首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wetlands are among the worlds' most important, but also most threatened, environmental resources. Wetland losses have been in progress particularly from the industrial revolution onwards, because wetland functions could not successfully compete for space with other land uses. Wetlands became recently foci of conservation efforts because of the increased awareness of their importance in water management and wildlife conservation, and because of the diversity of their habitats. The Netherlands are relatively rich in wetlands: 16% of its' territory is regarded as internationally important wetland and 7% has been registered as such. The major Dutch wetland types are: coastal ecosystems, large riverine systems, base-rich freshwater systems, and nutrient-poor freshwater systems. Most threats to the Dutch wetlands are of man-made origin. They comprise: (1) Changes in hydrology leading to changed discharges, currents and desiccation; (2) Acidification; (3) Eutrophication; and (4) Toxification. Long-term threats are largely climate-change related, and concern temperature rise and the UV-B increase in irradiation. General conservation goals also apply to wetlands but Ramsar-registered wetlands have a special status. Conservation of the Dutch wetlands is difficult, because of the high population density of the country and its inherent threats. However, ecological targets and standards are increasingly set in national Policy Plans and international agreements. Rehabilitation and creation of wetlands is presently widely advocated, and sometimes realised. For ecological research, the sustainability of wetlands should get top priority. Such a research programme would focus on understanding the underlying ecological processes in natural and man-dominated wetland systems to prescribe conservation, rehabilitation and management strategies that would enhance the sustainability of these systems. Within this framework special attention should be directed to studies (1) At the ecosystem level of ecosystem parameters, of which natural oscillations and trends in time, and on which the impact of disturbances are quantified. Particularly these studies, in which often simulation models are used as tools for interpretation, can provide the basis for extrapolations in space and time; (2) On adaptation capacity and mechanisms of (groups of) species to extreme environmental conditions; (3) On (mutual) relationships between plants, animals and microorganisms (e.g. competition, grazing and mineralization); (4) On dispersion between small wetlands. For the contemporary quantitative assessment of the long-term effects of climate changes, the effects of temperature rise and increase in UV-B irradiation on individual species, communities and ecosystems should also be studied.  相似文献   

2.
Drainage ditches are a familiar and common habitat in the Netherlands. Until recently however they have been the focus of few ecological studies. Extensive studies on Walcheren, a brackish water region of The Netherlands, have shown that chironomid larvae form a major component of the animal communities in the mud. The spatial distribution of some of these species can be correlated with the chloride concentration of the water. Biometric data are included for the speciesChironomus salinarius, C. halophilus andC. plumosus. Communication nr. 151 of the Delta Institute for Hydrobiological Research  相似文献   

3.
Lake-side wetlands and their original vegetation have become rare in The Netherlands. The few remaining lake-side wetlands (also called: boezemlands) are mostly managed as nature reserves. Much attention is given to the preservation and restoration of species-rich meadows (Calthion palustris). In lake-side wetlands, both desiccation and acidification endanger the characteristic environmental conditions of these plant communities.The aim of this study was to develop guidelines for water management in different types of boezemlands. Three sites, representing different hydrological conditions, were selected. The steady-state groundwater model FLOWNET was used to describe water movement. The results of vegetation surveys were used to produce response curves for important species, giving correlations between their presence and environmental conditions (groundwater levels, soil pH).  相似文献   

4.
5.
6.
邱梦琪  韩美  焦晨泰  宋爽  刘焱序 《生态学报》2023,43(21):9096-9105
黄河口拥有中国暖温带面积最广阔、自然属性最显著、结构最完整的滨海湿地生态系统,因处在河-海-陆交汇的复杂界面,湿地生态系统十分脆弱。满足生态需水是维持湿地生态系统健康的基础和关键,但以往估算缺乏系统综合性视角且存在时间尺度较粗的问题。从维持湿地面积、保护生物多样性及稳定生态系统功能和过程3个目标出发,构建了包含5项指标的湿地生态需水指标体系,对湿地3个等级、3个时段生态需水进行了估算,并据此判断了2000年至2019年黄河口湿地在极端丰水年及枯水年生态需水的满足状况,结果表明:黄河口湿地全年的最小、适宜、最大生态需水量分别为13.33×108 m3、22.33×108 m3、35.31×108 m3;4—6月、7—10月、11—3月的适宜生态需水量分别为6.76×108 m3、10.10×108 m3、5.47×108 m3;...  相似文献   

7.
Wetlands are strategic areas for carbon uptake, but accurate assessments of their sequestration ability are limited by the uncertainty and variability in their carbon balances. Based on 2385 observations of annual net ecosystem production from global wetlands, we show that the mean net carbon sinks of inland wetlands, peatlands and coastal wetlands are 0.57, 0.29 and 1.88 tons of carbon per hectare per year, respectively, with a mean value of 0.57 tons of carbon per hectare per year weighted by the distribution area of different wetland types. Carbon sinks are mainly in Asia and North America. Within and across wetland types, we find that water table depth (WTD) exerts greater control than climate- and ecosystem-related variables, and an increase in WTD results in a stronger carbon sink. Our results highlight an urgent need to sustain wetland hydrology under global change; otherwise, wetlands are at high risk of becoming carbon sources to the atmosphere.  相似文献   

8.
水分对湿地沉积物有机碳矿化的影响   总被引:30,自引:1,他引:30  
采用室内模拟试验研究了 5个水分梯度下两种湿地沉积物有机碳的矿化特征。结果表明 ,沼泽化草甸有机碳矿化速率在培养 30 d后基本达到稳定状态。沼泽化草甸有机碳矿化适宜的含水量为 6 6 % WHC左右 ,且达到适宜含水量后 ,有机碳的矿化不受含水量增加的影响 ,矿化速率基本稳定。泥炭沼泽有机碳在 30 % WHC、5 0 % WHC两个水分梯度下 ,培养 30 d后 ,分别出现一个大约 10 0 d和 6 0 d的快速矿化期。泥炭沼泽有机碳矿化的适宜含水量为 30 % WHC左右 ,超过适宜含水量后 ,其有机碳的矿化对水分变化反应非常敏感 ,水分过多明显抑制其有机碳的矿化。水分对两种湿地有机碳矿化影响机制的差异是造成两类湿地生态系统有机碳积累量差异的主要原因之一。研究结果还表明 ,泥炭沼泽湿地积水环境的减弱将会加速其有机碳的矿化 ,造成湿地有机碳的大量损失  相似文献   

9.
de Wolf  Hein 《Hydrobiologia》1993,269(1):1-9
The history of diatom research in The Netherlands and Flanders is summarized in this report. A. van Leeuwenhoek observed diatoms as early as 1702. The first inventories were made in The Netherlands by R. B. van den Bosch (1846) and in Flanders by J.-J. Kickx (1867). Diatoms were already used in geological research in the second half of the nineteenth century. The Synopsis by H. van Heurck (1880–1885) enabled many twentieth century workers to do applied research for geological and ecological purposes.  相似文献   

10.
Current water management policy in The Netherlands aims to serve a multitude of land use functions, such as agriculture, industry, shipping, and drinking water supply. To attune this policy to the diversity of functions, computer models are used to predict the consequences of various policy options as a part of PAWN: the government's Policy Analysis of Water management for The Netherlands.Nature conservation and development is a relatively new aspect of water management policy. This article describes the PAWN model DEMNAT, which is designed to predict the impact of hydrologic changes on terrestrial ecosystems in The Netherlands. The main components of the model are explained and the predicted effects of an assumed climatic change are discussed.  相似文献   

11.
This paper reports laboratory experiments on dinitrogen fixation and denitrification for two small quaking fens (discharge fen and recharge fen) using the acetylene reduction assay and the acetylene inhibition technique, respectively.Nitrogenase activity was detected in peat muck and associated with Alnus glutinosa saplings throughout the study period (May–October 1987), whereas no activity was observed with Sphagnum species. The annual amount of dinitrogen fixed was estimated at 2.1 and 12.7 kg N/ha/y for the recharge fen and the discharge fen, respectively.Denitrification at ambient nitrate levels (0.1 ppm NO3) was absent in the discharge fen and very low in the recharge fen (0.1 g N/g/d, or 0.3 kg N/ha/y). In nitrate-amended soil samples denitrification rates were 2 to 3 orders of magnitude higher. It is argued that in situ denitrification rates in the fens studied will depend almost entirely on the nitrate supply by precipitation. Denitrification rates associated with precipitation are estimated at 1.1 kg N/ha/y for both fens.  相似文献   

12.
BACKGROUND AND AIMS: The basic parameters of water relations were measured in Sphagnum mosses. The relationships of these parameters to the photosynthetic response to desiccation and the ecology of these mosses were then tested. METHODS: The water relations parameters of six Sphagnum species (mosses typical of wet habitats) and Atrichum androgynum (a moss more typical of mesophytic conditions) were calculated from pressure-volume isotherms. Photosynthetic properties during and after moderate desiccation were monitored by chlorophyll fluorescence. KEY RESULTS: When desiccated, the hummock-forming species S. fuscum and S. magellanicum lost more water before turgor started dropping than other sphagna inhabiting less exposed habitats (73 % compared with 56 % on average). Osmotic potentials at full turgor were similar in all species, with an average value of -1.1 MPa. Hummock sphagna had clearly more rigid cell walls than species of wet habitats (epsilon = 3 x 55 compared with 1 x 93 MPa). As a result, their chlorophyllous cells lost turgor at higher relative water contents (RWCs) than species of wet habitats (0 x 61 compared with 0 x 46) and at less negative osmotic potentials (-2 x 28 compared with -3 x 00 MPa). During drying, Phi(PSII) started declining earlier in hummock species (at an RWC of 0 x 65 compared with 0 x 44), and F(v)/F(m) behaved similarly. Compared with other species, hummock sphagna desiccated to -20 or -40 MPa recovered more completely after rehydration. Atrichum androgynum responded to desiccation similarly to hummock sphagna, suggesting that their desiccation tolerance may have a similar physiological basis. CONCLUSIONS: Assuming a fixed rate of desiccation, the higher water-holding capacities of hummock sphagna will allow them to continue metabolism for longer than other species. While this could be viewed as a form of 'desiccation avoidance', hummock species also recover faster than other species during rehydration, suggesting that they have higher inherent tolerance. This may help them to persist in drought-exposed hummocks. In contrast, species growing in wet habitats lack such strong avoidance and tolerance mechanisms. However, their turgor maintenance mechanisms, for example more elastic cell walls, enable them to continue metabolizing longer as their water contents fall to the turgor-loss point.  相似文献   

13.
Gene therapy is an active research area in The Netherlands and Dutch scientists involved in fundamental and clinical gene therapy research significantly contribute to the progresses made in this field. This ranges from the establishment of the 293, 911 and PER.C6 cell lines, which are used worldwide for the production of replication-defective adenoviral vectors, to the development of targeted viral vectors and T lymphocytes as well as of non-viral vectors. Several milestones have been achieved in Dutch clinical gene therapy trials, including the first treatment worldwide of patients with adenosine deaminase deficiency with genetically corrected hematopoietic stem cells in collaboration with French and British scientists. Until now, about 230 patients with various diseases have been treated with viral and non-viral gene therapy in this country. Ongoing and upcoming Dutch clinical trials focus on the translation of new developments in gene therapy research, including the restoration of genetic defects other than SCID, and the use of oncolytic adenoviruses and targeted T cells for the treatment of cancer. The growing commercial interest in Dutch clinical gene therapy is reflected by the involvement of two Dutch companies in ongoing trials as well as the participation of Dutch clinical centres in large phase III international multicenter immuno-gene therapy trials on prostate cancer sponsored by an American company. Translational gene therapy research in The Netherlands is boosted at a governmental level by the Dutch Ministry of Health via a dedicated funding programme. This paper presents an overview on milestones in Dutch basic gene therapy research as well as on past, present and future clinical gene therapy trials in The Netherlands.  相似文献   

14.
Fruitful exchanges of ideas existed between early 20th century anthropology (volkenkunde) and folklore studies (volkskunde) in the Netherlands. Folklorists proposed using the fieldwork methods and comparative approach of ethnography. Anthropologists thought folklore studies might be able to shed light on survivals of earlier stages in their own society. During the 1930s, however, anthropologists turned their backs on the evolutionist paradigm, while in the wake of National Socialism and its quest for a common Germanic race and culture folklorists limited their cross-cultural comparisons to Europe. Cultural politics in Germany and other European countries in the 1930s and early 1940s directed the concepts, methods and institutionalization of folklore studies, and consequently led to a distancing from the concepts and practice of cultural anthropology.  相似文献   

15.
16.
17.
陆生念珠藻的耐干旱机制   总被引:7,自引:3,他引:7  
念珠藻(Nostoc)是一类典型的耐干旱植物,它们的分布相当广泛,许多种都可在极端干燥的条件下生存。目前,对念珠藻尤其是陆生念珠藻耐干旱机制的探讨及其耐旱相关问题的研究是许多学者关注的热点。从总体上来说,念珠藻耐干旱的机制是其结构、生理及分子水平上协调作用的综合反映。作者对与高等植物不同的念珠藻特有的耐干旱机制进行了综述。  相似文献   

18.
中国南中国海湿地是中国各类生态系统中生物多样性最为丰富的地区之一,也是中国人口稠密、经济发达的地区。范围包括广东省、香港特别行政区、澳门特别行政区、广西壮族自治区和海南省等5个行政区。该区海岸湿地总面积约为1.54×104km2。海岸湿地处于海陆的交错地带,是脆弱的生态敏感区。由于受人口增加和经济发展的巨大压力,中国南中国海湿地破坏严重,退化趋势明显。本文在对中国南中国海地区海岸湿地的现状、类型及湿地退化的主要原因进行分析的基础上,提出中国南中国海地区海岸湿地资源保护与管理的建议,以便切实保护中国南中国海沿海多样化的湿地类型,持续发挥其生态服务功能。  相似文献   

19.
应用WinEPIC模型模拟研究了1957~2001年期间黄土高原半湿润区长武和半干旱区延安不同密度刺槐(Robinia pseudoacia)林地水分生产力演变规律和深层土壤干燥化效应.结果:(1)长武和延安高密度(6000株/hm2)、中高密度(4500株/hm2)、中低密度(3000株/hm2)和低密度(1500株/hm2)等4种处理刺槐林地逐年生物量模拟值均呈现快速增加、达到最大值后又逐年波动性降低的变化趋势,林地密度越高早期逐年生物量越高,后期逐年生物量差异缩小,两地均以低密度处理逐年生物量平均值和累积生物量模拟值最高;(2)4种密度处理45年生刺槐林地年均耗水量值基本相等,长武和延安分别为603mm和566mm,但生长前期年耗水量明显高于后期,并高于同期年降水量,林地密度越高前期耗水量越高,中期以后各密度处理耗水量基本接近且波动趋势基本一致,林地密度越高干旱胁迫程度越重;(3)模拟生长初期,4种密度处理刺槐林地0~10m土层逐月土壤有效含水量均呈现强烈的波动性降低趋势,长武各密度处理刺槐林地分别在7~23年生、延安分别在7~17年生之后逐月土壤有效含水量均在0~200mm较低水平上随降水量变化而波动;(4)4种密度处理林地0~10m土层土壤湿度剖面分布年度变化剧烈,土壤湿度逐年降低且土壤干层逐年加厚,密度越高土壤干层加厚速度越快,长武在26年生、延安在17年生时低密度处理刺槐林地土壤干层厚度均已超过10m,此后2~10m土层土壤湿度保持相对稳定的干燥化状态;(5)长武和延安刺槐林地适宜种植密度分别以1500~3000株/hm2和1500株/hm2为宜,刺槐林地土壤水分可持续利用最大年限分别为26a和18a.  相似文献   

20.
The predicted increase in atmospheric carbon dioxide and the effects of global warming will influence the Wadden Sea, The Netherlands, an area of exceptional ecological value. The direct effect of elevated atmospheric CO2 on terrestrial coastal ecosystems is either marginal or unknown. The slight acidification of the sea which is predicted might have an impact on primary producers and juvenile animals. The effect of CO2 fertilization on marine primary production remains to be elucidated. Profound changes will occur if sea level rises at the predicted rate of 60 cm per century, as sedimentation rates will be insufficient to maintain the salt marshes on the barrier islands. The marshes of the mainland coast will be impoverished, as high and low marshes are not expected to continue to coexist at the same locations. As sediment supply to the Wadden Sea is sufficient to compensate for sea level rise, the estuarine character of the Wadden Sea, with sand- and mudflats, is expected to remain largely unchanged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号