 (PLA2) or phospholipase C (PLC) from Clostridium perfringens. PLA2 caused a significant increase in free polyunsaturated fatty acids concomitant with membrane phospholipid degradation as monitored by HPLC and by gas chromatography. Equal concentrations of PLC had a much lesser effect than PLA2. Divergent and differential effects were shown on deacylation and incorporation of [3H]arachidonic acid in membrane phospholipids. The incorporation of [3H]arachidonic acid into various phospholipids was greatly reduced by PLA2 (0.018 units/ml) whereas PLC at identical concentration was not effective. PLA2 inhibited (Na+ + K+)-ATPase but was not effective on p-nitrophenyl-phosphatase activity whereas PLC stimulated both enzymes. PLA2 induced swelling of cortical brain slices whereas PLC was not effective. Thus, the severity of the perturbation of membrane integrity, and the inhibition of (Na+ + K+)-ATPase in brain membranes may play an important role in cellular swelling of brain slices induced by PLA2.  相似文献   

6.
A progressive inhibition of the respiration of brain cortex slices by ouabain (0.2 mM) is not only caused by a specific inhibition of the Na+K+-ATPase, but is also due to damage of the cell membrane. It involves efflux and degradation of NADH or NAD. In contrast, the respiration of kidney cortex slices and reticulocytes exhibits only a rapid and constant inhibition by ouabain in concentrations of 0.2, 0.5 and 1.0 mM, respectively. Ouabain causes a decrease in O2-consumption of 12%, 45% and 23% in reticulocytes, slices of kidney cortex and brain cortex, respectively.  相似文献   

7.
Summary Mouse hepatocytes in primary monolayer culture (4 hr) were exposed for 10 min at 37°C to anisosmotic medium of altered NaCl concentration. Hepatocytes maintained constant relative cell volume (experimental volume/control volume) as a function of external medium relative osmolality (control mOsm/experimental mOsm), ranging from 0.8 to 1.5. In contrast, the relative cell volume fit a predicted Boyle-Van't Hoff plot when the experiment was done at 4°C. Mouse liver slices were used for electrophysiologic studies, in which hepatocyte transmembrane potential (V m ) and intracellular K+ activity (a K i ) were recorded continuously by open-tip and liquid ion-exchanger ion-sensitive glass microelectrodes, respectively. Liver slices were superfused with control and then with anisosmotic medium of altered NaCl concentration.V m increased (hyperpolarized) with hypoosmotic medium and decreased (depolarized) with hyperosmotic medium, and ln [10(experimentalV m /controlV m )] was a linear function of relative osmolality (control mOsm/experimental mOsm) in the range 0.8–1.5. Thea K i did not change when medium osmolality was decreased 40–70 mOsm from control of 280 mOsm. Similar hypoosmotic stress in the presence of either 60mm K+ or 1mm quinine HCl or at 27°C resulted in no change inV m compared with a 20-mV increase inV m without the added agents or at 37°C. We conclude that mouse hepatocytes maintain their volume anda K i in response to anisosmotic medium; however,V m behaves as an osmometer under these conditions. Also, increases inV m by hypoosmotic stress were abolished by conditions or agents that inhibit K+ conductance.  相似文献   

8.
9.
The effects of glucose, tolbutamide and K+ on cytosolic free Ca2+ ([Ca2+]i) in single rat pancreatic B cells were examined using Fura-2 and dual wavelength microfluorimetry. At basal glucose concentration (2.8 mM), about half of the cells were found to display spontaneous Ca2+ oscillations. Glucose (greater than or equal to 11.1 mM), tolbutamide (greater than or equal to 50 microM) and K+ (50 mM) induced rises in [Ca2+]i that could be inhibited by the Ca2+ channel blocker D600. The pattern of response and the sensitivity to the secretagogues were characterized by a marked heterogeneity. The majority of the cells responded to glucose and tolbutamide by a progressive increase in [Ca2+]i onto which sinusoidal oscillations were superimposed. The periodicity of these oscillations was about 2.5/min. Occasionally, some cells displayed slow and major waves in Ca2+ levels (about 0.2/min). None of the cells responded to glucose by displaying an initial decrease in [Ca2+]i. Likewise, the sugar failed to decrease [Ca2+]i in the absence of extracellular Ca2+. The present study shows that, despite a large heterogeneity of the response, the majority of the pancreatic B cells respond to different secretagogues by displaying fast [Ca2+]i oscillations that are reminiscent of the bursts of electrical activity recorded in B cells.  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号