首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is well established that CD21 activation on human B cell surface triggers B cell proliferation. We previously demonstrated that CD21 activation also triggers tyrosine phosphorylation of two components, p95 and p120, both interacting with SH2 domains of the p85 subunit of PI 3-kinase. We successively identified p95 as the nucleolin and the first signal transduction pathway specifically triggered by CD21 activation, i.e.: pp60Src activation, tyrosine phosphorylation of p95 nucleolin, its interaction with SH2 domains of p85 subunit and PI 3-kinase activation, followed by AKT-GSK-3 activations. We herein identified the p120 component as the protooncoprotein Cbl and the first steps associated to its activation. First, CD21 activation triggered Cbl tyrosine phosphorylation, which required c-Src kinase but not PI 3-kinase or Syk kinase activities. Involvement of Src kinase in this step was supported by inhibition of Cbl phosphorylation and its interactions with other components when cells were either preincubated with specific Src inhibitor or transfected with dominant-negative c-Src form. Second, once tyrosine phosphorylated, Cbl interacts with SH2 domains of p85 subunit, SH2 domains of Crk-L and with tyrosine phosphorylated Syk kinase. The third and unexpected feature was to found that, at the contrary of BCR or of CD19 (herein also analyzed for the first time), CD21 activation triggers dissociation of Cbl-Vav complex. Thus, these results provide the first molecular basis of a new signal transduction pathway specifically triggered by CD21 activation.  相似文献   

2.
Glutamate receptor activation of mitogen-activated protein (MAP) kinase signalling cascades has been implicated in diverse neuronal functions such as synaptic plasticity, development and excitotoxicity. We have previously shown that Ca2+-influx through NMDA receptors in cultured striatal neurones mediates the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt/protein kinase B (PKB) through a phosphatidylinositol 3-kinase (PI 3-kinase)-dependent pathway. Exposing neurones to the Src family tyrosine kinase inhibitor PP2, but not the inactive analogue PP3, inhibited NMDA receptor-induced phosphorylation of ERK1/2 and Akt/PKB in a concentration-dependent manner, and reduced cAMP response element-binding protein (CREB) phosphorylation. To establish a link between Src family tyrosine kinase-mediated phosphorylation and PI 3-kinase signalling, affinity precipitation experiments were performed with the SH2 domains of the PI 3-kinase regulatory subunit p85. This revealed a Src-dependent phosphorylation of a focal adhesion kinase (FAK)-p85 complex on glutamate stimulation. Demonstrating that PI3-kinase is not ubiquitously involved in NMDA receptor signal transduction, the PI 3-kinase inhibitors wortmannin and LY294002 did not prevent NMDA receptor Ca2+-dependent phosphorylation of c-Jun N-terminal kinase 1/2 (JNK1/2). Further, inhibiting Src family kinases increased NMDA receptor-dependent JNK1/2 phosphorylation, suggesting that Src family kinase-dependent cascades may physiologically limit signalling to JNK. These results demonstrate that Src family tyrosine kinases and PI3-kinase are pivotal regulators of NMDA receptor signalling to ERK/Akt and JNK in striatal neurones.  相似文献   

3.
The Salmonella outer membrane protein Rck mediates a Zipper entry mechanism controlled by tyrosine phosphorylation and class I phosphatidylinositol 3-kinase (PI 3-kinase). However, the underlying mechanism leading to this signaling cascade remains unclear. The present study showed that using Rck-coated beads or Rck-overexpressing Escherichia coli, Rck-mediated actin polymerization and invasion were blocked by PP2, a Src family tyrosine kinase inhibitor. In addition, phosphorylation of Src family kinases significantly increased after stimulation with Rck. The specific contribution of c-Src, one member of the Src family kinases, was demonstrated using c-Src-deficient fibroblasts or c-Src siRNA transfected epithelial cells. We also observed that Rck-mediated internalization led to the formation of a complex between c-Src and at least one tyrosine-phosphorylated protein. Furthermore, our results revealed that the c-Src signal molecule was upstream of PI 3-kinase during the Rck-mediated signaling pathway as Rck-mediated PI 3-kinase activation was blocked by PP2, and PI 3-kinase inhibitor had no effect on the Src phosphorylation. These results demonstrate the involvement of c-Src upstream of the PI 3-kinase in the Zipper entry process mediated by Rck.  相似文献   

4.
Interleukin-6 (LI-6) is a known growth and survival factor in multiple myeloma via activation of extracellular signal-regulated kinase and phosphatidylinositol 3-kinase signaling cascade. In this report we show that Grb2-associated binder (Gab) family adapter proteins Gab1 and Gab2 are expressed by multiple myeloma cells; and that interleukin-6 induces their tyrosine phosphorylation and association with downstream signaling molecules. We further demonstrate that these events are Src family tyrosine kinase-dependent and specifically identify the role of hematopoietic cell kinase (Hck) as a new Gab family adapter protein kinase. Conversely, inhibition of Src family tyrosine kinases by the pyrazolopyrimidine PP2, as in kinase-inactive Hck mutants, significantly reduces IL-6-triggered activation of extracellular signal-regulated kinase and AKT-1, leading to significant reduction of multiple myeloma cell proliferation and survival. Taken together, these results delineate a key role for Hck-mediated phosphorylation of Gab1 and Gab2 docking proteins in IL-6-induced proliferation and survival of multiple myeloma cells and identify tyrosine kinases and downstream adapter proteins as potential new therapeutic targets in multiple myeloma.  相似文献   

5.
6.
T-cell receptor (TCR) cross-linking increases tyrosine phosphorylation of multiple proteins, only a few of which have been identified. One of the most rapidly tyrosine-phosphorylated polypeptides is the 120-kDa product of the proto-oncogene c-cbl, a cytosolic and cytoskeletal protein containing multiple proline-rich motifs that are potential binding sites for proteins containing Src homology 3 (SH3) domains. We report here that in cultured Jurkat T cells, Cbl is coprecipitated with antibody against the adapter protein Grb2. Upon activation of Jurkat T cells via the TCR-CD3 complex, we find that high-affinity binding of Cbl requires the N-terminal SH3 domain of GST-Grb2 fusion protein but after cross-linking of the TCR-CD3 and CD4 receptors, Cbl binds equally to its SH2 domain. Grb2 antisera also precipitated p85 from serum-starved cells, while TCR activation increased p85 and tyrosine-phosphorylated Cbl but not Cbl protein in Grb2 immunocomplexes. Phosphatidylinositol (PI) 3-kinase activity was immunoprecipitated from serum-starved cells with Cbl and to a lesser extent with Grb2 antisera, and TCR cross-linking increased this activity severalfold. The PI 3-kinase activity associated with Cbl amounted to 5 to 10% of the total cellular activity that could be precipitated by p85 antisera. The Ras exchange factor Son-of-sevenless 1 (Sos-1) was not found in anti-Cbl immunoprecipitates from activated cells, and Cbl was not detectable in anti-Sos-1 precipitates, supporting the likelihood that Sos-Grb2 and Cbl-Grb2 are present as distinct complexes. Taken together, these data suggest that Cbl function in Jurkat T cells involves its constitutive association with Grb2 and its recruitment of PI 3-kinase in response to TCR activation.  相似文献   

7.
In the present study, we demonstrated that Ang II provokes a transitory enhancement of focal adhesion kinase (FAK) and paxillin phosphorylation in human umbilical endothelial cells (HUVEC). Moreover, Ang II induces a time- and dose-dependent augmentation in cell migration, but does not affect HUVEC proliferation. The effect of Ang II on FAK and paxillin phosphorylation was markedly attenuated in cells pretreated with wortmannin and LY294002, indicating that phosphoinositide 3-kinase (PI3K) plays an important role in regulating FAK activation. Similar results were observed when HUVEC were pretreated with genistein, a non-selective tyrosine kinases inhibitor, or with the specific inhibitor PP2 for Src family kinases, demonstrating the involvement of protein tyrosine kinases, and particularly Src family of tyrosine kinases, in the downstream signalling pathway of Ang II receptors. Furthermore, FAK and paxillin phosphorylation was markedly blocked after treatment of HUVEC with AG1478, a selective inhibitor of epidermal growth factor receptor (EGFR) phosphorylation. Pretreatment of cells with inhibitors of PI3K, Src family tyrosine kinases, and EGFR also decreased HUVEC migration. In conclusion, these results suggest that Ang II mediates an increase in FAK and paxillin phosphorylation and induces HUVEC migration through signal transduction pathways dependent on PI3K and Src tyrosine kinase activation and EGFR transactivation.  相似文献   

8.
Hematopoietic cell kinase (Hck) is a member of the Src-family of protein tyrosine kinases. We have found that upon enzymatic activation of Hck by the heavy metal mercuric chloride, there was a rapid increase in the levels of tyrosine phosphorylation of several proteins including the proto-oncogene p120(Cbl). Fibroblasts that are transformed with an activated allele of Hck exhibit constitutive Cbl phosphorylation. Upon Fcgamma receptor activation, a more physiologically relevant extracellular signal, Cbl is tyrosine phosphorylated and the Src-family selective inhibitor, PP1, can prevent this phosphorylation on Cbl. Hck phosphorylates Cbl in vitro and the interaction between Cbl and Hck is direct, requiring Hck's unique, SH3 and SH2 domains for optimal binding. Using a novel estrogen-regulated chimera of Hck we have shown a hormone-dependent association between Hck and Cbl in murine fibroblasts. This work suggests that Cbl serves as a key mediator of Hck induced signalling in hematopoietic cells.  相似文献   

9.
Eph receptor tyrosine kinases are expressed by T lineage cells, and stimulation with their ligands, the ephrins, has recently been shown to modulate T cell behavior. We show that ephrin-A1 stimulation of Jurkat T cells induces tyrosine phosphorylation of EphA3 receptors and cytoplasmic proteins, including the c-cbl proto-oncogene. Cbl phosphorylation was also observed in peripheral blood T cells. In contrast, stimulation of Jurkat cells with the EphB receptor ligand ephrin-B1 does not cause Cbl phosphorylation. EphA activation also induced Cbl association with Crk-L and Crk-II adapters, but not the related Grb2 protein. Induction of Cbl phosphorylation upon EphA activation appeared to be dependent upon Src family kinase activity, as Cbl phosphorylation was selectively abrogated by the Src family inhibitor 4-amino-5(4-chlorophenyl-7-(tert-butyl)pyrazolo[3,4-d]pyrimidine, while EphA phosphorylation was unimpaired. Ephrin-A1 stimulation of Jurkat cells was also found to cause down-regulation of endogenous EphA3 receptors from the cell surface and their degradation. In accordance with the role of Cbl as a negative regulator of receptor tyrosine kinases, overexpression of wild-type Cbl, but not its 70-Z mutant, was found to down-regulate EphA receptor expression. Receptor down-regulation could also be inhibited by blockage of Src family kinase activity. Our findings show that EphA receptors can actively signal in T cells, and that Cbl performs multiple roles in this signaling pathway, functioning to transduce signals from the receptors as well as regulating activated EphA receptor expression.  相似文献   

10.
We have analyzed in Chinese hamster ovary cells the upstream mediators by which the G protein-coupled receptor, gastrin/CCKB, activates the extracellular-regulated kinases (ERKs) and p85/p110-phosphatidylinositol 3-kinase (PI 3-kinase) pathways. Overexpression of an inhibitory mutant of Shc completely blocked gastrin-stimulated Shc.Grb2 complex formation but partially inhibited ERK-1 activation by this peptide. Expression of Csk, which inactivates Src-family kinases, totally inhibited gastrin-induced Src-like activity detected in anti-Src and anti-Shc precipitates but diminished by 50% Shc phosphorylation and ERK-1 activation. We observed a rapid tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1) and an increase in Src-like kinase activity in anti-IRS-1 immunoprecipitates from gastrin-stimulated cells, suggesting that IRS-1 may be a direct substrate of Src. This hypothesis was supported by the inhibition of gastrin-induced Src. IRS-1 complex formation and IRS-1 phosphorylation in Csk-transfected cells. In addition, the increase in PI 3-kinase activity measured in anti-p85 or anti-IRS-1 precipitates following gastrin stimulation was abolished by Csk. Our results demonstrate the existence of two mechanisms in gastrin-mediated ERKs activation. One requires Shc phosphorylation by Src-family kinases, and the other one is independent of these two proteins. They also indicate that tyrosine phosphorylation of IRS-1 by Src-family kinases could lead to the recruitment and the activation of the p85/p110-PI 3-kinase in response to gastrin.  相似文献   

11.
Increasing evidence suggests that CD45, a transmembrane protein tyrosine phosphatase, is an important modulator of macrophage activation. Microglia, resident brain macrophages, express CD45 and proliferate under pathologic conditions. In this study, we examined the role of CD45 in modulating GM-CSF-induced proliferation and signal transduction in primary human microglial cultures. Soluble, but not immobilized anti-CD45RO induced tyrosine phosphatase activity and inhibited GM-CSF-induced microglial proliferation. Microglial proliferation was also inhibited by PP2 (Src inhibitor), LY294002 (PI3K inhibitor), and U0126 (MEK inhibitor). GM-CSF induced phosphorylation of Jak2, Stat5, Hck (the myeloid-restricted Src kinase), Akt, Stat3, and Erk MAPKs in microglia. Of these, anti-CD45RO inhibited phosphorylation of Hck and Akt, and PP2 inhibited phosphorylation of Hck and Akt. In a macrophage cell line stably overexpressing wild-type or kinase-inactive Hck, GM-CSF increased proliferation of the control (empty vector) and wild-type but not kinase-inactive cells, and this was inhibited by anti-CD45RO. Together, these results demonstrate that, in macrophages, Hck tyrosine kinase is activated by GM-CSF, and that Hck plays a pivotal role in cell proliferation and survival by activating the PI3K/Akt pathway. Ab-mediated activation of macrophage and microglial CD45 tyrosine phosphatase may have therapeutic implications for CNS inflammatory diseases.  相似文献   

12.
Adhesion by means of beta1-integrins induces the phosphorylation of Akt, an event strictly dependent on the activity of the phosphatidylinositol 3-kinase (PI3K). Binding of the p85 regulatory subunit of PI3K to phosphorylated tyrosine 397 in focal adhesion kinase (FAK) is considered to be the mechanism of cell adhesion-induced activation of class Ia PI3K. Here we show that PI3K-dependent phosphorylation of Akt in response to ligation of beta1-integrins occurs efficiently in the absence of FAK tyrosine phosphorylation. Akt S473 phosphorylation was strongly promoted both in cells expressing the integrin subunit splice variant beta1B, which is unable to activate FAK, and in FAK knockout cells. In addition, we found this phosphorylation to be independent of the Src family kinases Src, Fyn and Yes. These results indicate that a major pathway for adhesion-dependent activation of PI3K/Akt is triggered by the membrane proximal part of the beta1 subunit in a FAK and Src-independent manner.  相似文献   

13.
In this study, we examined the molecular mechanism of erythropoietin-initiated signal transduction of erythroid differentiation through Src and phosphatidylinositol 3-kinase (PI3-kinase). Antisense oligonucleotides against src but not lyn inhibited the formation of erythropoietin-dependent colonies derived from human bone marrow cells and erythropoietin-induced differentiation of K562 human erythroleukaemia cells. Antisense p85alpha oligonucleotide or LY294002, a selective inhibitor of PI3-kinase, independently inhibited the formation of erythropoietin-dependent colonies. In K562 cells, Src associated with PI3-kinase in response to erythropoietin. Antisense src RNA expression in K562 cells inhibited the erythropoietin-induced activation of PI3-kinase and its association with erythropoietin receptor. PP1, a selective inhibitor of the Src family, reduced erythropoietin-induced tyrosine phosphorylation of erythropoietin receptor and its association with PI3-kinase in F-36P human erythroleukaemia cells. The coexpression experiments and in vitro kinase assay further demonstrated that Src directly tyrosine-phosphorylated erythropoietin receptor, and associated with PI3-kinase. In vitro binding experiments proved that glutathione S-transferase-p85alpha N- or C-terminal SH2 domains independently bound to erythropoietin receptor, which was tyrosine-phosphorylated by Src. Taken together, Src transduces the erythropoietin-induced erythroid differentiation signals by regulating PI3-kinase activity.  相似文献   

14.
IL-13 is a Th2 cytokine that promotes alternative activation (M2 polarization) in primary human monocytes. Our studies have characterized the functional IL-13 receptor complex and the downstream signaling events in response to IL-13 stimulation in alternatively activated monocytes/macrophages. In this report, we present evidence that IL-13 induces the activation of a Src family tyrosine kinase, which is required for IL-13 induction of M2 gene expression, including 15-lipoxygenase (15-LO). Our data show that Src kinase activity regulates IL-13-induced p38 MAPK tyrosine phosphorylation via the upstream kinases MKK3 or MKK6. Our findings also reveal that the IL-13 receptor-associated tyrosine kinase Jak2 is required for the activation of both Src kinase as well as p38 MAPK. Further, we found that Src tyrosine kinase-mediated activation of p38 MAPK is required for Stat1 and Stat3 serine 727 phosphorylation in alternatively activated monocytes/macrophages. Additional studies identify Hck as the specific Src family member, stimulated by IL-13 and involved in regulating both p38 MAPK activation and p38 MAPK-mediated 15-LO expression. Finally we show that the Hck regulates the expression of other alternative state (M2)-specific genes (Mannose receptor, MAO-A, and CD36) and therefore conclude that Hck acts as a key regulator controlling gene expression in alternatively activated monocytes/macrophages.  相似文献   

15.
We examined the role of the Src kinase Lyn in phospholipase C-gamma 2 (PLC-gamma 2) and phosphatidylinositol (PI) 3-kinase activation in erythropoietin (Epo)-stimulated FDC-P1 cells transfected with a wild type (WT) Epo-receptor (Epo-R). We showed that two inhibitors of Src kinases, PP1 and PP2, abolish both PLC-gamma 2 tyrosine phosphorylation and PI 3-kinase activity in WT Epo-R FDC-P1 cells. We also demonstrated that Epo-phosphorylated Lyn is associated with tyrosine phosphorylated PLC-gamma 2 and PI 3-kinase in WT Epo-R FDC-P1-stimulated cells. Moreover Epo-activated Lyn phosphorylates in vitro PLC-gamma 2 immunoprecipitated from unstimulated cells. Our results suggest that the Src kinase Lyn is involved in PLC-gamma 2 phosphorylation and PI 3-kinase activation induced by Epo.  相似文献   

16.
We have previously demonstrated that ligand-stimulation of c-Kit induces phosphorylation of Tyr568 and Tyr570 in the juxtamembrane region of the receptor, leading to recruitment, phosphorylation and activation of members of the Src family of tyrosine kinases. In this paper, we demonstrate that members of the Src family of tyrosine kinases are able to phosphorylate c-Kit selectively on one particular tyrosine residue, Tyr900, located in the second part of the tyrosine kinase domain. In order to identify potential docking partners of Tyr900, a synthetic phosphopeptide corresponding to the amino acid sequence surrounding Tyr900 was used as an affinity matrix. By use of MALDI-TOF mass spectrometry, CrkII was identified as a protein that specifically bound to Tyr900 in a phosphorylation dependent manner, possibly via the p85 subunit of PI3-kinase. Expression of a mutant receptor where Tyr900 had been replaced with a phenylalanine residue (Y900F) resulted in a receptor with reduced ability to phosphorylate CrkII. Together these data support a model where c-Src phosphorylates the receptor, thereby creating docking sites for SH2 domain containing proteins, leading to recruitment of Crk to the receptor.  相似文献   

17.
We have previously demonstrated that phosphatidylinositol 3-kinase (PI3-kinase) is necessary and sufficient to account for epidermal growth factor (EGF)-induced mitogenesis in rat primary hepatocytes. A cytosolic Gab2-containing complex accounts for >80% of the total EGF-induced PI3-kinase activity (Kong, M., Mounier, C., Wu, J., and Posner, B. I. (2000) J. Biol. Chem. 275, 36035-36042), suggesting a key role for Gab2 in EGF-induced mitogenesis. Here, we demonstrate that PP1, a selective inhibitor of Src family kinases, blocks the EGF-induced Gab2 tyrosine phosphorylation without inhibiting EGF-induced phosphorylation of the EGF receptor, ErbB3, or Shc. We also show that Gab2 phosphorylation is increased in Csk knockout cells in which Src family kinases are constitutively activated. Furthermore, PP1 blocks Gab2-associated downstream events including EGF-induced PI3-kinase activation, Akt phosphorylation, and DNA synthesis. We demonstrate that Gab2 and Src are constitutively associated. Since this association involves the proline-rich sequences of Gab2, it probably involves the Src homology 3 domain of Src kinase. Mutation of the proline-rich sequences in Gab2 prevented EGF-induced Gab2 phosphorylation, PI3-kinase/Akt activation, and DNA synthesis, demonstrating that Gab2 phosphorylation is critical for EGF-induced mitogenesis and is not complemented by ErbB3 or Shc phosphorylation. We also found that overexpression of a Gab2 mutant lacking SHP2 binding sites increased EGF-induced Gab2 phosphorylation and the activation of PI3-kinase but blocked activation of MAPK. In addition, we demonstrated that the Src-induced response was down-regulated by Gab2-associated SHP2. In summary, our results have defined the role for Src activation in EGF-induced hepatic mitogenesis through the phosphorylation of Gab2 and the activation of the PI3-kinase cascade.  相似文献   

18.
Src family protein-tyrosine kinases, which play an important role in signal integration, have been implicated in tumorigenesis in multiple lineages, including breast cancer. We demonstrate, herein, that Src kinases regulate the phosphatidylinositol 3-kinase (PI3K) signaling cascade via altering the function of the PTEN tumor suppressor. Overexpression of activated Src protein-tyrosine kinases in PTEN-deficient breast cancer cells does not alter AKT phosphorylation, an indicator of signal transduction through the PI3K pathway. However, in the presence of functional PTEN, Src reverses the activity of PTEN, resulting in an increase in AKT phosphorylation. Activated Src reduces the ability of PTEN to dephosphorylate phosphatidylinositols in micelles and promotes AKT translocation to cellular plasma membranes but does not alter PTEN activity toward water-soluble phosphatidylinositols. Thus, Src may alter the capacity of the PTEN C2 domain to bind cellular membranes rather than directly interfering with PTEN enzymatic activity. Tyrosine phosphorylation of PTEN is increased in breast cancer cells treated with pervanadate, suggesting that PTEN contains sites for tyrosine phosphorylation. Src kinase inhibitors markedly decreased pervanadate-mediated tyrosine phosphorylation of PTEN. Further, expression of activated Src results in marked tyrosine phosphorylation of PTEN. SHP-1, a SH2 domain-containing protein-tyrosine phosphatase, selectively binds and dephosphorylates PTEN in Src transfected cells. Both Src inhibitors and SHP-1 overexpression reverse Src-induced loss of PTEN function. Coexpression of PTEN with activated Src reduces the stability of PTEN. Taken together, the data indicate that activated Src inhibits PTEN function leading to alterations in signaling through the PI3K/AKT pathway.  相似文献   

19.
DAPP-1 (dual-adaptor for phosphotyrosine and 3-phosphoinositides-1) is a broadly distributed pleckstrin homology (PH) and Src homology 2 domain containing protein that can bind phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)) and can be phosphorylated on tyrosine 139 and internalised in response to activation of type I phosphoinositide 3-kinases (PI3K). Tyrosine phosphorylation of DAPP-1 appears important for appropriate intracellular targeting and creates a potential binding site for Src homology 2 domain-containing proteins. In endothelial cells overexpressing wild-type platelet-derived growth factor beta (PDGFbeta) receptors, which express Bmx and Src as their major Btk (Bruton's tyrosine kinase) family and Src family tyrosine kinases, respectively, PDGF can stimulate PI3K-dependent tyrosine phosphorylation of DAPP-1. Transient overexpression of Src most effectively, compared with Bmx and Syk, augments basal and PDGF-stimulated tyrosine phosphorylation of DAPP-1, whereas overexpression of dominant-negative Src, but not dominant-negative Bmx, inhibits PDGF-stimulated phosphorylation of DAPP-1. Cells expressing mutant PDGFbeta (Y579F/Y581F) receptors (which fail to bind and activate Src-type kinases) fail to tyrosine phosphorylate DAPP-1 in response to PDGF. We show that in DT40 chicken B cell lines, antibody stimulation leads to PI3K-dependent tyrosine phosphorylation of DAPP-1 that is lost in Lyn- or Syk-deficient cell lines but not Btk-deficient cell lines. PI3K-dependent activation of PKB is only lost in Syk-deficient lines. Finally, in vitro we find lipid-modified Src to be the most effective DAPP-1 tyrosine kinase (versus Syk, Lyn, Btk, and Bmx); phosphorylation of DAPP-1 but not Src autophosphorylation is stimulated approximately 10-fold by PtdIns(3,4,5)P(3) (IC(50) = 150 nm) and phosphatidylinositol 3,4-bisphosphate but not by their nonbiological diastereoisomers and depends on PH domain mediated binding of DAPP-1 to PtdIns(3,4,5)P(3)-containing membranes. We conclude that Src family kinases are responsible for tyrosine phosphorylation of DAPP-1 in vivo and that PI3K regulation is at the level of PH domain-mediated translocation of DAPP-1 to PI3K products in the membrane.  相似文献   

20.
ACK1 (activated Cdc42-associated kinase 1) is a nonreceptor tyrosine kinase and the only tyrosine kinase known to interact with Cdc42. To characterize the enzymatic properties of ACK, we have expressed and purified active ACK using the baculovirus/Sf9 cell system. This ACK1 construct contains (from N to C terminus) the kinase catalytic domain, SH3 domain, and Cdc42-binding Cdc42/Rac interactive binding (CRIB) domain. We characterized the substrate specificity of ACK1 using synthetic peptides, and we show that the specificity of the ACK1 catalytic domain most closely resembles that of Abl. Purified ACK1 undergoes autophosphorylation, and autophosphorylation enhances kinase activity. We identified Tyr284 in the activation loop of ACK1 as the primary autophosphorylation site using mass spectrometry. When expressed in COS-7 cells, the Y284F mutant ACK1 showed dramatically reduced levels of tyrosine phosphorylation. Although the SH3 and CRIB domains of purified ACK1 are able to bind ligands (a polyproline peptide and Cdc42, respectively), the addition of ligands did not stimulate tyrosine kinase activity. To characterize potential interacting partners for ACK1, we screened several SH2 and SH3 domains for their ability to bind to full-length ACK1 or to the catalytic-SH3-CRIB construct. ACK1 interacts most strongly with the SH3 domains of Src family kinases (Src or Hck) via its C-terminal proline-rich domain. Co-expression of Hck with kinase-inactive ACK1(K158R) in mammalian cells resulted in tyrosine phosphorylation of ACK1, suggesting that ACK1 is a substrate for Hck. Our data suggest that Hck is a novel binding partner for ACK1 that can regulate ACK1 activity by phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号