首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary We have studied the kinetic properties of rabbit red cell (RRBC) Na+/Na+ and Na+/H+ exchanges (EXC) in order to define whether or not both transport functions are conducted by the same molecule. The strategy has been to determine the interactions of Na+ and H+ at the internal (i) and external (o) sites for both exchanges modes. RRBC containing varying Na i and H l were prepared by nystatin and DIDS treatment of acid-loaded cells. Na+/Na+ EXC was measured as Na o -stimulated Na+ efflux and Na+/H+ EXC as Na o -stimulated H+ efflux and pH o -stimulated Na+ influx into acid-loaded cells.The activation of Na+/Na+ EXC by Na o at pH i 7.4 did not follow simple hyperbolic kinetics. Testing of different kinetic models to obtain the best fit for the experimental data indicated the presence of high (K m 2.2 mM) and low affinity (K m 108 mM) sites for a single- or two-carrier system. The activation of Na+/H+ EXC by Na o (pH i 6.6, Na i <1 mM) also showed high (K m 11 mM) and low (K m 248 mM) affinity sites. External H+ competitively inhibited Na+/Na+ EXC at the low affinity Na o site (K H 52 nM) while internally H+ were competitive inhibitors (pK 6.7) at low Na i and allosteric activators (pK 7.0) at high Na i .Na+/H+ EXC was also inhibited by acid pH o and allosterically activated by H i (pK 6.4). We also established the presence of a Na i regulatory site which activates Na+/H+ and Na+/Na+ EXC modifying the affinity for Na o of both pathways. At low Na i , Na+/Na+ EXC was inhibited by acid pH i and Na+/H+ stimulated but at high Na i , Na+/Na+ EXC was stimulated and Na+/H+ inhibited being the sum of both pathways kept constant. Both exchange modes were activated by two classes of Na o sites,cis-inhibited by external H o , allosterically modified by the binding of H+ to a H i regulatory site and regulated by Na i . These findings are consistent with Na+/Na+ EXC being a mode of operation of the Na+/H+ exchanger.Na+/H+ EXC was partially inhibited (80–100%) by dimethyl-amiloride (DMA) but basal or pH i -stimulated Na+/Na+ EXC (pH i 6.5, Na i 80 mM) was completely insensitive indicating that Na+/Na+ EXC is an amiloride-insensitive component of Na+/H+ EXC. However, Na+ and H+ efflux into Na-free media were stimulated by cell acidification and also partially (10 to 40%) inhibited by DMA: this also indicates that the Na+/H+ EXC might operate in reverse or uncoupled modes in the absence of Na+/Na+ EXC.In summary, the observed kinetic properties can be explained by a model of Na+/H+ EXC with several conformational states, H i and Na i regulatory sites and loaded/unloaded internal and external transport sites at which Na+ and H+ can compete. The occupancy of the H+ regulatory site induces a conformational change and the occupancy of the Na i regulatory site modulates the flow through both pathways so that it will conduct Na+/H+ and/or Na+/Na+ EXC depending on the ratio of internal Na+:H+.  相似文献   

2.
The cytoplasmic resistivities and membrane breakdown potentials of normal (AA), sickle-cell-trait (AS), and sickle (SS) red blood cells have been measured by the biophysical methodology of resistive pulse spectroscopy over a range of osmolalities. At isotonicity, the average membrane breakdown potentials are virtually identical for the three types of cells occurring at about 1150 V/cm. Average isotonic cytoplasmic resistivities are somewhat higher for the SS cells (166.7±7.49 ohm-cm) compared to the AA (147.6±1.98 ohm-cm) or AS cells (148.7±1.79 ohm-cm). As medium osmolality is varied, the differences in resistive properties become enlarged, especially at very low and very high osmolalities. At high osmolalities, both types of sickle cells show a large increase in internal resistivity compared to the normals; at low osmolality, the SS samples exhibit a distinctly different membrane breakdown characteristic, decreasing in this parameter, whereas the other two groups increase. Of the 15 SS samples tested, three displayed much higher cytoplasmic resistivities at isotonicity: 218.2±5.25 ohm-cm, compared to an average of 153.5±3.46 ohm-cm for the other 12. The relationship between these high resistivities and the subfraction of irreversibly sickled cells in the sample is discussed.  相似文献   

3.
Summary Polymerization-depolymerization of proteins within cells and subcellular organelles may have powerful osmotic effects. As a model to study these we analyzed the predicted volume changes following hemoglobin (Hb) S polymerization in sickle cell anemia (SS) red cells with different initial volumes. The theoretical analysis predicted that dehydrated SS red cells may sustain large polymerization-induced volume shifts whose direction would depend on whether or not small solutes were excluded from polymer-associated water. Experiments with SS cells from promptly fractionated venous blood showed oxygenation-induced swelling, maximal in the densest cells, in support of nonexclusion models. The predicted extent of cell dehydration on polymerization was strongly influenced by factors such as the dilution of residual soluble Hb and the increased osmotic contribution of Hb in cells dehydrated by salt loss, largely overlooked in the past. The osmotic effects of polymer formation may thus play an important part in microcirculatory infarction by dense SS cells, as they become even denser and stiffer during deoxygenation in the capillaries.  相似文献   

4.
KCl cotransport activated by swelling of sickle red blood cells(SS RBC) is inhibited by deoxygenation. Yet recent studies found aCl-dependent increase insickle reticulocyte density with cyclic deoxygenation. This studysought to demonstrate cotransporter stimulation by deoxygenation of SSRBC in isotonic media with normal pH. Low-density SS RBC exhibited aCl-dependent component ofthe deoxygenation-induced net K+efflux, which was blocked by two inhibitors of KCl cotransport, [(dihydroindenyl)oxy]alkanoic acid and okadaic acid.Cl-dependentK+ efflux stimulated bydeoxygenation was enhanced 2.5-fold by clamping of cellularMg2+ at the level in oxygenatedcells using ionophore A-23187. Incubating cells in high externalK+ orRb+ minimized inhibition of KClcotransport by internal Mg2+, andunder these conditions deoxygenation markedly stimulated KClcotransport in the absence of ionophore. Activation of KCl cotransportby deoxygenation of SS RBC in isotonic media at normal pH is consistentwith the generalized dephosphorylation of membrane proteins induced bydeoxygenation and activation of the cotransporter by adephosphorylation mechanism.Na+/H+exchange activity, known to be modulated by cytosolicCa2+ elevation and cell shrinkage,remained silent under deoxygenation conditions.

  相似文献   

5.
Summary We have investigated the kinetic properties of the human red blood cell Na+/H+ exchanger to provide a tool to study the role of genetic, hormonal and environmental factors in its expression as well as its functional properties in several clinical conditions. The present study reports its stoichiometry and the kinetic effects of internal H+ (H i ) and external Na+ (Na o ) in red blood cells of normal subjects.Red blood cells with different cell Na+ (Na i ) and pH (pH i ) were prepared by nystatin and DIDS treatment of acid-loaded cells. Unidirectional and net Na+ influx were measured by varying pH i (from 5.7 to 7.4), external pH (pH o ), Na i and Na o and by incubating the cells in media containing ouabain, bumetanide and methazolamide. Net Na+ influx (Na i <2.0 mmol/liter cell, Na o = 150mm) increased sigmoidally (Hill coefficient 2.5) when pH i fell below 7.0 and the external pH o was 8.0, but increased linearly at pH o 6.0. The net Na+ influx driven by an outward H+ gradient was estimated from the difference of Na+ influx at the two pH o levels (pH o 8 and pH o 6). The H+-driven Na+ influx reached saturation between pH i 5.9 and 6.1. TheV max had a wide interindividual variation (6 to 63 mmol/liter cell · hr, 31.0±3, mean±sem,n=20). TheK m for H i to activate H+-driven Na+ influx was 347±30nm (n=7). Amiloride (1mm) or DMA (20 m) partially (59±10%) inhibited red cell Na+/H+ exchange. The stoichiometric ratio between H+-driven Na+ influx and Na+-driven H+ efflux was 11. The dependence of Na+ influx from Na o was studied at pH i 6.0, and Na i lower than 2 mmol/liter cell at pH o 6.0 and 8.0. The meanK m for Na o of the H+-gradient-driven Na+ influx was 55±7mm.An increase in Na i from 2 to 20 mmol/liter cell did not change significantly H+-driven net Na+ influx as estimated from the difference between unidirectional22Na influx and efflux. Na+/Na+ exchange was negligible in acid-loaded, DIDS-treated cells. Na+ and H+ efflux from acid-loaded cells were inhibited by amiloride analogs in the absence of external Na+ indicating that they may represent nonspecific effects of these compounds and/or uncoupled transport modes of the Na+/H+ exchanger.It is concluded that human red cell Na+/H+ exchange performs 11 exchange of external Na+ for internal protons, which is partially amiloride sensitive. Its kinetic dependence from internal H+ and external Na+ is similar to other cells, but it displays a larger variability in theV max between individuals.  相似文献   

6.
Summary Hyposmotic swelling of pig red cells leads to a selective increase in K permeability, whereas hyperosmotic cell shrinkage augments the Na permeability. In this regard, the ouabain-resistant (OR) Na flux of red cells of newborn and adult pigs is characterized in detail. A reduction in cell volume by approximately 18% leads to an increase in the OR Na efflux of fetal and adult cells by 15-and fourfold, respectively. The OR Na influx in both cell types is equally influenced by cell shrinkage. Depletion of cellular K does not influence the volume-activated OR Na efflux. Nor does OR Na influx require external K. Both OR Na efflux and influx activated by shrinkage are inhibited by the diuretics furosemide and amiloride. The rank order of decreasing anion sensitivity for diuretic-sensitive Na efflux was acetate > chloride > gluconate > nitrate. Cell shrinkage induced by the addition of hypertonic salts results in an acidification of the unbuffered and CO2-free media, provided that both Na and DIDS are present. The qcidification process can be reversed by either of the diuretic agents. These findings suggest that the shrinkageactivated OR Na flux is primarily mediated by a Na/H exchanger rather than by a Na/K/Cl cotransporter. Once loaded with either cAMP or cGMP, cell swelling can no longer activate the Na/H exchanger. The Na/H exchanger activity is detectable in the fetal cells of normal volume but quiescent in adult cells, indicating that the exchanger undergoes a developmental change during the transition from the fetal to adult stage.  相似文献   

7.
Silent cerebral infarcts and arteriopathy are common and progressive in individuals with sickle cell anemia. However, most data describing brain lesions in sickle cell anemia are cross-sectional or derive from pediatric cohorts with short follow-up. We investigated the progression of silent cerebral infarct and cerebral vessel stenosis on brain MRI and MRA, respectively, by describing the incidence of new or worsening lesions over a period of up to 25 years among young adults with sickle cell anemia and explored risk factors for progression. Forty-four adults with sickle cell anemia (HbSS or HbSβ0thalassemia), exposed to chronic transfusions (n = 12) or hydroxyurea (n = 32), median age 19.2 years (range 18.0–31.5), received a screening brain MRI/MRA and their results were compared with a clinical exam performed during childhood and adolescence. We used exact log-rank test to compare MRI and MRA progression among any two groups. The hazard ratio (HR) and 95% confidence interval (CI) were calculated from Cox regression analyses. Progression of MRI and MRA occurred in 12 (27%) and 4 (9%) young adults, respectively, relative to their pediatric exams. MRI progression risk was high among participants with abnormal pediatric exams (HR: 11.6, 95% CI: 2.5–54.7) and conditional or abnormal transcranial Doppler ultrasound velocities (HR: 3.9, 95% CI: 1.0–15.1). Among individuals treated with hydroxyurea, high fetal hemoglobin measured in childhood was associated with lower hazard of MRI progression (HR: 0.86, 95% CI: 0.76–0.98). MRA progression occurred more frequently among those with prior stroke (HR: 8.6, 95% CI: 1.2–64), abnormal pediatric exam (P = 0.00084), and elevated transcranial Doppler ultrasound velocities (P = 0.004). Brain MRI/MRA imaging in pediatrics can identify high-risk patients for CNS disease progression in young adulthood, prompting consideration for early aggressive treatments.  相似文献   

8.
Summary Suspensions of LLC-PK1 cells (a continuous epitheliod cell line with renal characteristics) are examined for mechanisms of intracellular pH regulation using the fluorescent probe BCECF. Initial experiments determine suitable calibration procedures for use of the BCECF fluorescent signal. They also determine that the cell suspension contains cells which (after 4 hr in suspension) have Na+ and K+ gradients comparable to those of cells in monolayer culture. The steady-state intracellular pH (7.05±0.01,n=5) of cells which have recovered in (pH 7.4) Na+-containing medium is not affected over several minutes by addition of 100 M amiloride or removal of extracellular Na+ (Na o + /H i + and Na i + /H o + exchange reactions are functionally inactive (compared to cellular buffering capacity). In contrast, Na o + /H i + exchange is activated by an increased cellular acid load. This activation may be observed directly either as a stimulation of net H+ efflux or net Na+ influx with decreasing intracellular pH. The extrapolation of this latter data suggests a set point of Na+/H+ exchange of approximately pH 7.0, consistent with the observed resting intracellular pH of approximately 7.05.  相似文献   

9.
The Na+/H+ exchanger is a widely distributed integral membrane protein that is responsible for pH regulation in mammalian tissues. We have cloned and analyzed the NHE1 isoform of the mouse genomic Na+/H+exchanger. A clone from a mouse genomic library contained the NHE1 promoter region and the 5-untranslated region. It also contained the first 121 amino acids of the coding region of the Na+/H+ exchanger. A splice site occurred after amino acid 121, at the same region as in the human NHE1 gene. The deduced amino terminal coding sequence was 76 and 88% identical to the human and rat NHE1 sequences respectively. The 5-untranslated region was highly homologous to that of other species and two minicistrons contained in the human Na+/H+ exchanger were present in the mouse sequence. The results show that the deduced protein sequence of the mouse NHE1 gene has a high level of homology with other species and that the splice site of the first intron is conserved. These results suggest that the first large intron may play an important role in the NHE1 gene expression.  相似文献   

10.
The new distilbene compound, DCMBT (4,4′-dichloromercuric-2,2,2′,2′-bistilbene tetrasulfonic acid) synthesized by Yoon et al. (Biochim. Biophys. Acta 778 (1984) 385–389) was used to study the relation between urea transport and anion exchange in human red cells. DCMBT, which combines properties of both the specific stilbene anion exchange inhibitor, DIDS, and the water and urea transport inhibitor, pCMBS, had previously been shown to inhibit anion transport almost completely and water transport partially. We now report that DCMBT also inhibits urea transport almost completely and that covalent DIDS treatment reverses the inhibition. These observations provide support for the view that a single protein or protein complex modulates the transport of water and urea and the exchange of anions through a common channel.  相似文献   

11.
The precise nature of band 3 protein and its involvement in oxalate exchange in the red blood cells (RBCs) of renal failure patients has not been studied in detail. Therefore, here we studied the oxalate exchange and binding by band 3 protein in RBCs of humans with conditions of acute and chronic renal failure (ARF and CRF). The RBCs of ARF and CRF patients exhibited abnormal red cell morphology and an increased resistance to osmotic hemolysis. Further, an increase in the cholesterol content and decrease in the activities of Na+-K+-, Ca2+-, and Mg2+-ATPases of membranes were observed in the RBCs of ARF and CRF patients. A decrease in the oxalate flux was observed in the RBCs of ARF and CRF patients. The oxalate-binding activities of the RBC membranes were significantly lower in ARF (20 pmoles/mg protein) and CRF (5.3 pmoles/mg protein) patients as compared to that in the normal subjects (36 pmoles/mg protein). DEAE-cellulose and Sephadex G-200 column chromatography purification profiles revealed a distinctive shift in oxalate-binding activity of band 3 protein of RBCs of ARF and CRF patients as compared to that of the normal subjects. It was also observed from the binding studies with a fluorescent dye, eosin-5-maleimide, which specifically binds to band 3 protein, that the RBCs of ARF and CRF patients exhibited only 53 and 32% of abundance of band 3 protein, respectively, as compared to that in the RBCs of the normal subjects, thus revealing a decrease in the band 3 protein content in ARF and CRF patients. These results for the first time showed a decrease in the oxalate exchange in RBCs of patients with ARF and CRF, which was also concomitant with the low levels of abundance of band 3 protein.  相似文献   

12.
Summary Rabbit erythrocytes are well known for possessing highly active Na+/Na+ and Na+/H+ countertransport systems. Since these two transport systems share many similar properties, the possibility exists that they represent different transport modes of a single transport molecule. Therefore, we evaluated this hypothesis by measuring Na+ transport through these exchangers in acid-loaded cells. In addition, selective inhibitors of these transport systems such as ethylisopropyl-amiloride (EIPA) and N-ethylmaleimide (NEM) were used. Na+/Na+ exchange activity, determined as the Na o + -dependent22Na efflux or Na i + -induced22Na entry was completely abolished by NEM. This inhibitor, however, did not affect the H i + -induced Na+ entry sensitive to amiloride (Na+/H+ exchange activity). Similarly, EIPA, a strong inhibitor of the Na+/H+ exchanger, did not inhibit Na+/Na countertransport, suggesting the independent nature of both transport systems. The possibility that the NEM-sensitive Na+/Na+ exchanger could be involved in Na+/H+ countertransport was suggested by studies in which the net Na+ transport sensitive to NEM was determined. As expected, net Na+ transport through this transport system was zero at different [Na+] i /[Na+] o ratios when intracellular pH was 7.2. However, at pH i =6.1, net Na+ influx occurred when [Na+] i was lower than 39mm. Valinomycin, which at low [K+] o was lower than 39mm. Valinomycin, which at low [K+] o clamps the membrane potential close to the K+ equilibrium potential, did not affect the net NEM-sensitive Na+ entry but markedly stimulated, the EIPA-and NEM-resistant Na+ uptake. This suggest that the net Na+ entry through the NEM-sensitive pathway at low pH i , is mediated by an electroneutral process possibly involving Na+/H+ exchange. In contrast, the EIPA-sensitive Na+/H+ exchanger is not involved in Na+/Na+ countertransport, because Na+ transport through this mechanism is not affected by an increase in cell Na from 0.4 to 39mm. Altogether, these findings indicate that both transport systems: the Na+/Na+ and Na+/H+ exchangers, are mediated by distinct transport proteins.  相似文献   

13.
Summary The role of transmembrane pH gradients on the ouabain, bumetanide and phloretin-resistant Na+ transport was studied in human red cells. Proton equilibration through the Jacobs-Stewart cycle was inhibited by the use of DIDS (125 m) and methazolamide (400 m). Red cells with different internal pH (pH i =6.4, 7.0 and 7.8) were prepared and Na+ influx was measured at different external pH (pH o =6.0, 7.0, 8.0). Na+ influx into acid-loaded cells (pH i =6.4) markedly increased when pH o was raised from 6.0 to 8.0. Amiloride, a well-known inhibitor of Na+/H+ exchange systems blocked about 60% of the H+-induced Na+ entry, while showing small inhibitory effects in the absence of pH gradients. When pH0 was kept at 8.0, the amiloride-sensitive Na+ entry was abolished as pH i was increased from 6.4 to 7.8. Moreover, measurements of H+ efflux into lightly buffered media indicated that the imposition of an inward Na+ gradient stimulated a net H+ efflux which was sensitive to the amiloride analog 5-N-methyl-N-butyl-amiloride. Furthermore, in the absence of a chemical gradient for Na+ (Na i + =Na 0 + =15mm,Em=+6.7 mV), an outward H+ gradient (pH i =6.4, pH0=8.0) promoted a net amiloride-sensitive Na+ uptake which was abolished at an external pH of 6.0. These findings are consistent with the presence of an amiloride-sensitive Na+/H+ exchange system in human red cells.  相似文献   

14.
Summary pH gradient-dependent sodium transport in highly purified rat parotid basolateral membrane vesicles was studied under voltage-clamped conditions. In the presence of an outwardly directed H+ gradient (pHin=6.0, pHout=8.0)22Na uptake was approximately ten times greater than uptake measured at pH equilibrium (pHin=pHout=6.0). More than 90% of this sodium flux was inhibited by the potassium-sparing diuretic drug amiloride (K 1 =1.6 m) while the transport inhibitors furosemide (1mm), bumetanide (1mm) SITS (0.5mm) and DIDS (0.1mm) were without effect. This transport activity copurified with the basolateral membrane marker K+-stimulatedp-nitrophenyl phosphatase. In addition22Na uptake into the vesicles could be driven against a concentration gradient by an outwardly directed H+ gradient. pH gradient-dependent sodium flux exhibited a simple Michaelis-Menten-type dependence on sodium concentration cosistent with the existence of a single transport system withK M =8.0mm at 23°C. A component of pH gradient-dependent, amiloride-sensitive sodium flux was also observed in rabbit parotid basolateral membrane vesicles. These results provide strong evidence for the existence of a Na+/H+ antiport in rat and rabbit parotid acinar basolateral membranes and extend earlier less direct studies which suggested that such a transporter was present in salivary acinar cells and might play a significant role in salivary fluid secretion.  相似文献   

15.
The sodium-hydrogen exchanger isoform, NHE-3 is essential for the absorption of sodium and water from intestine. Whether this protein plays any role in inflammatory bowel disease is less understood. To address this issue, NHE-3 mRNA and protein levels were estimated in the terminal ileum and colon of the rats having colitis induced with trinitrobenzenesulphonic acid (TNBS). The effect of garlic (Allium sativum) was also evaluated on the expression of NHE-3. The animals were treated with garlic extract intraperitoneally starting 2 h before the TNBS administration until day 4 post-TNBS administration and were sacrificed on day 5. In control animals, the levels of NHE-3 in colon was higher than the ileum. As a result of colitis, the levels of NHE-3 protein and mRNA increased both in the colon and terminal ileum. Garlic treatment of the colitic animals resulted in a selective suppression of NHE-3 in the terminal ileum. Colitis caused an induction of the myeloperoxidase activity, the marker of inflammation in the colon but not in the ileum. These findings suggest that induction of NHE-3 is not primarily due to inflammation. Selective suppression of this protein in ileum by garlic may cause loss of sodium chloride and water during colitis.  相似文献   

16.
Electrogenic 2 Na+/1 H+ exchange in crustanceans   总被引:4,自引:0,他引:4  
Summary Hepatopancreatic brush border membrane vesicles of the freshwater prawn,Macrobrachium rosenbergii and the marine lobster,Homarus americanus exhibited22Na uptake which was Cl-independent, amiloride sensitive, and stimulated by a transmembrane H gradient (H i >H o ). Sodium influx by vesicles of both species were sigmoidal functions of [Na] o , yielding Hill coefficients that were not significantly different (P>0.5) than 2.0. Estimations of half-saturation constants (K Na) were 82.2mm (prawn) and 280.1mm (lobster), suggesting a possible adaptation of this transporter to environmental salinity.Trans-stimulation andcis-inhibition experiments involving variable [H] suggested that the exchangers in both species possessed single internal cation binding sites (pK 6.5–6.7) and two external cation binding sites (prawn, pK 4.0 and 5.7; lobster pK 3.5 and 6.1). Similarcis inhibition studies using amiloride as a competitive inhibitor of Na uptake supported the occurrence of dual external sites (prawn,K i 50 and 1520 m; lobsterK i 9 and 340 m). Electrogenic Na/H exchange by vesicles from both crustaceans was demonstrated using equilibrium shift experiments where a transmembrane potential was used as the only driving force for the transport event. Transport stoichiometries of the antiporters were determined using Static Head analysis where driving forces for cation transfer were balanced using a 101 Na gradient, a 1001 H gradient, and a stoichiometry of 2.0. These electrogenic 2 Na/1 H exchangers appear thermodynamically capable of generating sufficient gastric acidification for organismic digestive activities.  相似文献   

17.
Summary The present studies were designed to test our previous suggestion that Na+/H+ exchange was activated by muscarinic stimulation of rat parotid acinar cells. Consistent with this hypothesis, we demonstrate here that intact rat parotid acini stimulated with the muscarinic agonist carbachol in HCO 3 -free medium show an enhanced recovery from an acute acid load as compared to similarly challenged untreated preparations. Amiloride-sensitive22Na uptake, due to Na+/H+ exchange, was also studied in plasma membrane vesicles prepared from rat parotid acini pretreated with carbachol. This uptake was stimulated twofold relative to that observed in vesicles from control (untreated) acini. This stimulation was time dependent, requiring 15 min of acinar incubation with carbachol to reach completion, and ws blocked by the presence of the muscarinic antagonist atropine (2×10–5 m) in the pretreatment medium. The effect of carbachol was dose dependent withK 0.53×10–6 m. Stimulation of the exchanger was also seen in vesicles prepared from acini pretreated with the -adrenergic agonist epinephrine, but not with the -adrenergic agonist isoproterenol, or with substance P. Kinetic analysis indicated that the stimulation induced by carbachol was due to an alkaline shift in the pH responsiveness of the exchanger in addition to an increasedapparent transport capacity. Taken together with previous results from this and other laboratories, these results strongly suggest that the Na+/H+ exchanger and its regulation are intimately involved in the fluidsecretory response of the rat parotid.  相似文献   

18.
19.
Simultaneous measurements of Ca content and 42K+ influx in sickle cell anaemia red cells confirm predictions from earlier data in the literature that the increased Ca content of sickle cell anaemia cells which are not metabolically depleted does not cause a quinine-sensitive increase in K+ permeability.It is shown that the ionophore, A23187, can cause the Ca contained inside sickle cell anaemia cells to activate the quinine-sensitive K+-permeability mechanism. This demonstrates the existence of a Ca2+-refractory state of the K+ channel in sickle cell anaemia cells and a direct stimulatory effect of the ionophore A23187 on its Ca sensitivity.  相似文献   

20.
Summary Previous work showed that amiloride partially inhibits the net gain of Na in cold-stored red cells of guinea pig and that the proportion of unidirectional Na influx sensitive to amiloride increases dramatically with cooling. This study shows that at 37°C amiloride-sensitive (AS) Na influx in guinea pig red blood cells is activated by cytoplasmic H+, hypertonic incubation, phorbol ester in the presence of extracellular Cat2+ and is correlated with cation-dependent H+ loss from acidified cells. Cytoplasmic acidification increases AS Na efflux into Na-free medium. These properties are consistent with the presence of a Na-H exchanger with a H+ regulatory site. Elevation of cytoplasmic free Mg2– above 3 mm greatly increases AS Na influx: this correlates with a Na-dependent loss of Mg2–, indicating the presence of a Na-Mg exchanger.At 20°C activators of Na-H exchange have little or no further stimulatory effect on the already elevated AS Na influx. AS Na influx is much larger than either Na-dependent H+ loss or AS Na efflux at 20°C. The affinity of the AS Na influx for cytoplasmic H+ is greater at 20°C than at 37°C. Depletion of cytoplasmic Mg2+ does not abolish the high AS Na influx at 20°C.Thus, elevation of AS Na influx with cooling appears to be due to increased activity of a Na-H exchanger (operating in a slippage mode) caused by greater sensitivity to H+ at a regulatory site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号