首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extracellular chitinases of Streptomyces peucetius and a chitinase overproducing mutant, SPVI, were purified to homogeneity by ion exchange and gel filtration chromatography. The purified enzyme has a molecular mass of 42 kDa on SDS-PAGE, and the N-terminal amino acid sequence of the protein from the wild type showed homology to catalytic domains (Domain IV) of several other Streptomyces chitinases such as S. lividans 66, S. coelicolor A3(2), S. plicatus, and S. thermoviolaceus OPC-520. Purified SPVI chitinase cross-reacted to anti-chitinase antibodies of wild-type S. peucetius chitinase. A genomic library of SPVI constructed in E. coli using lambda DASH II was probed with chiC of S. lividans 66 to screen for the chitinase gene. A 2.7 kb fragment containing the chitinase gene was subcloned from a lambda DASH II clone, and sequenced. The deduced protein had a molecular mass of 68 kDa, and showed domain organization similar to that of S. lividans 66 chiC. The N-terminal amino acid sequence of the purified S. peucetius chitinase matched with the N-terminus of the catalytic domain, indicating the proteolytic processing of 68 kDa chitinase precursor protein to 42 kDa mature chitinase containing the catalytic domain only. A putative chiR sequence of a two-component regulatory system was found upstream of the chiC sequence.  相似文献   

2.
Intergeneric conjugal transfer of plasmid DNA from Escherichia coli to Streptomyces circumvents problems such as host-controlled restriction and instability of foreign DNA during the transformation of Streptomyces protoplasts. The anthracycline antibiotic-producing strains Streptomyces peucetius and Streptomyces sp. strain C5 were transformed using E. coli ET12567(pUZ8002) as a conjugal donor. When this donor species, carrying pSET152, was mated with Streptomyces strains, the resident plasmid was mobilized to the recipient and the transferred DNA was also integrated into the recipient chromosome. Analysis of the exconjugants showed stable integration of the plasmid at a single chromosomal site (attB) of the Streptomyces genome. The DNA sequence of the chromosomal integration site was determined and shown to be conserved. However, the core sequence, where the crossover presumably occurred in C5 and S. peucetius, is TTC. These results also showed that the phiC31 integrative recombination is active and the phage attP site is functional in S. peucetius as well as in C5. The efficiency and specificity of phiC31-mediated site-specific integration of the plasmid in the presence of a 3.7-kb homologous DNA sequence indicates that integrative recombination is preferred under these conditions. The integration of plasmid DNA did not affect antibiotic biosynthesis or biosynthesis of essential amino acids. Integration of a single copy of a mutant chiC into the wild-type S. peucetius chromosome led to the production of 30-fold more chitinase.  相似文献   

3.
Genes for the biosynthesis of daunorubicin (daunomycin) and doxorubicin (adriamycin), important antitumor drugs, were cloned from Streptomyces peucetius (the daunorubicin producer) and S. peucetius subsp. caesius (the doxorubicin producer) by use of the actI/tcmIa and actIII polyketide synthase gene probes. Restriction mapping and Southern analysis of the DNA cloned in a cosmid vector established that the DNA represented three nonoverlapping regions of the S. peucetius subsp. caesius genome. These three regions plus an additional one that hybridized to the same probes are present in the S. peucetius genome, as reported previously (K. J. Stutzman-Engwall and C. R. Hutchinson, Proc. Natl. Acad. Sci. USA 86:3135-3139, 1989). Functional analysis of representative clones from some of these regions in S. lividans, S. peucetius ATCC 29050, S. peucetius subsp. caesius ATCC 27952, and two of its blocked mutants (strains H6101 and H6125) showed that many of the antibiotic production genes reside in the region of DNA represented by the group IV clones. This conclusion is based on the production of epsilon-rhodomycinone, a key intermediate of the daunorubicin pathway, in certain S. lividans transformants and on the apparent complementation of mutations that block daunorubicin biosynthesis in strains H6101 and H6125. Some of the transformants of strains 29050, 27952, and H6125 exhibited substantial overproduction of epsilon-rhodomycinone and daunorubicin.  相似文献   

4.
The drrC gene, cloned from the daunorubicin (DNR)- and doxorubicin-producing strain of Streptomyces peucetius ATCC 29050, encodes a 764-amino-acid protein with a strong sequence similarity to the Escherichia coli and Micrococcus luteus UvrA proteins involved in excision repair of DNA. Expression of drrC was correlated with the timing of DNR production in the growth medium tested and was not dependent on the presence of DNR. Since introduction of drrC into Streptomyces lividans imparted a DNR resistance phenotype, this gene is believed to be a DNR resistance gene. The drrC gene could be disrupted in the non-DNR-producing S. peucetius dnrJ mutant but not in the wild-type strain, and the resulting dnrJ drrC double mutant was significantly more sensitive to DNR in efficiency-of-plating experiments. Expression of drrC in an E. coli uvrA strain conferred significant DNR resistance to this highly DNR-sensitive mutant. However, the DrrC protein did not complement the uvrA mutation to protect the mutant from the lethal effects of UV or mitomycin even though it enhanced the UV resistance of a uvrA+ strain. We speculate that the DrrC protein mediates a novel type of DNR resistance, possibly different from the mechanism of DNR resistance governed by the S. peucetius drrAB genes, which are believed to encode a DNR antiporter.  相似文献   

5.
6.
Two DNA segments, dnrR1 and dnrR2, from the Streptomyces peucetius ATCC 29050 genome were identified by their ability to stimulate secondary metabolite production and resistance. When introduced into the wild-type ATCC 29050 strain, the 2.0-kb dnrR1 segment caused a 10-fold overproduction of epsilon-rhodomycinone, a key intermediate of daunorubicin biosynthesis, whereas the 1.9-kb dnrR2 segment increased production of both epsilon-rhodomycinone and daunorubicin 10- and 2-fold, respectively. In addition, the dnrR2 segment restored high-level daunorubicin resistance to strain H6101, a daunorubicin-sensitive mutant of S. peucetius subsp. caesius ATCC 27952. Analysis of the sequence of the dnrR1 fragment revealed the presence of two closely situated open reading frames, dnrI and dnrJ, whose deduced products exhibit high similarity to the products of several other Streptomyces genes that have been implicated in the regulation of secondary metabolism. Insertional inactivation of dnrI in the ATCC 29050 strain with the Tn5 kanamycin resistance gene abolished epsilon-rhodomycinone and daunorubicin production and markedly decreased resistance to daunorubicin. Sequence comparison between the products of dnrIJ and the products of the Streptomyces coelicolor actII-orf4, afsR, and redD-orf1 genes and of the Streptomyces griseus strS, the Saccharopolyspora erythraea eryC1, and the Bacillus stearothermophilus degT genes reveals two families of putative regulatory genes. The members of the DegT, DnrJ, EryC1, and StrS family exhibit some of the features characteristic of the protein kinase (sensor) component of two-component regulatory systems from other bacteria (even though none of the sequences of these four proteins show a significant overall or regional similarity to such protein kinases) and have a consensus helix-turn-helix motif typical of DNA binding proteins. A helix-turn-helix motif is also present in two of the proteins of the other family, AfsR and RedD-Orf1. Both sets of Streptomyces proteins are likely to be trans-acting factors involved in regulating secondary metabolism.  相似文献   

7.
8.
TDP-D-glucose 4,6-dehydratase, which converts TDP-D-glucose to TDP-D-4-keto-6-deoxyglucose, was purified to near-homogeneity from the daunorubicin and baumycin-producing organism Streptomyces sp. C5 (968-fold purification with a 41% recovery), and from the daunorubicin producer Streptomyces peucetius ATCC 29050 (1000-fold purification with a 37% recovery). The TDP-D-glucose 4,6-dehydratases from Streptomyces sp. C5 and S. peucetius were determined by SDS-PAGE and HPLC gel filtration to be homodimers with subunit relative molecular masses of 39,000 and 36,000, respectively. For the enzymes from both organisms, negligible activity was observed in the absence of added NAD+, or when ADP-glucose, ADP-mannose, GDP-mannose, UDP-glucose or UDP-galactose was substituted for TDP-D-glucose as substrate. For the enzyme from Streptomyces sp. C5, the K'm values for NAD+ and TDP-D-glucose were 19.2 microM and 31.3 microM, respectively. The V'max for TDP-D-glucose was 309 nmol min-1 (mg protein)-1. For the S. peucetius enzyme, the K'm values for NAD+ and TDP-D-glucose were 20.1 microM and 34.7 microM, respectively. V'max values were 180 nmol min-1 (mg protein)-1 for NAD+ and 201 nmol min-1 (mg protein)-1 for TDP-D-glucose. TDP was a good inhibitor of TDP-D-glucose 4,6-dehydratase from both organisms. The N-terminal amino acid sequence of the TDP-D-glucose 4,6-dehydratase from S. peucetius and from the erythromycin producer, Saccharopolyspora erythraea, were similar, whereas the enzyme from Streptomyces sp. C5 contained a different N-terminal amino acid sequence from either of the other two enzymes.  相似文献   

9.
Sequence analysis of a 3.4-kb region Streptomyces peucetius daunorubicin (DNR) gene cluster established the presence of the dnrH and dnmT genes. In dnrH mutants, DNR production increased 8.5-fold, compared with that in the wild-type strain, while dnmT mutants accumulated epsilon-rhodomycinone (RHO), which normally becomes glycosylated in daunorubicin biosynthesis. Hence, dnmT may be involved in the biosynthesis or attachment of daunosamine to RHO or in the regulation of this process. Since the DnrH protein is similar to known glycosyl transferases, this protein may catalyze the conversion of DNR to its polyglycosylated forms, known as baumycins. Overexpression of dnmT in the wild-type and dnrH mutant strains resulted in a major decrease in RHO accumulation and increase in DNR production.  相似文献   

10.
We have determined the genome sequence of 8.7 Mb chromosome of Streptomyces peucetius ATCC 27952, which produces clinically important anthracycline chemotherapeutic agents of the polyketide class of antibiotics, daunorubicin and doxorubicin. The cytochrome P450 (CYP) superfamily is represented by 19 sequences in the S. peucetius. Among those, 15 code for functional genes, whereas the remaining four are pseudo genes. CYPs from S. peucetius are phylogenetically close to those of Streptomyces amermitilis. Four CYPs are associated with modular PKS of avermectin and two with doxorubicin biosynthetic gene cluster. CYP252A1 is the new family found in S. peucetius, which shares 38% identity to CYP51 from Streptomyces coelicolor A3 (2). Nine CYPs from S. peucetius are found in the cluster containing various regulatory genes including rar operon, conserved in S. coelicolor A3 (2) and Streptomyces griseus. Although two ferredoxins and four ferredoxin reductases have been identified so far, only one ferredoxin reductase was found in the cluster of CYP147F1 in S. peucetius. To date, 174 CYPs have been described from 45 Streptomyces species in all searchable databases. However, only 18 CYPs are clustered with ferredoxin. The comparative study of cytochrome P450s, ferredoxins, and ferredoxin reductases should be useful for the future development and manipulation of antibiotic biosynthetic pathways.  相似文献   

11.
Sequence analysis of a portion of the Streptomyces peucetius daunorubicin biosynthetic gene cluster revealed a complete open reading frame (dnrK) that showed DNA and protein sequence homology to several O-methyltransferases. Expression of dnrK in Streptomyces lividans and Escherichia coli was done to show that this gene codes for carminomycin 4-O-methyltransferase. The deduced carminomycin 4-O-methyltransferase protein shows a conserved nucleotide binding site for its S-adenosyl-L-methionine cofactor.  相似文献   

12.
Streptomyces peucetius, a microorganism that produces the anticancer drugs doxorubicin and daunorubicin, is itself resistant to the action of these drugs. The genes conferring resistance to doxorubicin and daunorubicin in S. peucetius have been sequenced (P. G. Guilfoile and R. Hutchinson, Proc. Natl. Acad. Sci. USA 88:8553-8557, 1991). Two open reading frames, drrA and drrB, were proposed to encode for an ABC (ATP-binding cassette) type of permease that carries out export of the antibiotics in an ATP-dependent manner. This article reports subcloning of the drrA and drrB genes into Escherichia coli expression vectors and characterization of their gene products. Upon induction from the lac promoter, a 36-kDa DrrA protein could be identified on Coomassie blue-stained gels. The DrrB protein was identified by use of a polyclonal antiserum generated against a synthetic peptide corresponding to a portion of the DrrB protein. Together, the DrrA and DrrB proteins conferred resistance to doxorubicin in E. coli. The DrrB protein was localized to the cell membrane. The DrrA protein bound ATP or GTP in a Mg2+-dependent fashion. ATP binding was enhanced on addition of doxorubicin or daunorubicin.  相似文献   

13.
The DnrI protein, essential for the biosynthesis of daunorubicin in Streptomyces peucetius , was purified almost to homogeneity from dnrI expression strains of Escherichia coli and S. peucetius through several steps of chromatography. The proteins purified from both organisms had identical chromatographic and electrophoretic behaviour. Purified His-tagged or native DnrI was used to conduct DNA-binding assays by gel mobility-shift analysis, and the results showed no significant difference in the DNA-binding activity of native or His-tagged proteins. DnrI binds specifically to DNA segments containing the intergenic regions separating the putative dnrG–dpsABCD and dpsEF operons, and the dnrC gene and dnrDKPSQ operon. DNase I footprinting assays indicated that the DNA-binding sites for DnrI extended from upstream of the −10 to −35 regions of the dnrG or dpsE promoters to include about 65 bp of the dnrG – dpsE intergenic region and about 80 bp of the dnrC – dnrD intergenic region. Both binding sites contain imperfect inverted repeat sequences of 6–10 bp with a 5'-TCGAG-3' consensus sequence that was present in 4 out of 10 other promoter regions in the cluster of daunorubicin biosynthesis genes.  相似文献   

14.
Daunorubicin forms specific complex with an extracellular protease in the Streptomyces peucetius culture. The drug-protein complex co-migrates in non-denaturing PAGE as a red band. De novo peptide sequencing by nano-LC–ESI–MS/MS and MASCOT analysis identified the daunorubicin binding protein as serine protease precursor. The same protease precursor was purified sans the daunorubicin, from the mutant named ΔDPSAmut, which is deficient in daunorubicin production. Daunorubicin was added to ΔDPSAmut culture and the protease readily formed the daunorubicin-protease complex. Ability of serine protease precursor to form a selective complex with daunorubicin was confirmed by this study. Selective binding of protease to daunorubicin was seen as self-resistance determinant for the organism to survive toxic levels of the drug outside the cell. Daunorubicin-protease complex placed on S. peucetius lawn did not produce clearing zone around it, whereas daunorubicin purified from the complex did produce the clearing zone. Thereby it is concluded that the protease sequesters daunorubicin to prevent its entry into cells. Sequestration of daunorubicin by extracellular protease helps the organism to maintain a steady state sub-inhibitory level of drug around the cells. A new self-resistance determinant is reported here.  相似文献   

15.
Alternative media constituents like carbon sources and buffers were evaluated for the large scale production of daunorubicin. Streptomyces peucetius cultivated on the media containing sesamum oil cake as carbon source with HEPES or phosphate buffer showed good yield of the antibiotic and the intermediates were also converted into the final product more efficiently.  相似文献   

16.
The starter unit used in the biosynthesis of daunorubicin is propionyl coenzyme A (CoA) rather than acetyl-CoA, which is used in the production of most of the bacterial aromatic polyketides studied to date. In the daunorubicin biosynthesis gene cluster of Streptomyces peucetius, directly downstream of the genes encoding the beta-ketoacyl:acyl carrier protein synthase subunits, are two genes, dpsC and dpsD, encoding proteins that are believed to function as the starter unit-specifying enzymes. Recombinant strains containing plasmids carrying dpsC and dpsD, in addition to other daunorubicin polyketide synthase (PKS) genes, incorporate the correct starter unit into polyketides made by these genes, suggesting that, contrary to earlier reports, the enzymes encoded by dpsC and dpsD play a crucial role in starter unit specification. Additionally, the results of a cell-free synthesis of 21-carbon polyketides from propionyl-CoA and malonyl-CoA that used the protein extracts of recombinant strains carrying other daunorubicin PKS genes to which purified DpsC was added suggest that this enzyme has the primary role in starter unit discrimination for daunorubicin biosynthesis.  相似文献   

17.
Six open reading frames, rdmA to rdmF, in a 6,077-bp segment of Streptomyces purpurascens DNA which caused the production of hybrid anthracyclines were identified. The minimal fragment that produced anthracyclines modified at the 10th position contained rdmB to rdmD; rdmE is the gene for aklavinone-11-hydroxylase. RdmC is similar to a putative open reading frame in the daunorubicin biosynthetic cluster of Streptomyces peucetius and is likely to participate in the removal of the side chain at the 10th position.  相似文献   

18.
The Streptomyces peucetius dpsY and dnrX genes govern early and late steps in the biosynthesis of the clinically valuable antitumor drugs daunorubicin (DNR) and doxorubicin (DXR). Although their deduced products resemble those of genes thought to be involved in antibiotic production in several other bacteria, this information could not be used to identify the functions of dpsY and dnrX. Replacement of dpsY with a mutant form disrupted by insertion of the aphII neomycin-kanamycin resistance gene resulted in the accumulation of UWM5, the C-19 ethyl homolog of SEK43, a known shunt product of iterative polyketide synthases involved in the biosynthesis of aromatic polyketides. Hence, DpsY must act along with the other components of the DNR-DXR polyketide synthase to form 12-deoxyaklanonic acid, the earliest known intermediate of the DXR pathway. Mutation of dnrX in the same way resulted in a threefold increase in DXR production and the disappearance of two acid-sensitive, unknown compounds from culture extracts. These results suggest that dnrX, analogous to the role of the S. peucetius dnrH gene (C. Scotti and C. R. Hutchinson, J. Bacteriol. 178:7316–7321, 1996), may be involved in the metabolism of DNR and/or DXR to acid-sensitive compounds, possibly related to the baumycins found in many DNR-producing bacteria.  相似文献   

19.
Allosamidin is a family 18 chitinase inhibitor produced by Streptomyces. In its producing strain, Streptomyces sp. AJ9463, allosamidin promotes production of the family 18 chitinase originated from chi65 in a chitin medium through the two-component regulatory system encoded by chi65R and chi65S, which were present at the 5'-upstream region of chi65. In this study, we showed generality of the allosamidin's effect. Allosamidin enhanced production of the family 18 chitinases originated from chi65h of Streptomyces halstedii MF425, another allosamidin producer, chiC of Streptomyces coelicolor A3(2) and chiIII of Streptomyces griseus. All the three chitinase genes had high homology to chi65 and two genes homologous to chi65S and chi65R were present at their 5'-upstream regions. When allosamidin's effect was tested with six Streptomyces strains randomly isolated from soil, allosamidin enhanced chitinase production of all strains. All six strains possessed a set of three genes homologous to chi65, chi65S and chi65R. Analysis of 16S rDNA indicated that allosamidin-sensitive strains are distributed widely in Streptomyces. These observations suggested that allosamidin can affect the common regulatory system for production of a chitinase with a two-component regulatory system in Streptomyces.  相似文献   

20.
Streptomyces peucetius and Streptomyces strain C5, producers or anthracycline antibiotics, were converted to protoplasts from vegetatively growing mycelia. Conditions are described for maximal protoplast formation (greater than 99%) and for regeneration frequencies of up to 13%. Streptomycete plasmids pIJ61, pIJ702, and pIJ922, from the replicons SLP1, pIJ101, and SCP2, respectively, were isolated from Streptomyces lividans 66 and successfully introduced into S. peucetius and Streptomyces strain C5 by polyethylene glycol-mediated protoplast transformation. Frequencies of up to 10(6) transformations X microgram of plasmid DNA-1 were achieved by these procedures. Analyses showed that the two anthracycline-producing strains can stably harbor the plasmids without deletion of plasmid sequences or loss of the plasmids for several transfers through selective media. Fragments of DNA from S. peucetius ligated into pIJ702 and introduced into Streptomyces strain C5 were stable after several transfers through selective media. Both anthracycline producers also were sensitive to infection and transfection by actinophages KC401 and KC515, clear plaque derivatives of bacteriophage phi C31. Optimal conditions were determined for the transfection of S. peucetius and Streptomyces strain C5 protoplasts with phi C31 KC401 and KC515 DNA with liposome-assisted, polyethylene glycol-mediated protoplast transfection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号