首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Protoplasts of Marchantia polymorpha L. (liverwort) regenerated new cell walls in initial culture. However, the survival rate of regenerated cells decreased rapidly after this stage. The decrease in survival rate was suppressed by the β-glucosyl Yariv reagent (βglcY), which binds to arabinogalactan proteins (AGPs), only when it was added to culture medium during the period of incipient cell wall regeneration. The addition of βglcY after the period of incipient cell wall regeneration had no effect on the survival rate. These results suggested the involvement of AGPs in the cell wall regeneration process. After cell wall regeneration, the regenerated cells started to divide actively after being transferred to a medium with 1% activated charcoal (AC). Protoplasts that had been cultured with βglcY during the period of incipient cell wall regeneration and then transferred to the AC medium divided vigorously, and the cell division rate was remarkably increased (>80%). However, without transfer to the AC medium, βglcY at concentrations higher than 20 μg ml−1 inhibited cell division. No effect on cell survival nor cell division was observed with the α-galactosyl Yariv reagent. Staining of β-1,3-glucan (callose) with aniline blue (AB) showed that a large amount of β-1,3-glucan was deposited in the regenerated cell walls of the protoplasts cultured without βglcY, while little or no β-1,3-glucan was stained by AB in protoplasts cultured with βglcY. These results suggest that AGPs and β-1,3-glucan play important roles in the survival and subsequent cell division of regenerated cells of M. polymorpha protoplast cultures.  相似文献   

2.
Summary The cell wall regeneration on protoplasts derived from maize mesophyll cells was compared with wall regeneration on protoplasts derived from suspension cultured cells using light microscopy, transmission electron microscopy, and mass spectrometry. The time course of cell wall regeneration has shown that the mesophyll protoplasts regenerated walls much slower than the protoplasts derived from cultured cells. Moreover, cell wall materials on the mesophyll protoplasts were often unevenly distributed. Electron microscopy has further demonstrated that the mesophyll protoplasts have less organized and compact walls than the protoplasts from cultured cells. Chemical analysis revealed that the mesophyll protoplasts had a lower ratio ofβ-(1–3)-glucan toβ-(1–4)-glucan than protoplasts from cultured cells. The significance of these results for the viability and development of protoplasts in culture is discussed. National Research Council of Canada paper no. 32458.  相似文献   

3.
The effect of papulacandin B on regenerating protoplasts ofSaccharomyces cerevisiae was studied by light and electron microscopy. In liquid media it inhibited the biogenesis of (1→3)-β-d-glucan fibrillar nets; as a result, the protoplasts did not grow polarly but only spherically. The effect was reversible. Instead of the nets the inhibited protoplasts synthesized only individual microfibrils soluble in hydroxide; these were not joined in the nets and were partially masked by amorphous material. The microfibrils disintegrated after lysis and did not maintain the shape of protoplasts. Protoplasts inhibited in solid media grew spherically up to 25 μm but they did not divide or revert or revert, in spite of forming cell walls. These walls were amorphous and fragile and they disintegrated during preparation. Papulacandin B did not decrease the viability of protoplasts and did not interfere with their growth, biogenesis of alkali-soluble glucan microfibrils or amorphous wall matrix. It inhibited specifically the synthesis of alkali-insoluble branched (1→3)-β-d-glucan, a necessary building unit required for the formation of the fibrillar component of the cell wall responsible for the cell wall shape, its rigidity and tensile strength.  相似文献   

4.
Bean ( Phaseolus vulgaris L.) cell suspensions were adapted for growth in 12 µ M dichlobenil (2,6-dichlorobenzonitrile or DCB) by a stepwise increase in the concentration of the inhibitor in each subculture. Non-tolerant suspensions (I 50  = 0.3 µ M ) gave rise to single cells or small clusters while tolerant cell suspensions (I 50  = 30 µ M ) grown in DCB formed large clusters. The cells in these clusters were surrounded by a thick and irregular cell wall with a lamellate structure and lacking a differentiated middle lamella. Analysis of habituated cell walls by Fourier transform infrared spectroscopy and cell wall fractionation revealed: (1) a reduced amount of cellulose and hemicelluloses, mainly xyloglucan (2) qualitative and quantitative differences in pectin levels, and (3) a non-crystalline and soluble β-1,4-glucan. When tolerant cells were returned to medium lacking DCB, the size of the cell clusters was reduced; the middle lamella was only partly formed, and the composition of the cell wall gradually reverted to that obtained with non-tolerant cells. However, dehabituated cells (I 50  = 12 µ M ) were 40-fold more tolerant to DCB than non-tolerant cells and were only 2.5-fold more sensitive than tolerant cells.  相似文献   

5.
The highly glycosylated peptide hormone erythropoietin (EPO) plays a key role in the regulation of erythrocyte maturation. Currently, marketed EPO is produced by recombinant technology in mammalian cell cultures. The complementary DNA (cDNA) for human EPO (hEPO) was transiently and stably expressed in the moss Physcomitrella patens wild-type and Δ-fuc-t Δ-xyl-t mutant, the latter containing N -glycans lacking the plant-specific, core-bound α1,3-fucose and β1,2-xylose. New expression vectors were designed based on a Physcomitrella ubiquitin gene-derived promoter for the expression of hEPO cDNA. Transient expression in protoplasts was much stronger at 10 than at 20 °C. In Western blot analysis, the molecular size of moss-produced recombinant human EPO (rhEPO) was identified to be 30 kDa, and it accumulated in the medium of transiently transformed protoplasts to high levels around 0.5 µg/mL. Transgenic Physcomitrella Δ-fuc-t Δ-xyl-t mutant lines expressing EPO cDNA showed secretion of rhEPO through the cell wall to the culture medium. In 5- and 10-L photobioreactor cultures, secreted rhEPO accumulated to high levels above 250 µg/g dry weight of moss material after 6 days. Silver staining of rhEPO on sodium dodecylsulphate-polyacrylamide gel electrophoresis (SDS-PAGE) taken from the bioreactor culture demonstrated a high purity of the over-expressed secreted rhEPO, with a very low background of endogenous moss proteins. Peptide mapping of rhEPO produced by the Physcomitrella Δ-fuc-t Δ-xyl-t mutant indicated correct processing of the plant-derived signal peptide. All three N -glycosylation sites of rhEPO were occupied by complex-type N -glycans completely devoid of the plant-specific core sugar residues fucose and xylose.  相似文献   

6.
Sunflower hypocotyl protoplasts ( Helianthus annuus L. cv. Emil) divide symmetrically to form loosely associated microcolonies when cultured in liquid medium, whereas when embedded in agarose beads they divide asymmetrically to give rise to embryo-like structures. To understand the relationship between protoplast embedding and cell division patterns, we studied the deposition of β-linked glucan and the dynamics of microtubules during early phases of culture. After one day in culture, under both culture conditions, a small proportion of the protoplasts had already begun to rebuild a β-glucan cell wall and the process reached completion in all protoplasts after 10 days. Callose deposition was faster in agarose than in liquid medium but it concerned only 30–40% of the protoplasts and was not related to either division type. No marked differences were observed in cortical arrays of microtubules. However, in embedded protoplasts perinuclear microtubules formed a well-defined basket around the nucleus; these microtubules were never observed in liquid-cultured protoplasts. A narrow preprophase band was present only in dividing protoplasts cultured in liquid medium. The results suggest that asymmetric division could be related to the lack of a narrow preprophase band and that protoplast embedding enhances nucleation or stabilization of microtubules.  相似文献   

7.
Regeneration of the cell wall and reversion of protoplasts with a completely regenerated cell wall to cells were studied by light and electron microscopy in protoplasts of the fission yeastsSchizosaccharomyces versatilis. On their surface the protoplasts regenerated a complete new wall even m liquid media The wall regeneration began with the formation of a thin irregular net of flat bundles of long microfibrils and the net was gradually filled with aggregates of short straight microfibrils and small piles of amorphous material. Osmotically resistant organisms with regenerated walls were detected after a 4–6 h cultivation Depending on the nutrient medium used 10–80 % of protoplasts with the regenerated wall were obtained that reverted subsequently to cells. The high percentage of the wall regeneration and reversion to cells was reached by combining cultivation in a poor medium with that in a rich medium Reversion to cells could only occur after the protoplasts had regenerated rigid cell walls These walled protoplasts underwent septation, and, by polar growth, produced cylindrical cells, further dividing by fission.  相似文献   

8.
Protoplasts of the filamentous green alga Mougeotia sp. are spherical when isolated and revert to their normal cylindrical cell shape during regeneration of a cell wall. Sections of protoplasts show that cortical microtubules are present at all times but examination of osmotically ruptured protoplasts by negative staining shows that the microtubules are initially free and become progressively cross-bridged to the plasma membrane during the first 3 h of protoplast culture. Cell-wall microfibrils areoobserved within 60 min when protoplasts are returned to growth medium; deposition of microfibrils that is predominantly transverse to the future axis of elongation is detectable after about 6 h of culture. When regenerating protoplasts are treated with either colchicine or isopropyl-N-phenyl carbamate, drugs which interfere with microtubule polymerization, they remain spherical and develop cell walls in which the microfibrils are randomly oriented.  相似文献   

9.
Abstract The cell wall of Candida albicans contains mannoproteins that are covalently associated with β-1,6-glucan. When spheroplasts were allowed to regenerate a new cell wall, initially non-glucosylated cell wall proteins accumulated in the medium. While the spheroplasts became osmotically stable, β-1,6-glucosylated proteins could be identified in their cell wall by SDS-extraction or β-1,3-glucanase digestion. At later stages of regeneration, β-1,3-glucosylated proteins were also found. Hence, incorporation of proteins into the cell wall is accompanied by extracellular coupling to β-1,6-/β-l,3-glucan. The SDS-extractable glucosylated proteins probably represent degradation products of wall proteins rather than their precursors. Tunicamycin delayed, but did not prevent the formation of β-1,6-glucosylated proteins, demonstrating that β-1,6-glucan is not attached to N -glycosidic side-chains of wall proteins.  相似文献   

10.
S. Hasezawa  H. Nozaki 《Protoplasma》1999,209(3-4):98-104
Summary Cortical microtubules (MTs) have been implicated in the morphogenesis of plant cells by regulating the orientation of newly deposited cellulose microfibrils (CMFs). However, the role of MTs in oriented CMF deposition is still unclear. We have investigated the mechanism of CMF deposition with cultured tobacco protoplasts derived from taxol-treated BY-2 cells (taxol protoplasts). The BY-2 protoplasts regenerated patches of β-l,3-glucan (callose) and fibrils of β-l,4-glucan (cellulose). Taxol protoplasts possessed the same ordered MT arrays as material cells and regenerated CMFs with patterns almost coincidental with MTs. Electron microscopy revealed that, on the surface of cultured taxol protoplasts, each CMF bundle appeared to be deposited on each cortical MT. These results suggest that MTs may attach directly to the cellulose-synthesizing complexes, by some form of linkage, and regulate the movement of these complexes in higher-plant cells.  相似文献   

11.
Summary Cell-wall regeneration and reversion of protoplasts ofSchizophyllum commune were investigated using electron microscopic methods and X-ray diffraction.After 3 hours of regeneration protoplasts have formed a loosely organized wall which does not react with Thiéry's stain for periodic acid sensitive carbohydrates. This wall largely consists of chitin microfibrils which are adpressed to the plasmalemma and which are covered by loose aggregates of alkali-soluble S-glucan (-1,3-glucan). Both components are microcrystalline, at least partly. Walls formed in the presence of polyoxin D only consist of thick loose fibers of S-glucan.From 3 hours onward the inner chitin microfibrils of the wall of the primary cells become embedded in alkali-insoluble material that stains heavily with the Thiéry reagent and probably is similar to the R-glucan of the mature wall (i.e., -1,3--1,6-glucan). The outer chitin microfibrils remain free of this matrix and are covered by S-glucan only.Bud-like structures that arise have the same wall architecture as the primary cells,i.e., only the inner chitin microfibrils are embedded in R-glucan and the S-glucan forms a fluffy coat. The walls of hyphal tubes that arise are distinct, however, in that all chitin microfibrils are embedded in R-glucan and the S-glucan forms a compact coat.Cytoplasmic vesicles are sparse in primary cells except at the sites of emergence of budlike structures and hyphae. They continue to be present in the apex of growing hyphae.  相似文献   

12.
Modifications occurring in the plasma membrane and their relationship to newly synthesized microfibrils were examined in regenerating protoplasts of Candida albicans by freeze-fracture electron microscopy. Freshly prepared protoplasts showed no residual wall material, and long invaginations covered the surface of the plasma membrane. Analysis of the external face (E-face) of the plasma membrane showed a significant decrease in the number of intramembranous particles (IMP) in comparison with the original cells. After 40 min incubation in regeneration medium, newly synthesized microfibrils which seemed to originate from protrusions in the plasma membrane were observed. The plasma membrane showed important modifications with respect to IMP. After 3 h 45 min, the cells were covered by an abnormal wall which showed isolated fibrils partially embedded in the matrix material. The plasma membrane of these partially regenerated protoplasts was similar to that of original cells. After 8 h, regeneration of the protoplasts seemed to be complete as no differences from the original cells were detected in the plasma membrane or the wall. Calcofluor white altered the deposition of wall polymers during regeneration, but did not modify the plasma membrane of the protoplasts.  相似文献   

13.
When protoplasts of Saccharomyces cerevisiae T7 and IFO 0309 are cultured in a static liquid culture at 2.5 × 106 protoplasts/ml, cell wall regeneration does not occur and cell wall components (CWC) are released into the culture broth. By using a specialized fluorometer, the concentrations of CWC could be measured on the basis of the fluorescence intensity of the CWC after staining with Fluostain I. The inoculum concentration, pH, and osmotic pressure of the medium were important factors for the production of CWC in culture. Under optimal culture conditions, S. cerevisiae T7 protoplasts produced 0.91 mg/ml CWC after 24 h. The CWC induced the tumor necrosis factor-α production about 1.3 times higher than that of the commercially available β-1,3/1,6-glucan from baker’s yeast cells.  相似文献   

14.
《Experimental mycology》1984,8(2):146-160
Aspergillus awamori and certain other Aspergillus and Penicillium species accumulate the α-glucan, nigeran, in their hyphal walls when shifted to a growth medium deficient in nitrogen. A. awamori hyphae, actively synthesizing negeran, were converted to protoplasts by digestion with a lytic enzyme mixture and the regeneration process was observed. Germ tubes were evident within 3 to 5 h and by 9 h hyphal development was extensive. Freshly prepared protoplasts were immediately active in biosynthesis of new wall and capable of transporting and utilizing exogenous substrates as evidenced by their loss of lytic sensitivity within 1 to 3 h of reversion and by the fact that incubation of new protoplasts with [3H]glucose resulted in incorporation into cellular products within 10 min. Among these products was a (β-1,3)-glucan fraction. Accumulation of nigeran, also monitored by incorporation of radioactivity from [3H]glucose, did not occur until 12 to 24 h into the regeneration period and was correlated with the observed reversion of the protoplasts to a hyphal mode of growth. Thus, although protoplasts were prepared from hyphae synthesizing nigeran, they did not continue to do so immediately at the start of regeneration. Synthesis of other wall polymers and/or attainment of a particular cell shape precede nigeran deposition in the regenerating protoplasts, a result consistent with a probable role for nigeran as a secondary wall polymer. A monoclonal immunoglobulin A conjugated to phenylisothiocyanate and specific for dextrans with (α-1,3) linkages has been utilized to detect glucans of this type on the surface of the regenerating protoplasts.  相似文献   

15.
Oligosaccharides derived from cell wall of fungal pathogens induce host primary immune responses. To understand fungal strategies circumventing the host plant immune responses, cell wall polysaccharide localization was investigated using fluorescent labels during infectious structure differentiation in the rice blast fungus Magnaporthe grisea . α-1,3-glucan was labelled only on appressoria developing on plastic surfaces, whereas it was detected on both germ tubes and appressoria on plant surfaces. Chitin, chitosan and β-1,3-glucan were detected on germ tubes and appressoria regardless of the substrate. Major polysaccharides labelled at accessible surface of infectious hyphae were α-1,3-glucan and chitosan, but after enzymatic digestion of α-1,3-glucan, β-1,3-glucan and chitin became detectable. Immunoelectron microscopic analysis showed α-1,3-glucan and β-1,3-glucan intermixed in the cell wall of infectious hyphae; however, α-1,3-glucan tended to be distributed farther from the fungal cell membrane. The fungal cell wall became more tolerant to chitinase digestion upon accumulation of α-1,3-glucan. Accumulation of α-1,3-glucan was dependent on the Mps1 MAP kinase pathway, which was activated by a plant wax derivative, 1,16-hexadecanediol. Taken together, α-1,3-glucan spatially and functionally masks β-1,3-glucan and chitin in the cell wall of infectious hyphae. Thus, a dynamic change of composition of cell wall polysaccharides occurs during plant infection in M. grisea .  相似文献   

16.
M. E. Galway  A. R. Hardham 《Protoplasma》1986,135(2-3):130-143
Summary Microtubule reorganization and cell wall deposition have been monitored during the first 30 hours of regeneration of protoplasts of the filamentous green algaMougeotia, using immunofluorescence microscopy to detect microtubules, and the cell-wall stain Tinopal LPW to detect the orientation of cell wall microfibrils. In the cylindrical cells of the alga, cortical microtubules lie in an ordered array, transverse to the long axis of the cells. In newly formed protoplasts, cortical microtubules exhibit some localized order, but within 1 hour microtubules become disordered. However, within 3 to 4 hours, microtubules are reorganized into a highly ordered, symmetrical array centered on two cortical foci. Cell wall synthesis is first detected during early microtubule reorganization. Oriented cell wall microfibrils, co-aligned with the microtubule array, appear subsequent to microtubule reorganization but before cell elongation begins. Most cells elongate in the period between 20 to 30 hours. Elongation is preceded by the aggregation of microtubules into a band intersecting both foci, and transverse to the incipient axis of elongation. The foci subsequently disappear, the microtubule band widens, and microfibrils are deposited in a band which is co-aligned with the band of microtubules. It is proposed that this band of microfibrils restricts lateral expansion of the cells and promotes elongation. Throughout the entire regeneration process inMougeotia, changes in microtubule organization precede and are paralleled by changes in cell wall organization. Protoplast regeneration inMougeotia is therefore a highly ordered process in which the orientation of the rapidly reorganized array of cortical microtubules establishes the future axis of elongation.  相似文献   

17.
Field emission scanning electron microscopy (FESEM) preparation techniques have been successfully adapted for visualization of the internal and external ultrastructure of Mougeotia filaments and protoplasts. FESEM of the innermost layer of cell wall in Mougeotia filaments revealed that microfibrils are deposited parallel to each other in an interconnected mesh and are oriented perpendicular to the direction of elongation. For the first time, the surface of protoplasts at different stages of regeneration has been observed using FESEM. Nascent microfibril deposition occurs between 1 and 2 h after isolation and arrangement of these microfibrils is random for at least 8 h. Observation of the inner surface of the plasma membrane in burst protoplasts showed that microtubules are not strongly attached for at least 3 h after protoplast isolation.  相似文献   

18.
β‐Galactosidases (EC 3.2.1.23) from ripe papaya ( Carica papaya L. cv. Eksotika) fruits having galactanase activities were fractionated by a combination of cation exchange and gel‐filtration chromatography into three isoforms, viz., β‐galactosidase I, II and III. The native proteins of the respective isoforms have apparent molecular masses of 67, 67 and 55 kDa, each showing one predominant polypeptide upon SDS‐PAGE of about 31 and 33 kDa for β‐galactosidases I and III, respectively, and of 67 kDa for β‐galactosidase II. The β‐galactosidase I protein, which was undetectable in immature fruits, appeared to be specifically accumulated during ripening. The β‐galactosidase II protein was present in developing fruits, but its level seemed to decrease with ripening. β‐Galactosidase I seemed to be an important softening enzyme; its activity increased dramatically (4‐ to 8‐fold) to a peak early during ripening and correlated closely with differential softening as related to position in the fruit tissue. The inner mesocarp tissue was softer, and its wall pectins were modified earlier and firmness decreased more rapidly during ripening compared to the outer mesocarp tissue. β‐Galactosidase II also may contribute significantly to softening because of its ability to catalyse increased solubility and depolymerization of pectins as well as through its ability to modify the alkali‐soluble hemicellulose fraction of the cell wall. The physiological significance of both β‐galactosidase isoforms may partly be attributed to their functional capacity as β‐(1,4)‐galactanases.  相似文献   

19.
Summary The growth, cell wall regeneration, and the reversion of the protoplasts ofNadsonia elongata andSchizosaccbaromyces pombe cultivated in nutrient media containing snail enzyme was studied by light and electron microscopy. The protoplasts grew in the presence of snail enzyme and an incomplete cell wall composed of fibrils was formed on their surface. Thus, the presence of snail enzyme inhibited the completion of cell wall structure and, consequently, the reversion of the protoplasts to normal cells. The transfer of these protoplasts to medium free from snail enzyme led first to the completion of the cell wall and then to the reversion of the protoplasts to normal cells. The reported experiments confirmed that the regeneration of the complete cell wall preceded the protoplast reversion.  相似文献   

20.
Congo red was applied to growing yeast cells and regenerating protoplasts in order to study its effects on wall biogenesis and cell morphogenesis. In the presence of the dye, the whole yeast cells grew and divided to form chains of connected cells showing aberrant wall structures on both sides of the septum. The wall-less protoplasts in solid medium with the dye exhibited an abnormal increase in volume, regeneration of aberrant cell walls and inability to carry out cytokinesis or protoplast reversion to cells. In liquid medium, the protoplasts synthesized glucan nets composed mainly of thin fibrils orientated at random, whereas normally, in the absence of dye, the nets consist of rather thick fibrils, 10 to 20 nm in width, assembled into broad ribbons. These fibrils are known to consist of triple 6/1 helical strands of (1 » 3)--d-glucan aggregated laterally in crystalline packing. The thin fibrils (c. 4 to 8 nm wide) can contain only a few triple helical strands (c. 1.6 nm wide) and are supposed to be prevented from further aggregation and crystallization by complexing with Congo red on their surfaces. Some loose triple 6/1 helical strands (native elementary fibrils) are also discernible. They represent the first native (1 » 3)--d-glucan elementary fibrils depicted by electron microscopy.The effects of Congo red on growth and the wall structure in normal cells and regenerating protoplasts in solid medium can be explained by the presence of a complex which the dye forms with (helical) chain parts of the glucan network and which results in a loss of rigidity by a blocked lateral interaction between the helices.In memory of Dr. D. R. Kreger of the University of Groningen, The Netherlands, who died on 7 January 1992  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号