首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Rescue of simian virus 40 (SV40) from hamster and murine cell lines transformed by nonirradiated or by ultraviolet (UV)-irradiated SV40 (10(-3) to 10(-5) survival) was studied. A combination of tests was employed to detect induction of SV40 synthesis: (i) co-cultivation with susceptible monkey kidney (CV-1) cells; (ii) treating mixtures of transformed and CV-1 cells with UV-irradiated Sendai virus (UV-Sendai) prior to co-cultivation; and (iii) plating untreated or UV-Sendai-treated mixtures of transformed and CV-1 cells with freshly trypsinized CV-1 cells. The first and second tests provided a measure of the total infectious SV40 yield per culture, and the third test provided a measure of the frequency of induction (fraction of transformed cells giving rise to infectious centers). With the combination of tests, SV40 was rescued in all trials from TSV-5 hamster cells, mKS-BU100 mouse cells, and from several lines of mouse kidney cells transformed by UV-irradiated SV40 (mKS-U lines). The frequency of induction was about 7 x 10(-2) for TSV-5 cells, about 3 x 10(-3) for mKS-BU100 cells, greater than 10(-4) for the mKS-U lines which were "good" yielders, and about 10(-5) to 10(-4) for the mKS-U lines which were "average" yielders. SV40 of a plaque type different from parental virus was rescued from four of the mKS-U cell lines. Virus was also easily rescued from: (i) tumor cells produced from the mKS-A line of transformed mouse kidney cells; (ii) mouse kidney cells transformed by SV40 which had been rescued from mKS-BU100 cells; and (iii) tumor cells (HATS) which had been produced by inoculating newborn hamsters with SV40 rescued from mKS-BU100 cells. The frequency of induction of HATS cells was of the same order of magnitude as the frequency of induction of TSV-5 cells. In a study of the kinetics of virus induction, it was shown that SV40 could be detected 28, 40, and 48.5 hr after UV-Sendai treatment of mixtures of CV-1 and TSV-5, HATS, or mKS-BU100 cells, respectively. Although all of the mKS-U lines contained the SV40-specific tumor antigen, some were poor virus yielders (SV40 was recovered in less than 50% of the trials) and five lines were rare virus yielders (SV40 recovered only once in four or more trials). Forty-eight mKS-U lines were nonyielders; SV40 was never recovered by any test used thus far. UV-Sendai-treated mixtures of pairs of nonyielder mKS-U lines with CV-1 cells also did not yield infectious virus. Various factors affecting rescue have been discussed. The mKS-U lines which were poor virus yielders, rare yielders, or which never yielded virus have been classified tentatively as "defective lysogens" which contain mutational lesions at loci essential for detachment of SV40 from integration sites or for SV40 replication, or for both.  相似文献   

2.
Simian virus 40 (SV40) strains have been rescued from various clonal lines of mouse kidney cells that had been transformed by ultraviolet (UV)-irradiated SV40. To learn whether some of the rescued SV40 strains were mutants, monkey kidney (CV-1) cells were infected with the rescued virus strains at 37 C and at 41 C. The SV40 strains studied included strains rescued from transformed cell lines classified as "good," "average," "poor," and "rare" yielders on the basis of total virus yield, frequency of induction, and incidence of successful rescue trials. Four small plaque mutants isolated from "poor" yielder lines and fuzzy and small plaque strains isolated from an "average" and a "good" yielder line, respectively, were among the SV40 strains tested. Virus strains rescued from all classes of transformed cells were capable of inducing the transplantation antigen, and they induced the intranuclear SV40-T-antigen, thymidine kinase, deoxyribonucleic acid (DNA) polymerase, and cellular DNA synthesis at 37 C and at 41 C. With the exception of four small plaque strains rescued from "poor" yielders, the rescued SV40 strains replicated their DNA and formed infectious virus with kinetics similar to parental SV40 at either 37 or 41 C. The four exceptional strains did replicate at 37 C, but replication was very poor at 41 C. Thus, only a few of the rescued virus strains exhibited defective SV40 functions in CV-1 cells. All of the virus strains rescued from the "rare" yielder lines were similar to parental SV40. Several hypotheses consistent with the properties of the rescued virus strains are discussed, which may account for the significant variations in virus yield and frequency of induction of the transformed cell lines.  相似文献   

3.
Simian virus 40 (SV40) was rescued from heterokaryons of transformed mouse and transformed human cells. To determine whether the rescued SV40 was progeny of the SV40 genome resident in the transformed mouse cells, the transformed human cells, or both, rescue experiments were performed with mouse lines transformed by plaque morphology mutants of SV40. The transformed mouse lines that were used yielded fuzzy, small-clear, or large-clear plaques after fusion with CV-1 (African green monkey kidney) cells. The transformed human lines that were used did not release SV40 spontaneously or after fusion with CV-1 cells. From each mouse-human fusion mixture, only the SV40 resident in the transformed mouse cells was recovered. Fusion mixtures of CV-1 and transformed mouse cells yielded much more SV40 than those from transformed human and transformed mouse cells. The rate of SV40 formation was also greater from monkey-mouse than from human-mouse heterokaryons. Deoxyribonucleic acid (DNA) from SV40 strains which form fuzzy, largeclear, or small-clear plaques on CV-1 cells was also used to infect monkey (CV-1 and Vero), normal human, and transformed human cell lines. The rate of virion formation and the final SV40 yields were much higher from monkey than from normal or transformed human cells. Only virus with the plaque type of the infecting DNA was found in extracts from the infected cells. Two uncloned sublines of transformed human cells [W18 Va2(P363) and WI38 Va13A] released SV40 spontaneously. Virus yields were not appreciably enhanced by fusion with CV-1 cells. However, clonal lines of W18 Va2(P363) did not release SV40 spontaneously or after fusion with CV-1 cells. In contrast, several clonal lines of WI38 Va13A cells did continue to shed SV40 spontaneously.  相似文献   

4.
After light UV irradiation (5,000 to 10,000 ergs/mm2) “complete” and “defective” simian virus 40 (SV40) showed an enhancement of oncogenic transformation capacity in Syrian hamster kidney cells in vitro up to 180 and 270% of the controls, respectively. Simultaneously with the enhancement of transformation, an increase in T-antigen induction was observed in CV-1 cells infected with light UV-irradiated SV40; infectivity, however, was correspondingly reduced by 1 log10. After strong UV irradiation (10,000 to 80,000 ergs/mm2) of “complete” and “defective” SV40, transformation capacity in vitro proved to be the most resistant viral function. It was only slightly reduced in comparison with a 4 to 5 log10 reduction of infectivity. T-antigen induction of SV40 was also equally resistant to strong UV irradiation. We found no evidence of “multiplicity reactivation” involved in the high resistance of transformation capacity of SV40 after UV irradiation. Syrian hamster kidney cells transformed in vitro by UV-irradiated SV40 contained the SV40-specific T-antigen and showed the same morphology and growth characteristics as cells transformed by non-irradiated “complete” or “defective” SV40. They induced malignant tumors after subcutaneous inoculation into Syrian hamsters.  相似文献   

5.
Small amounts of infectious simian virus 40 (SV40) were recovered from parental cultures of SV40-transformed human embryonic lung (WI38 Va13A) cells, from 12 primary clones, from 17 secondary clones, and from 18 tertiary clones. The cloning experiments demonstrated that the capacity for spontaneous virus production is a hereditary property of WI38 Va13A cells. Infectious virus was not recovered from every clone at every passage. Repeated trials at different passage levels were necessary to detect virus production. Approximately one in 10(5) to 10(6) of the cells of the clonal lines initiated plaque formation when plated on the CV-1 line of African green monkey kidney cells. No increase in infectious center formation was observed after the clonal lines were treated with bromodeoxyuridine, iododeoxyuridine, or mitomycin C or after heterokaryon formation of treated cells with CV-1 cells. The clonal lines of WI38 Va13A cells were susceptible to superinfection by SV40 deoxyribonucleic acid (DNA). To determine whether only those cells which spontaneously produced virus supported the replication of superinfecting SV40 DNA, cultures were infected with DNA from a plaque morphology mutant and a temperature-sensitive mutant of SV40. After infection by SV40 DNA, approximately 100 to 4,400 times more transformed cells formed infectious centers than were spontaneously producing virus. To determine whether the resident SV40 genome or the superinfecting SV40 genome was replicating, infectious centers produced by SV40 DNA-infected WI38 Va13A cells on CV-1 monolayers were picked and the progeny virus was analyzed. Only the superinfecting SV40 was recovered from the infectious centers, indicating that in the majority of superinfected cells the resident SV40 was not induced to replicate.  相似文献   

6.
The amount of simian virus 40 (SV40) DNA present in various SV40-transformed mouse cell lines and “revertants” isolated from them was determined. The number of viral DNA copies in the different cell lines ranged from 1.35 to 8.75 copies per diploid quantity of mouse cell DNA and from 2.2 to 14 copies per cell. The revertants had the same number of viral DNA copies per diploid quantity of mouse cell DNA as their parental cell lines. (However, they showed an increased number of viral DNA copies per cell due to their increased amount of DNA.) By using separated strands of SV40 DNA, the extent of each DNA strand transcribed into stable RNA species was determined for the transformed and “revertant” cell lines. From 30 to 80% of the “early” strand and from 0 to 20% of the “late” strand was present as stable RNA species in the cell lines tested. There was no alteration in the pattern of the stable viral RNA species present in three concanavalin A-selected revertants, whereas in a fluorodeoxyuridine-selected revertant there appeared to be less viral-specific RNA present in the cells.  相似文献   

7.
When simian virus 40 (SV40)-transformed mouse kidney cells (mKS) were grown in the presence of susceptible indicator cells, SV40 was readily recovered from: (i) 15 transformed cell lines, (ii) transformed cells subcultured 45 times over a 7-month period in medium containing antiviral serum and bromodeoxyuridine (dBU), (iii) 45 of 46 clonal lines isolated in the presence of antiviral serum, (iv) 19 of 19 secondary clones isolated from two clonal lines, and (v) dBU-resistant transformed cell lines. dBU-resistant SV40-transformed mouse kidney cell lines were selected and shown to contain the T antigen and to have normal levels of thymidylate kinase and deoxyribonucleic acid (DNA) polymerase, but to be deficient in thymidine (dT) kinase. Radioautographic and biochemical experiments demonstrated that very little (3)H-dT was incorporated into DNA of dBU-resistant cells during a 6-hr labeling period. After infection of dT kinase-deficient mKS cells with vaccinia virus, high levels of dT kinase were induced. The properties of SV40 recovered from dBU-sensitive and dBU-resistant cells were studied. SV40 recovered from transformed cells was shown to express in CV-1 cells at least six functions characteristic of parental virus: synthesis of capsid antigen, synthesis of T antigen, synthesis of viral DNA, induction of dT kinase, induction of DNA polymerase, and induction of host cell DNA synthesis. In addition, SV40 recovered from the transformed cells induced T antigen, dT kinase, deoxycytidylate deaminase, thymidylate kinase, and DNA polymerase in abortively infected mouse kidney cultures, and the virus was also capable of transforming primary cultures of mouse kidney cells.  相似文献   

8.
A temperature-sensitive simian virus 40 (SV40) mutant, tsTNG-1, has been isolated from nitrosoguanidine-treated and SV40-infected African green monkey kidney (CV-1) cultures. Replication of virus at the nonpermissive temperature (38.7 C) was 3,000-fold less than at the permissive temperature (33.5 C). Plaque formation by SV40tsTNG-1 deoxyribonucleic acid (DNA) on CV-1 monolayers occurred normally at 33.5 C but was grossly inhibited at 38.7 C. The time at which virus replication was blocked at 38.7 C was determined by temperature-shift experiments. In shift-up experiments, cultures infected for various times at 33.5 C were shifted to 38.7 C. In shift-down experiments, cultures infected for various times at 38.7 C were shifted to 33.5 C. All cultures were harvested at 96 hr postinfection (PI). No virus growth occurred when the shift-up occurred before 40 hr PI. Maximum virus yields were obtained at 96 hr PI when the shift-down occurred at 66 hr, but only about 15% of the maximum yield was obtained when the shift-down occurred at 76 hr PI. These results indicate that SV40tsTNG-1 contains a conditional lethal mutation in a late viral gene function. Mutant SV40tsTNG-1 synthesized T antigen, viral capsid antigens, and viral DNA, and induced thymidine kinase activity at either 33.5 or 38.7 C. The properties of the SV40 DNA synthesized in mutant-infected CV-1 cells at 33.5 or 38.7 C were very similar to those of SV40 DNA made in parental virus-infected cells, as determined by nitrocellulose column chromatography, cesium-chloride-ethidium bromide equilibrium centrifugation, and by velocity centrifugation in neutral sucrose gradients. Mutant SV40tsTNG-1 enhanced cellular DNA synthesis in primary cultures of mouse kidney cells at 33.5 and 38.7 C and also transformed mouse kidney cultures at 36.5 C. SV40tsTNG-1 was recovered from clonal lines of transformed cells after fusion with susceptible CV-1 cells and incubation of heterokaryons at 33.5 C, but not at 38.7 C.  相似文献   

9.
Simian virus 40 (SV40) can be rescued from certain SV40-transformed hamster cells by fusion with susceptible African green monkey kidney (CV-1) cells, in the presence of ultraviolet-irradiated Sendai virus. We have determined the sites in which SV40 is produced during rescue in these heterokaryons. To determine the sequence, nuclei were isolated from fused cells at various times after fusion, separated on sucrose-density gradients, and assayed for infectious center formation and virus content on CV-1 monolayers. Virus was first detected in the transformed nucleus (40 hr postfusion), and later associated with both transformed and susceptible nuclei (68 to 72 hr). Viral rescue apparently does not depend upon the transfer of SV40 deoxyribonucleic acid to a susceptible CV-1 nucleus, since the transformed nucleus is the primary site of virus production. The time course of certain cytological events in the rescue process and in productive infection was found to be similar.  相似文献   

10.
Infectious deoxyribonucleic acid (DNA) was extracted from green monkey kidney (CV-1) cultures at various times after the cultures were infected with simian virus 40 (SV40) at input multiplicities of 0.01 and 0.1 plaque-forming unit (PFU) per cell. A pronounced decrease in infectious DNA was observed from 3 to 16 hr after virus infection, suggesting that structurally altered intracellular forms may have been generated early in infection. Evidence is also presented that SV40 DNA synthesis requires concurrent protein synthesis. DNA replication was studied in the presence and absence of cycloheximide in: (i) SV40-infected and uninfected cultures of CV-1 cells; (ii) cultures synchronized with 1-β-d-arabinofuranosylcytosine (ara-C) for 24 to 30 hr prior to the addition of cycloheximide; and (iii) in heterokaryons of SV40-transformed hamster and susceptible monkey kidney cells. DNA synthesis was determined by pulse-labeling the cultures with 3H-thymidine at various times from 24 to 46 hr after infection. In addition, the total infectious SV40 DNA was measured. Addition of cycloheximide, even after early proteins had been induced, grossly inhibited both SV40 and cellular DNA syntheses. The activities of thymidine kinase, DNA polymerase, deoxycytidylate deaminase, and thymidylate kinase were measured; these enzyme activities remained high for at least 9 hr in the presence of cycloheximide. SV40 DNA prelabeled with 3H-thymidine before the addition of cycloheximide was also relatively stable during the time required for cycloheximide to inhibit further DNA replication.  相似文献   

11.
A comparative study of simian virus 40 (SV40) lytic infection in three different monkey cell lines is described. The results demonstrate that viral deoxyribonucleic acid (DNA) synthesis and infectious virus production begin some 10 to 20 hr earlier in CV-1 cells and primary African green monkey kidney (AGMK) cells than in BSC-1 cells. Induction of cellular DNA synthesis by SV40 was observed in CV-1 and AGMK cells but not with BSC-1 cells. Excision of large molecular weight cellular DNA to smaller fragments was easily detectable late in infection of AGMK cells. Little or no excision was observed at comparable times after infection of CV-1 and BSC-1 cells. The different kinds of responses of these three monkey cell lines during SV40 lytic infection suggest the involvement of cellular functions in the virus-directed induction of cellular DNA synthesis and the excision of this DNA from the genome.  相似文献   

12.
Transformation of Mouse Macrophages by Simian Virus 40   总被引:3,自引:0,他引:3       下载免费PDF全文
Studies were undertaken to prove that simian virus 40 (SV40) can transform the mouse macrophage, a cell type naturally restricted from deoxyribonucleic acid (DNA) replication. Balb/C macrophages infected with SV40 demonstrated T-antigen production and induced DNA synthesis simultaneously. In the absence of apparent division, these cells remained T antigen-positive for at least 45 days. SV40 could be rescued from nondividing, unaltered macrophages during the T antigen-producing period. Proliferating transformants appeared at an average of 66 days post-SV40 infection. Established cell lines were T antigen-positive and were negative for infectious virus, but yielded SV40 after fusion with African green monkey kidney cells. Their identity as transformed macrophages was substantiated by evaluation of cellular morphology, phagocytosis, acid phosphatase, beta(1c) synthesis, and aminoacridine incorporation.  相似文献   

13.
Integration of simian virus 40 (SV40) deoxyribonucleic acid (DNA) into cellular DNA occurred when permissive African green monkey kidney (CV-1) cells were infected at a low multiplicity of SV40 in the presence of cytosine arabinoside.  相似文献   

14.
Deoxyribonucleic acid (DNA) was extracted from virus-free simian virus 40 (SV40)-transformed hamster, mouse, and monkey cells and was inoculated into simian cells in the presence of diethylaminoethyl (DEAE)-dextran; infectious SV40 was recovered by using DNA from cell lines which fail to yield virus by the fusion technique as well as from cell lines which readily yield virus by fusion. The rescued virus was identified as SV40 by three methods: (i) neutralization of plaque formation by specific antiserum; (ii) induction of synthesis of viral-specific antigens detected by immunofluorescence; and (iii) presence of papovavirus particles seen by the electron microscope. Treatment of the transformed cell DNA with deoxyribonuclease or omission of the DEAE-dextran prevented the rescue of virus. Large amounts of transformed cell DNA were required (>10 mug/culture of 10(6) cells) to effect rescue of SV40 by passage through monkey cells. A linear response was obtained between the input of DNA with inocula between 10 and 45 mug of DNA/culture and the yield of SV40 recovered. Biological activity was demonstrable irregularly when the transformed cell DNA was assayed directly in the presence of DEAE-dextran. The DNA induced plaque formation in about 50% of the trials as well as the synthesis of SV40 tumor and viral antigens in rare simian cells. The infectious DNA appeared to be associated with cellular DNA. The infectivity was found in the pellet of precipitated DNA obtained by the Hirt technique and was inactivated by boiling for 15 min. These properties are characteristic of linear cellular DNA and not of free, circular SV40 DNA.  相似文献   

15.
Mutagenic repair in mammalian cells was investigated by determining the mutagenesis of UV-irradiated or unirradiated herpes simplex virus in UV-irradiated CV-1 monkey kidney cells. These results were compared with the results for UV-enhanced virus reactivation (UVER) in the same experimental situation. High and low multiplicities of infection were used to determine the effects of multiplicity reactivation (MR). UVER and MR were readily demonstrable and were approximately equal in amount in an infectious center assay. For this study, a forward-mutation assay was developed to detect virus mutants resistant to iododeoxycytidine (ICdR), probably an indication of the mutant virus being defective at its thymidine kinase locus. ICdR-resistant mutants did not have a growth advantage over wild-type virus in irradiated or unirradiated cells. Thus, higher fractions of mutant virus indicated greater mutagenesis during virus repair and/or replication. The data showed that: (1) unirradiated virus was mutated in unirradiated cells, providing a background level of mutagenesis; (2) unirradiated virus was mutated about 40% more in irradiated cells, indicating that virus replication (DNA synthesis?) became more mutagenic as a result of cell irradiation; (3) irradiated virus was mutated much more (about 6-fold) than unirradiated virus, even in unirradiated cells; (4) cell irradiation did not change the mutagenesis of irradiated virus except at high multiplicity of infection. High multiplicity of infection did not lead to higher mutagenesis in unirradiated cells. Thus the data did not demonstrate UVER or MR alone to be either error-free or error-prone. When the two processes were present simultaneously, they were mutagenic.  相似文献   

16.
We have investigated the process of release of simian virus 40 (SV40) virions from several monkey kidney cell lines. High levels of virus release were observed prior to any significantly cytopathic effects in all cell lines examined, indicating that SV40 utilizes a mechanism for escape from the host cell which does not involve cell lysis. We demonstrate that SV40 release was polarized in two epithelial cell types (Vero C1008 and primary African green monkey kidney cells) grown on permeable supports; release of virus occurs almost exclusively at apical surfaces. In contrast, equivalent amounts of SV40 virions were recovered from apical and basal culture fluids of nonpolarized CV-1 cells. SV40 virions were observed in large numbers on apical surfaces of epithelial cells and in cytoplasmic smooth membrane vesicles. The sodium ionophore monensin, an inhibitor of vesicular transport, was found to inhibit SV40 release without altering viral protein synthesis or infectious virus production.  相似文献   

17.
Whereas normal human and monkey cells were susceptible both to intact simian virus 40 (SV40) and to SV40 deoxyribonucleic acid (DNA), human and monkey cells transformed by SV40 were incapable of producing infectious virus after exposure to SV40, but displayed susceptibility to SV40 DNA. On the other hand, mouse and hamster cells, either normal or SV40-transformed, were resistant both to the virus and to SV40 DNA. Hybrids between permissive and nonpermissive parental cells revealed a complex response: whereas most hybrids tested were resistant, three of them produced a small amount of infectious virus upon challenge with SV40 DNA. All were resistant to whole virus challenge. The persistence of infectious SV40 DNA in permissive and nonpermissive cells up to 96 hr after infection was ascertained by cell fusion. The decay kinetics proved to be quite different in permissive and nonpermissive cells. Adsorption of SV40 varied widely among the different cell lines. Very low adsorption of SV40 was detected in nonsusceptible cells with the exception of the mKS-BU100 cell line. A strong increase in SV40 adsorption was produced by pretreating cells with polyoma virus. In spite of this increased adsorption, the resistance displayed by SV40-transformed cells to superinfection with the virus was maintained.  相似文献   

18.
Summary Comparison of proteins expressed by SV40 transformed cell lines and untransformed cell lines is of interest because SV40 transformed cells are immortal, whereas untransformed cells senesce after about 50 doublings. In MRC-5 SV40 cells, only seven proteins have previously been reported to shift from undetectable to detectable after transformation by SV40 virus. We report that butyrylcholinesterase is an 8th protein in this category. Butyrylcholinesterase activity in transformed MRC-5 SV40 cells increased at least 150-fold over its undetectable level in MRC-5 parental cells. Other SV40 transformed cell lines, including COS-1, COS-7, and WI-38 VA13, also expressed endogenous butyrylcholinesterase, whereas the parental, untransformed cell lines, CV-1 and WI-38, had no detectable butyrylcholinesterase activity or mRNA. Infection of CV-1 cells by SV40 virus did not result in expression of butyrylcholinesterase, showing that the butyrylcholinesterase promoter was not activated by the large T antigen of SV40. We conclude that butyrylcholinesterase expression resulted from events related to cell immortalization and did not result from activation by the large T antigen.  相似文献   

19.
Populations of the Victoria strain of Newcastle disease virus (NDV), reisolated from persistently infected L-cell cultures and passed twice in the embryonated hen's egg (NDVL-E-2), were found to differ strikingly from the original, chick embryo-adapted virus (NDVo). After exposure of L cells to NDVo at high multiplicities of infection, all cells became abortively infected; they produced only small aggregates of viral antigen and few, if any, infectious virus particles, but they yielded large amounts of interferon. No cytopathic effects (CPE) were noted, and the cultures survived readily as viral carriers. In contrast, NDVL-E-2 yielded under similar conditions large quantities of viral antigen and infectious virus particles, but no detectable interferon, and the cultures were rapidly destroyed. This change in “virulence” was at least partially reversible by further serial passages of NDVL-E-2 in chick embryos, as was evident from a consecutive decrease in CPE with a concomitant increasingly rapid recovery of the L-cell cultures, gradually diminishing yields of infectious viral progeny, and the returning of a capacity to induce interferon synthesis. Thus, NDVL-E-16 resembled NDVo in many aspects, except for a less striking reduction in its ability to replicate in L cells. Although a selection of viral variants under the given sets of conditions has not been entirely excluded, the establishment of “avirulence” appears to be largely explained by a gradual accumulation of noninfectious, interferon-inducing components in the course of serial passages in the embryonated hen's egg, and the acquisition of “virulence” by a loss of these components. The evidence is as follows. (i) By a step-wise decrease in the dose of virus and restriction of the analyses to the first infectious cycle, a multiplicity of infection was ultimately reached for all “avirulent” populations at which infected cells produced normal yields of infectious viral progeny; i.e., the interferon-inducing components were diluted to noneffective levels. The lowest multiplicity which resulted in a measurable reduction in infectious virus replication was also the last one to induce detectable interferon synthesis. (ii) All viral clones derived from “avirulent” populations behaved like NDVL-E-2 rather than like the parent viral suspensions, except that some of them elicited small amounts of interferon in L cells. The interferon-inducing components were reduced or lost in the cloning procedures. The nature of the interferon-inducing components has not been established. These components, which were neutralized by rabbit sera against “virulent” NDVL-E-2 populations, may represent largely inactive or incomplete virus particles; however, the infectious virus-hemagglutinin ratios of “avirulent” populations were mostly of an order similar to those of “virulent” populations. The interferon-inducing components aborted the infectious process in cells simultaneously invaded by infectious virus particles. The implications of these findings are discussed.  相似文献   

20.
Several clones of SV40 transformed CV-1 cells have been characterized for the production of T- and V-antigens and for the state of viral genome. The transformed CV-1 cells failed to produce infectious virions as assayed after sonication or cocultivation and fusion with normal CV-1 cells, and were resistant to super-infection by SV40. Some clones of the transformed cells contained V-antigens. The population of V-antigen positive cells varied from 0 to 100% depending on the passage number while the T-antigen positive cells were always 100%. The virions isolated from the transformed cells were similar in morphology to complete SV40, but lighter in density than complete SV40. In one clone, a small amount of SV40 DNA was detectable in a free state while a large proportion of the DNA hybridizable with SV40 3H cRNA was linearly integrated into the cell DNA. The free SV40 DNA was noninfectious, closed circular DNA with a size smaller than infectious SV40 DNA component I. Since the cell extracts of the transformed cells contained an agent(s) which induced T- and V-antigens in normal CV-1 cells, it was suggested that the SV40 transformed CV-1 cells contained free as well as integrated defective SV40 genomes responsible for the synthesis of T- and V-antigens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号