首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Previously we found that replacement of seven amino acid residues in a loop region markedly shifted the coenzyme specificity of malate dehydrogenase from NAD(H) toward NADP(H). In the present study, we replaced the seven amino acid residues in the corresponding region of an NAD(H)-dependent lactate dehydrogenase with those of NADP(H)-dependent malate dehydrogenase, and examined the coenzyme specificity of the resulting mutant enzyme. Coenzyme specificity was significantly shifted by 399-fold toward NADPH when k cat?K m coenzyme was used as the measure of coenzyme specificity. The effect of the replacements on coenzyme specificity is discussed based on in silico simulation of the three-dimensional structure of the lactate dehydrogenase mutant.  相似文献   

3.
Glucose metabolism in peripheral blood lymphocytes from the brown trout Salmo trutta has been studied. Glucose is taken up by means of a sodium-independent saturable process (K m=10.8 mmol·l-1), as well as by simple diffusion. Once within the cell, most of glucose is directed to lactate production through either the Embden-Meyerhof pathway or the hexose-monophosphate shunt. Rates of lactate formation are higher than rates of CO2 formation. Glutamine does not exert an effect on either glucose uptake or glucose metabolism. The present study provides information regarding the nature of energy sources for different cell types in salmonids.Abbreviations 3-OMG 3-O-methyl glucose - EM Embden-Meyerhoff pathway - G6D glucose-6-phosphate dehydrogenase - HK hexokinase - HMS hexose monophosphate shunt - ICDH isocitrate dehydrogenase - K m apparent Michaelis constant - LDH lactate dehydrogenase - MCB modified Cortland buffer - PBL peripheral blood lymphocytes - PFK fructose-6-phosphate kinase - PK pyruvate kinase - RBC red blood cells - V max maximal rate of uptake  相似文献   

4.
T. Betsche  K. Bosbach  B. Gerhardt 《Planta》1979,146(5):567-574
By ammonium sulfate fractionation and gel filtration an enzyme preparation which catalyzed NAD+-dependent L-lactate oxidation (10-4 kat kg-1 protein), as well as NADH-dependent pyruvate reduction (10-3 kat kg-1 protein), was obtained from leaves of Capsella bursa-pastoris. This lactate dehydrogenase activity was not due to an unspecific activity of either glycolate oxidase, glycolate dehydrogenase, hydroxypyruvate reductase, alcohol dehydrogenase, or a malate oxidizing enzyme. These enzymes could be separated from the protein displaying lactate dehydrogenase activity by gel filtration and electrophoresis and distinguished from it by their known properties. The enzyme under consideration does not oxidize D-lactate, and reduces pyruvate to L-lactate (the configuration of which was determined using highly specific animal L-lactate dehydrogenase). Based on these results the studied Capsella leaf enzyme is classified as L-lactate dehydrogenase (EC 1.1.1.27). It has a Km value of 0.25 mmol l-1 (pH 7.0, 0.3 mmol l-1 NADH) for pyruvate and of 13 mmol l-1 (pH 7.8, 3 mmol l-1 NAD+) for L-lactate. Lactate dehydrogenase activity was also detected in the leaves of several other plants.Abbreviation FMN flavin adenine mononucleotide  相似文献   

5.
The tritium recovery assay of 9-hydroxyprostaglandin dehydrogenase [Pace-Asciak, C. (1975) J. Biol. Chem.250, 2789] has been modified to ensure its applicability to both crude and purified enzyme preparations. The stereospecificity of NAD+-dependent 9-hydroxyprostaglandin dehydrogenase with respect to NAD+ was determined first and found to be A-side specific. Based on the stereospecificity of the enzyme, a simple and sensitive assay method for 9-hydroxyprostaglandin dehydrogenase has been developed. The assay is able to detect picomole quantities of substrate conversion. When 15-keto-13,14-dihydro-[9β-3H]PGF is employed as substrate, the tritium label of the tritiated prostaglandin is effected to transfer to lactate stereospecifically by coupling 9-hydroxyprostaglandin dehydrogenase with a saturating level of lactate dehydrogenase. The amount of prostaglandin oxidized is quantitated by the radioactivity of the labeled lactate produced, which is separated from labeled prostaglandin by charcoal precipitation. Simultaneous assays with the current tritium-release and thin-layer chromatography methods indicated excellent correlation. Using this method we have found that rat kidney possesses the highest enzyme activity among those tissues examined. Rat kidney enzyme activity is linear for the first 10 min it is studied and is nonlinear with increasing amounts of crude enzyme extract, indicating the possible presence of endogenous inhibitor(s). The apparent Km for 15-keto-13,14-dihydro-PGF is 0.66 μm. The enzyme is activated by imipramine, inhibited by indomethacin, but not affected by furosemide and ethacrynic acid. These results confirm previous findings reported in the literature.  相似文献   

6.
N-Hydroxyindole-2-carboxylates possessing sulfonamide-substituents at either position 5 or 6 were designed and synthesized. The inhibitory activities of these compounds against isoforms 1 and 5 of human lactate dehydrogenase were analysed, and Ki values of the most efficient inhibitors were determined by standard enzyme kinetic studies. Some of these compounds displayed state-of-the-art inhibitory potencies against isoform 5 (Ki values as low as 5.6 μM) and behaved as competitive inhibitors versus both the substrate and the cofactor.  相似文献   

7.
In the cyanobacterium Anabaena cylindrica lactate accumulated in large amounts when the cells were exposed to light. The presence or absence of oxygen, or a change in CO2 concentration did not affect the lactate accumulation. The cellular succinate level also increased in the light when CO2 was supplied at the high concentration of 1%. 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU), an inhibitor of photosynthetic electron flow, inhibited the increase in the concentration of lactate and succinate. Photosynthesis is a prerequisite for the increase of these organic acids. Thenoyltrifluoroacetone, an inhibitor of succinate dehydrogenase, inhibited the increase of succinate, suggesting that the succinate is formed via fumarate by the reverse of reactions of tricarboxylic acid (TCA) cycle. Upon addition of ammonium to the cell suspension in the light under high CO2 concentration, the increases in the concentrations of lactate and succinate were inhibited while those of glutamine, glutamate and aspartate were stimulated. Ammonium apparently changed the products of metabolism of pyruvate and oxaloacetate from lactate and succinate to amino acids.Abbreviations Chl chlorophyll - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethyl urea - TTFA thenoyltrifluoroacetone - PCA perchloric acid  相似文献   

8.
Rubredoxin was purified from Desulfovibrio vulgaris Miyazaki. It was sequenced and some of its properties determined. Rubredoxin is composed of 52 amino acids. It is highly homologous to that from D. vulgaris Hildenborough. Its N-methionyl residue is partially formalated. The millimolar absorption coefficients of the rubredoxin at 489 nm and 280 are 8.1 and 18.5, respectively, and the standard redox potential is +5 mB, which is slightly higher than those of other rubredoxins. Rubredoxin, as well as cytochrome c-553, was reduced with lactate by the action of lactate dehydrogenase of this organism, and the rection was stimulated with 2-methyl-1, 4-naphthoquinone. It is suggested that rubredoxin, in collaboration with membraous quinone, functions as natural electron carrier for cytoplasmic lactate dehydrogenase of this organism, whereas cytochrome c-553 plays the same role for periplasmic lactate dehydrogenase.  相似文献   

9.
Summary The enzymatic activities of glyceraldehyde-3-phosphate dehydrogenase, octopine dehydrogenase and lactate dehydrogenase were determined fromLoligo vulgaris. Octopine dehydrogenase displays the highest activity yet recorded for this enzyme, exceeding glyceraldehyde-3-phosphate dehydrogenase sixfold and lactate dehydrogenase 365-fold (Table 1).During jet propulsion swimming octopine accumulates instead of lactate (Table 2), while phosphoarginine, the phosphagen of the squid, is depleted (Table 3).The formation of octopine is discussed in relation to anaerobic metabolism which might occur during burst activity in cephalopods.The following abbreviations are used AK arginine kinase (2.7.3.3) - GAPDH glyceraldehyde-3-phosphate dehydrogenase (1.2.1.12) - LDH L-lactate - NAD oxidoreductase (1.1.1.27) - ODH octopine - NAD oxidoreductase (1.5.1.11) - DTT dithiothreitol - dw dry weight (about 20% of the fresh weight) This investigation was generously supported by The Deutsche Forschungsgemeinschaft grant No.: (Ze 40/13)  相似文献   

10.
Summary Glucose metabolism has been studied in Salmo trutta red blood cells. From non-metabolizable analogue (3-O-methyl glucose and l-glucose) uptake experiments it is concluded that there is no counterpart to the membrane transport system for glucose found in mammalian red blood cells. Once within the cells, glucose is directed to CO2 and lactate formation through both the Embden-Meyerhoff and hexose monophosphate shunts; lactate appears as the most important endproduct of glucose metabolism in these cells. From experiments under anaerobic conditions, and in the presence of an inhibitor of pyruvate transfer to mitochondria, most of the CO2 formed appears to derive from the hexose monophosphate pathway. Appreciable O2 consumption has been detected, but there is no clear relationship between this and substrate metabolism. Key enzymes of glucose metabolism hexokinase, fructose-6-phosphate kinase and, probably, pyruvate kinase are out of equilibrium, confirming their regulatory activity in Salmo trutta red blood cells. The presence of isoproterenol, a catecholamine analogue, induces important changes in glucose metabolism under both aerobic and anaerobic conditions, and increases the production of both CO2 and lactate. From the data presented, glucose appears to be the major fuel for Salmo trutta red blood cells, showing a slightly different pattern of glucose metabolism from rainbow trout red blood cells.Abbreviations EM Embden-Meyerhoff pathway - G6D glucose-6-phosphate dehydrogenase - GOT glutamate oxalacetate transaminase - GPI glucose phosphate isomerase - HK hexokinase - HMS hexose monophosphate shunt - IP isoproterenol - LDH lactate dehydrogenase - MCB modified Cortland buffer - OMG 3-O-methyl glucose - PFK fructose-6-phosphate kinase - PK pyruvate kinase - RBC red blood cells - TAC tricarboxylic acid cycle  相似文献   

11.
35Cl nmr relaxation rate measurements have been used to study anion-binding sites in pig heart lactate dehydrogenase. These studies reveal two types of sites, one is intimately associated with the active site, the other is not. The nonactive site has been ascribed to a subunit site in analogy with crystallographic results from the dogfish M4 enzyme. The binding of either the reduced or the oxidized form of NAD results in an increase in the 35Cl nmr relaxation rate by a factor of 1.8–2. The enhanced nmr relaxation rate of the binary lactate dehydrogenase-NAD complex is reduced on binding of the substrate inhibitor molecules oxamate or oxalate to a value less than that exhibited by lactate dehydrogenase alone. The enhancement of the nmr relaxation rate is attributed to a decrease in the dissociation constant of Cl for the enzyme. The Kp values for Cl binding to the active center site of lactate dehydrogenase is 0.85 m and for lactate dehydrogenase-NADH is 0.25 m. The ratio of these constants, 3.4, agrees well with the measured enhancement value 3.7. The effect of coenzyme analogs on the 35Cl nmr relaxation rate has been examined. 3-Acetylpyridine NAD produces an enhancement of 4.3, thionicotinamide NAD of 2.3, whereas 3-pyridinealdehyde, adenosinediphosphoribose, and adenosine diphosphate do not affect the nmr relaxation state of Cl bound to lactate dehydrogenase.  相似文献   

12.
Clostridium acetobutylicum strain P262 utilized lactate at a rapid rate [600 nmol min–1 (mg protein)–1], but lactate could not serve as the sole energy source. When acetate was provided as a co-substrate, the growth rate was 0.05 h–1. Butyrate, carbon dioxide and hydrogen were the end products of lactate and acetate utilization, and the stoichiometry was 1 lactate + 0.4 acetate → 0.7 butyrate + 0.6 H2 + 1 CO2. Lactate-grown cells had twofold lower hydrogenase than glucose-grown cells, and the lactate-grown cells used acetate as an alternative electron acceptor. The cells had a poor affinity for lactate (Ks = 1.1 mM), and there was no evidence for active transport. Lactate utilization was catabolyzed by an inducible NAD-independent lactate dehydrogenase (iLDH) that had a pH optimum of 7.5. The iLDH was fivefold more active with d-lactate than l-lactate, and the K m for d-lactate was 3.2 mM. Lactate-grown cells had little butyraldehyde dehydrogenase activity, and this defect did not allow the conversion of lactate to butanol. Received: 17 October 1994 / Accepted: 30 January 1995  相似文献   

13.
The catalytic properties of the purified horseshoe crab and seaworm d-lactate dehydrogenases were determined and compared with those of several l-lactate dehydrogenases. Apparent Km's and degrees of substrate inhibition have been determined for both enzymes for pyruvate, d-lactate, NAD+ and NADH. They are similar to those found for l-lactate dehydrogenases. The Limulus “muscle”-type lactate dehydrogenase is notably different from the “heart”-type lactate dehydrogenase of this organism in a number of properties.The Limulus heart and muscle enzymes have been shown by several criteria to be stereospecific for d-lactate. They also stereospecifically transfer the 4-α hydrogen of NADH to pyruvate. The turnover number for purified Limulus muscle lactate dehydrogenase is 38,000 moles NADH oxidized per mole of enzyme, per minute. Limulus and Nereis lactate dehydrogenases are inhibited by oxamate and the reduced NAD-pyruvate adduct.Limulus muscle lactate dehydrogenase is stoichiometrically inhibited by para-hydroxymercuribenzoate. Extrapolation to two moles parahydroxymercuribenzoate bound to one mole of enzyme yields 100% inhibition. Alkylation by iodoacetamide or iodoacetate occurs even in the absence of urea or guanidine-HCl. Evidence suggests that the reactive sulfhydryl group may not be located at the coenzyme binding site.Reduced coenzyme (NADH or the 3-acetyl-pyridine analogue of NADH) stoichiometrically binds to Limulus muscle lactate dehydrogenase (two moles per mole of enzyme).Several pieces of physical and catalytic evidence suggest that the d- and l-lactate dehydrogenase are products of homologous genes. A consideration of a possible “active site” shows that as few as one or two key conservative amino acid changes could lead to a reversal of the lactate stereospecificity.  相似文献   

14.
Summary We have previously shown that shaking the culture plates (SHAKE) of rabbit renal proximal tubule cells (RPTC) to maintain adequate aeration increased aerobic metabolism and decreased the induction of glycolysis compared to RPTC cultured under standard conditions (STILL). However, glycolysis in SHAKE RPTC remained elevated compared to glycolysis in proximal tubules in vivo. In the present study the contribution of culture medium sugar composition and concentration to glycolytic metabolism was assessed in RPTC. SHAKE and STILL RPTC cultured in 5 mM glucose contained lactate levels equivalent to the respective SHAKE and STILL RPTC cultured in standard culture medium which contains 17.5 mM glucose. Similarly, the activity of lactate dehydrogenase was unchanged by lowering the medium glucose concentration. Substituting 5 mM galactose for 5 mM glucose in the culture medium significantly reduced the lactate content of both SHAKE and STILL RPTC but had no effect on lactate dehydrogenase activity. Cell growth was equivalent under all culture conditions. Sensitivity to mitochondrial inhibition was determined for each culture condition by measuring cell death after exposure to the respiratory inhibitor antimycin A. The results showed a hierarchy of sensitivity to antimycin A (5 mM galactose SHAKE >5 mM glucose SHAKE >17.5 mM glucose SHAKE = 17.5 mM glucose STILL), which was generally inversely correlated with the level of glycolysis as measured by lactate content (17.5 mM glucose STILL >17.5 mM glucose SHAKE = 5 mM glucose SHAKE >5 mM galactose SHAKE).  相似文献   

15.
During lactate fermentation by Propionibacterium freudenreichii subsp. shermanii ATCC 9614, the only amino acid metabolized was aspartate. After lactate exhaustion, alanine was one of the two amino acids to be metabolized. For every 3 mol of alanine metabolized, 2 mol of propionate, 1 mol each of acetate and CO2, and 3 mol of ammonia were formed. The specific activity of alanine dehydrogenase was 0.08 U/mg of protein during lactate fermentation, and it increased to 0.9 U/mg of protein after lactate exhaustion. Alanine dehydrogenase and aspartase, key enzymes in the metabolism of alanine and aspartate, respectively, were partially purified, and some of their properties were studied. Alanine dehydrogenase had a pH optimum of 9.2 to 9.6 and high Km values for both NAD+ (1 to 4 mM) and alanine (7 to 20 mM). Activity was inhibited by low concentrations of pyruvate and NADH. The pH optimum of aspartase decreased from ~7.5 to ~6.4 when the MgCl2 and aspartate concentrations were decreased. Plots of aspartate concentration versus activity showed either hyperbolic or sigmoidal kinetics (interaction coefficient, up to a value of 3.1), depending on pH and MgCl2 concentration. MgCl2 was either an activator or an inhibitor, depending on pH and its concentration. Aspartase activity was inhibited by low concentrations of fumarate. The properties of alanine dehydrogenase and aspartase are consistent with the finding that aspartate is metabolized during lactate fermentation, while alanine is only fermented after lactate exhaustion and then at a slow rate.  相似文献   

16.
Cell-free extracts of Rhizobium meliloti contain a soluble lactate dehydrogenase (LDH-EC 1.1.1.27.). This was purified 250-fold by ammonium sulfate precipitation and filtration on different Sephadex gels. This enzyme catalyses the reduction of pyruvate to lactate in the presence of NADH and for the first time we report its ability to reduce indole-3-pyruvic acid (IPyA) to indole-3-lactic acid (ILA). Optimal conditions for activity and Km values for both substrates were determined. In the presence of NAD the reverse reaction could be demonstrated with the aliphatic substrate (lactate), but under our conditions it was not possible to achieve the oxidation of ILA to IPyA. The role of this LDH in the indole metabolism is discussed and a general reaction scheme is suggested.  相似文献   

17.
In an oxystat, the synthesis of the fermentation products formate, acetate, ethanol, lactate, and succinate of Escherichia coli was studied as a function of the O2 tension (pO2) in the medium. The pO2 values that gave rise to half-maximal synthesis of the products (pO0.5) were 0.2–0.4 mbar for ethanol, acetate, and succinate, and 1 mbar for formate. The pO0.5 for the expression of the adhE gene encoding alcohol dehydrogenase was approximately 0.8 mbar. Thus, the pO2 for the onset of fermentation was distinctly lower than that for anaerobic respiration (pO0.5≤ 5 mbar), which was determined earlier. An essential role for quinol oxidase bd in microaerobic growth was demonstrated. A mutant deficient for quinol oxidase bd produced lactate as a fermentation product during growth at microoxic conditions (approximately 10 mbar O2), in contrast to the wild-type or a quinol-oxidase-bo-deficient strain. In the presence of nitrate, the amount of lactate was largely decreased. Therefore, under microoxic conditions, the pO2 appears to be too high for (mixed acid) fermentation to function and too low for aerobic respiration by quinol oxidase bo. Received: 7 February 1997 / Accepted: 2 May 1997  相似文献   

18.
Alanine was produced from glucose in an Escherichia coli aceF ldhA double mutant strain that contained the pTrc99A-alaD plasmid expressing Bacillus sphaericus alanine dehydrogenase. The aceF gene encodes one of the proteins of the pyruvate dehydrogenase complex, and therefore this strain required acetate as an additional carbon source. The ldhA gene encodes fermentative lactate dehydrogenase, a competitor of alanine dehydrogenase for the substrate pyruvate. Fermentations included an oxygenated growth phase followed by an oxygen-limited alanine production phase. The lowest value for the mass transfer coefficient (kLa) studied during the production phase yielded the greatest alanine. With feeding of glucose and NH4Cl, 32 g/l alanine accumulated in 27 h with a yield of 0.63 g alanine generated per gram glucose consumed.  相似文献   

19.
Urea-requiring lactate dehydrogenases of marine elasmobranch fishes   总被引:1,自引:1,他引:0  
Summary The kinetic properties — apparentK m of pyruvate, pyruvate inhibition pattern, and maximal velocity — of M4 (skeletal muscle) lactate dehydrogenases of marine elasmobranch fishes resemble those of the homologous lactate dehydrogenases of non-elasmobranchs only when physiological concentrations of urea (approximately 400 mM) are present in the assay medium. Urea increases the apparentK m of pyruvate to values typical of other vertebrates (Fig. 2), and reduces pyruvate inhibition to levels seen with other M4-lactate dehydrogenases (Fig. 3). Urea reduces the activation enthalpy of the reaction, and increasesV max at physiological temperatures (Fig. 4).The M4-lactate dehydrogenase of the freshwater elasmobranch,Potamotrygon sp., resembles a teleost lactate dehydrogenase, i.e., although it is sensitive to urea, it does not require the presence of urea for the establishment of optimal kinetic properties.  相似文献   

20.
The intracellular lactate shuttle hypothesis posits that lactate generated in the cytosol is oxidized by mitochondrial lactate dehydrogenase (LDH) of the same cell. To examine whether skeletal muscle mitochondria oxidize lactate, mitochondrial respiratory oxygen flux (JO2) was measured during the sequential addition of various substrates and cofactors onto permeabilized rat gastrocnemius muscle fibers, as well as isolated mitochondrial subpopulations. Addition of lactate did not alter JO2. However, subsequent addition of NAD+ significantly increased JO2, and was abolished by the inhibitor of mitochondrial pyruvate transport, α-cyano-4-hydroxycinnamate. In experiments with isolated subsarcolemmal and intermyofibrillar mitochondrial subpopulations, only subsarcolemmal exhibited NAD+-dependent lactate oxidation. To further investigate the details of the physical association of LDH with mitochondria in muscle, immunofluorescence/confocal microscopy and immunoblotting approaches were used. LDH clearly colocalized with mitochondria in intact, as well as permeabilized fibers. LDH is likely localized inside the outer mitochondrial membrane, but not in the mitochondrial matrix. Collectively, these results suggest that extra-matrix LDH is strategically positioned within skeletal muscle fibers to functionally interact with mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号