共查询到20条相似文献,搜索用时 0 毫秒
1.
T C Mettenleiter L Zsak A S Kaplan T Ben-Porat B Lomniczi 《Journal of virology》1987,61(12):4030-4032
The virulence of deletion mutants of pseudorabies virus defective in the expression of glycoprotein gI, gp63, or both was tested in 1-day-old chickens and young pigs. In the absence of expression of gI, the virulence of a fully virulent laboratory strain, PrV(Ka), for 1-day-old chickens was reduced approximately fourfold. Inactivation of glycoprotein gp63 appeared also to affect the virulence of PrV(Ka) only slightly, as did inactivation of both gI and gp63. The level of reduction in virulence, however, was considerably more marked in Bartha 43/25aB4, a less virulent virus strain. Inactivation of the expression of gI in Bartha 43/25aB4 reduced virulence for chickens at least 100-fold. The results obtained when the virulence of the mutants for pigs was determined were compatible with those obtained for chickens. These results indicate that gI plays a role in virulence, but that it does so in conjunction with at least one other viral function (a function that is defective in Bartha 43/25aB4). 相似文献
2.
Identification and characterization of a novel structural glycoprotein in pseudorabies virus, gL. 总被引:5,自引:11,他引:5 下载免费PDF全文
Herpesvirus envelope glycoproteins play important roles in the interaction between virions and target cells. In the alphaherpesvirus pseudorabies virus (PrV), seven glycoproteins that all constitute homologs of glycoproteins found in herpes simplex virus type 1 (HSV-1) have been characterized, including a homolog of HSV-1 glycoprotein H (gH). Since HSV-1 gH is found associated with another essential glycoprotein, gL, we analyzed whether PrV also encodes a gL homolog. DNA sequence analysis of a corresponding part of the UL region adjacent to the internal inverted repeat in PrV strains Kaplan and Becker revealed the presence of two open reading frames (ORF). Deduced proteins exhibited homology to uracil-DNA glycosylase encoded by HSV-1 ORF UL2 (54% identity) and gL encoded by HSV-1 ORF UL1 (24% identity), respectively. To identify the PrV UL1 protein, rabbit antisera were prepared against two synthetic oligopeptides that were predicted by computer analysis to encompass antigenic epitopes. Sera against both peptides reacted in Western blots of purified virions with a 20-kDa protein. The specificity of the reaction was demonstrated by peptide competition. Since the PrV UL1 sequence did not reveal the presence of a consensus N-linked glycosylation site, concanavalin A affinity chromatography and enzymatic deglycosylation of virion glycoproteins were used to ascertain that the PrV UL1 product is O glycosylated. Therefore, we designated this protein PrV gL. Analysis of mutant PrV virions lacking gH showed that concomitantly with the absence of gH, gL was also missing in purified virions. In summary, we identified and characterized a novel structural PrV glycoprotein, gL, which represents the eighth PrV glycoprotein described. In addition, we show that virion location of PrV gL is dependent on the presence of PrV gH. 相似文献
3.
Stable rescue of a glycoprotein gII deletion mutant of pseudorabies virus by glycoprotein gI of bovine herpesvirus 1. 下载免费PDF全文
Glycoproteins homologous to glycoprotein B (gB) of herpes simplex virus constitute the most highly conserved group of herpesvirus glycoproteins. This strong conservation of amino acid sequences might be indicative of a common functional role. Indeed, gB homologs have been implicated in the processes of viral entry and virus-mediated cell-cell fusion. Recently, we showed that pseudorabies virus (PrV) lacking the essential gB-homologous glycoprotein gII could be propagated on a cell line expressing the gB homolog of bovine herpesvirus 1, gI(BHV-1), leading to a phenotypic complementation of the gII defect (I. Rauh, F. Weiland, F. Fehler, G. Keil, and T.C. Mettenleiter, J. Virol. 65:621-631, 1991). However, this pseudotypic virus could still replicate only on complementing cell lines, thereby limiting experimental approaches to analyze the effects of the gB exchange in detail. We describe here the construction and isolation of a PrV recombinant, 9112C2, that lacks gII(PrV) but instead stably carries and expresses the gene encoding gI(BHV-1). The recombinant is able to replicate on noncomplementing cells with growth kinetics and final titers similar to those of its gII-positive wild-type PrV parent. Neutralization tests and immunoprecipitation analyses demonstrated incorporation of gI(BHV-1) into 9112C2 virions with concomitant absence of gII(PrV). Analysis of in vitro host ranges of wild-type PrV, BHV-1, and recombinant 9112C2 showed that in cells of pig, rabbit, canine, monkey, or human origin, the plating efficiency of 9112C2 was similar to that of its PrV parent. Exchange of gII(PrV) for gI(BHV-1) in recombinant 9112C2 or by phenotypic complementation of gII- PrV propagated on gI(BHV-1)-expressing cell lines resulted in penetration kinetics intermediate between those of wild-type PrV and BHV-1. In conclusion, we report the first isolation of a viral recombinant in which a lethal glycoprotein mutation has been rescued by a homologous glycoprotein of a different herpesvirus. Our data show that in gII- PrV, gI(BHV-1) in vitro fully complements the lethal defect associated with lack of gII(PrV). These results conclusively demonstrate that gI(BHV-1) in a PrV background can execute all essential functions normally provided by gII(PrV). They also indicate that the origin of gB-homologous glycoproteins influences the penetration kinetics of herpesviruses. 相似文献
4.
U Wlfer V Kruft D Sawitzky H Hampl B Wittmann-Liebold K O Habermehl 《Journal of virology》1990,64(6):3122-3125
The glycoprotein complex gII of pseudorabies virus was isolated by immunoprecipitation with the monoclonal antibody M5, which was covalently linked to protein A-Sepharose. After sodium dodecyl sulfate-polyarylamide gel electrophoresis under reducing conditions and blotting onto poly(vinylidene difluoride) membrane, its subunits, gIIa, gIIb, and gIIc, were subjected to N-terminal sequencing. gIIa and gIIb start at position 59 and gIIc starts at position 503 according to the amino acid sequence deduced from the gene, indicating that there is one major protein (gIIa) which is cleaved into the two protein fragments gIIb and gIIc. Protein labeling with 14C-amino acids gave no indication that the three proteins (gIIa, gIIb, and gIIc) of the complex are present in equimolar ratios. It seems that gIIa is only a minor component of the complex, whereas gIIb and gIIc are contained in equimolar amounts. 相似文献
5.
Characterization and mapping of a nonessential pseudorabies virus glycoprotein. 总被引:2,自引:10,他引:2 下载免费PDF全文
Antigenic variants of pseudorabies virus (PRV) containing mutations in a viral glycoprotein with a molecular weight of 82,000 (gIII) were isolated by selecting for resistance to a complement-dependent neutralizing monoclonal antibody (MCA82-2) directed against gIII. These mutants were completely resistant to neutralization with MCA82-2 in the presence of complement. Two mutants selected for further studies either did not express gIII or expressed an improperly processed form of the glycoprotein. The mutations were also associated with an altered plaque morphology (syncytium formation). The gIII gene was mapped by marker rescue of a gIII- mutant with cloned restriction enzyme fragments to the long unique region of the PRV genome between 0.376 and 0.383 map units. This corresponds to the map location of a glycoprotein described by Robbins et al. (J. Mol. Appl. Gen. 2:485-496, 1984). Since gIII is nonessential for viral replication in cell culture and has several other characteristics in common with the herpes simplex virus glycoprotein gC, gIII may represent the PRV equivalent to herpes simplex virus gC. 相似文献
6.
An amino-terminal deletion mutation of pseudorabies virus glycoprotein gIII affects protein localization and RNA accumulation. 下载免费PDF全文
L W Enquist C L Keeler Jr A K Robbins J P Ryan M E Whealy 《Journal of virology》1988,62(10):3565-3573
We have constructed a pseudorabies virus mutant that contains virtually a complete deletion of the predicted signal sequence coding region for a nonessential envelope glycoprotein, gIII. No signal sequence mutants have been reported previously for a herpesvirus glycoprotein. Through endoglycosidase treatments and pulse-chase analysis, we have determined that the mutant gIII protein is not posttranslationally modified like the wild-type polypeptide, but rather is present as a single, stable species within the infected cell. The mutant polypeptide cannot be detected in the virus envelope, nor is it aberrantly localized to the tissue culture medium. Immunofluorescence studies have indicated that the mutant protein also is not localized to the surfaces of infected cells. In addition, Northern (RNA) and slot blot analyses, as well as in vitro translation experiments using infected-cell cytoplasmic RNA, have indicated that the mutant gIII allele is expressed at lower levels than the wild-type gene is. This is despite the fact that no alterations have been made upstream of the gIII coding sequence. From these results, it appears that the first 22 amino acids of the wild-type gIII protein define a necessary signal peptide that is responsible for at least the correct initiation of translocation and subsequent glycosylation of the gIII envelope glycoprotein within infected cells. 相似文献
7.
Viable deletion mutant in the medium and large T-antigen-coding sequences of the polyoma virus genome. 总被引:8,自引:16,他引:8 下载免费PDF全文
A polyoma virus mutant that maps in the early region between the known hr-t and ts-a mutants has been isolated. Its 66-base-pair deletion results in structural changes in both medium and large T-antigens but causes no substantial alterations in viral replication or cell transformation. 相似文献
8.
Role of glycoprotein gIII of pseudorabies virus in virulence. 总被引:14,自引:13,他引:1
T C Mettenleiter C Schreurs F Zuckermann T Ben-Porat A S Kaplan 《Journal of virology》1988,62(8):2712-2717
Deletion mutants of pseudorabies virus unable to express glycoprotein gIII, gI, or gp63 or double and triple mutants defective in these glycoproteins were constructed, and their virulence for day-old chickens inoculated intracerebrally was determined. Mutants of wild-type pseudorabies virus defective in glycoprotein gIII, gI, or gp63 were only slightly less virulent (at most, fivefold) for chickens than was the wild-type virus. However, mutants defective in both gIII and gI or gIII and gp63 were avirulent for chickens, despite their ability to grow in cell culture in vitro to about the same extent as mutants defective in gIII alone (which were virulent). These results show that gIII plays a role in virulence and does so in conjunction with gI or gp63. The effect of gIII on virulence was also shown when the resident gIII gene of variants of the Bartha vaccine strain (which codes for gIIIB) was replaced with a gIII gene derived from a virulent wild-type strain (which codes for gIIIKa); gIIIKa significantly enhanced the virulence of a variant of the Bartha strain to which partial virulence had been previously restored by marker rescue. Our results show that viral functions that play a role in the virulence of the virus (as measured by intracerebral inoculation of chickens) may act synergistically to affect the expression of virulence and that the ability of the virus to grow in cell culture is not necessarily correlated with virulence. 相似文献
9.
On the basis of DNA sequence analysis, it has recently been shown that the pseudorabies virus (PrV) genome encodes a protein homologous to glycoprotein H (gH) of other herpesviruses (B. Klupp and T.C. Mettenleiter, Virology 182:732-741, 1991). To obtain antibodies specific for gH(PrV), rabbits were immunized with synthetic peptides representing two potential epitopes on gH(PrV) as predicted by computer analysis. The antipeptide sera recognized the gH precursor polypeptide pgH translated in vitro from an in vitro-transcribed mRNA. Western blot (immunoblot) analyses of purified pseudorabies virions using these antisera revealed specific reactivity with a protein with an apparent molecular mass of 95 kDa. Specificity of the reaction could be demonstrated by competition experiments with respective peptides. Analysis of PrV deletion mutants defective in genes encoding known glycoproteins proved that gH(PrV) constitutes a novel PrV glycoprotein not previously found. Treatment of purified virion preparations with endoglycosidase H reduced the apparent molecular mass of gH(PrV) to 90 kDa, indicating the presence of N-linked high-mannose (or hybrid) carbohydrates in mature virions. Removal of all N-linked carbohydrates by N-glycosidase F resulted in a product of 76 kDa. In summary, our results demonstrate the existence of gH in PrV as a structural component of the virion. 相似文献
10.
Detailed analysis of the portion of the herpes simplex virus type 1 genome encoding glycoprotein C. 总被引:12,自引:69,他引:12 下载免费PDF全文
We previously showed that the right third of HindIII fragment L (0.59 to 0.65) of herpes simplex virus type 1 (HSV-1) encodes a family of mRNAs some members of which appear to be related by splicing. In the experiments described in this communication, we determined the nucleotide sequence of the DNA encoding this mRNA family and precisely located the mRNAs associated with this DNA sequence. The major mRNA species is unspliced and encoded by a 2.520-nucleotide region. Just upstream of the 5' end are TATA and CAT box sequences characteristic of HSV-1 promoters. The 3' end maps near a region containing a nominal polyadenylation signal. Three minor species (2,400, 2,200, and 1,900 bases, respectively) appear to share a very short leader sequence with the 5' end of the major mRNA and are then encoded by uninterrupted DNA sequences beginning about 100, 400, and 625 bases downstream of the 5' end of the major unspliced mRNA. These positions map at or very near positions which agree reasonably well with consensus splice acceptor sequences. The fourth mRNA is encoded by a contiguous 730-nucleotide sequence at the 3' end of the major unspliced mRNA and has its 5' end just downstream of recognizable TATA and CAT box sequences. We suggest that this mRNA is controlled by its own promoter. The nucleotide sequence data, in combination with the mRNA localization, demonstrate four potential polypeptides encoded by the region. The largest is 1,569 bases long and defines a 523-amino acid protein with sequence features characteristic of a glycoprotein. This was confirmed to be HSV-1 glycoprotein C by immune precipitation of the in vitro translation product of the major unspliced mRNA, performed with a polyspecific antibody to HSV-1 envelope glycoproteins (anti-env-1 serum), and by comparison of tryptic peptides of this translation product with those of authentic HSV-1 glycoprotein C. Polypeptides encoded by some of the minor species also were tentatively identified. 相似文献
11.
Mapping of the structural gene of pseudorabies virus glycoprotein A and identification of two non-glycosylated precursor polypeptides. 总被引:2,自引:16,他引:2 下载免费PDF全文
Cell-free translation of pseudorabies virus RNA isolated during the late phase of the infectious cycle yielded a variety of polypeptides. A monoclonal antibody directed against one of the major viral glycoproteins, gA, immunoprecipitated two polypeptides ranging in molecular weight from 78K to 83K. To localize the structural gene for gA, we used cloned BamHI fragments of the viral DNA to select specific mRNA species and immunoprecipitated their in vitro translation products with the anti-gA monoclonal antibody. This allowed us to map the genomic region encoding the mRNA for the gA within the short unique region of the viral genome on BamHI fragments 7 and 12. Additional polypeptides encoded by this region were characterized by their electrophoretic mobility. In three virus strains tested a similar, but strain-specific, pattern of the two gA precursors was found which was not dependent on the host cell or the state of infection after reaching the late phase. 相似文献
12.
13.
The Bartha vaccine strain of pseudorabies virus has a deletion in the short unique (Us) region of its genome which includes the genes that code for glycoproteins gI and gp63 (E. Petrovskis, J. G. Timmins, T. M. Gierman, and L. E. Post, J. Virol. 60:1166-1169, 1986). Restoration of an intact Us to the Bartha strain enhances its ability to be released from infected rabbit kidney cells and increases the size of the plaques formed on these cells (T. Ben-Porat, J. M. DeMarchi, J. Pendrys, R. A. Veach, and A. S. Kaplan, J. Virol. 57:191-196, 1986). To determine which gene function plays a role in virus release from rabbit kidney cells, deletions were introduced into the genomes of both wild-type virus and the "rescued" Bartha strain (Bartha strain to which an intact Us had been restored) that abolish the expression of either the gI gene alone or both gI and gp63 genes. The effect of these deletions on the phenotype of the viruses was studied. Deletion mutants of wild-type virus defective in either gI or gI and gp63 behave like wild-type virus with respect to virus release and plaque size on rabbit kidney cells. Deletion of gI from the rescued Bartha strain, however, strongly affects virus release and causes a decrease in plaque size. We conclude that gI affects virus release but that at least one other viral function also affects this process. This function is defective in the Bartha strain but not in wild-type virus; in its absence gI is essential to efficient release of the virus from rabbit kidney cells. 相似文献
14.
Interaction of glycoprotein gIII with a cellular heparinlike substance mediates adsorption of pseudorabies virus. 总被引:9,自引:37,他引:9 下载免费PDF全文
T C Mettenleiter L Zsak F Zuckermann N Sugg H Kern T Ben-Porat 《Journal of virology》1990,64(1):278-286
Glycoprotein gIII is one of the major envelope glycoproteins of pseudorabies virus (PrV) (Suid herpesvirus 1). Although it is dispensable for viral growth, it has been shown to play a prominent role in the attachment of the virus to target cells, since gIII- deletion mutants are severely impaired in adsorption (C. Schreurs, T. C. Mettenleiter, F. Zuckermann, N. Sugg, and T. Ben-Porat, J. Virol. 62:2251-2257, 1988). We show here that during the process of adsorption of PrV, the viral glycoprotein gIII interacts with a cellular heparinlike receptor. This conclusion is based on the following findings. (i) Heparin inhibits plaque formation of PrV by preventing the adsorption of wild-type virions to target cells. However, heparin does not interfere with the plaque formation of PrV mutants that lack glycoprotein gIII. (ii) Wild-type virions readily adsorb to matrix-bound heparin, whereas gIII- mutants do not. (iii) Pretreatment of cells with heparinase reduces considerably the ability of wild-type PrV to adsorb to these cells and to form plaques but does not negatively affect gIII- mutants. (iv) Glycoprotein gIII binds to heparin and appears to do so in conjunction with glycoprotein gII. Although heparin significantly reduces the adsorption of wild-type virus to all cell types tested, quantitative differences in the degree of inhibition of virus adsorption by heparin to different cell types were observed. Different cell types also retain their abilities to adsorb wild-type PrV to a different extent after treatment with heparinase and differ somewhat in their relative abilities to adsorb gIII- mutants. Our results show that while the primary pathway of adsorption of wild-type PrV to cells occurs via the interaction of viral glycoprotein gIII with a cellular heparinlike receptor, an alternative mode of adsorption, which is not dependent on either component, exists. Furthermore, the relative abilities of different cell types to adsorb PrV by the gIII-dependent or the alternative mode vary to some extent. 相似文献
15.
Adaptability in herpesviruses: glycoprotein D-independent infectivity of pseudorabies virus. 总被引:2,自引:4,他引:2 下载免费PDF全文
Initial contact between herpesviruses and host cells is mediated by virion envelope glycoproteins which bind to cellular receptors. In several alphaherpesviruses, the nonessential glycoprotein gC has been found to interact with cell surface proteoglycans, whereas the essential glycoprotein gD is involved in stable secondary attachment. In addition, gD is necessary for penetration, which involves fusion between virion envelope and cellular cytoplasmic membrane. As opposed to other alphaherpesvirus gD homologs, pseudorabies virus (PrV) gD is not required for direct viral cell-to-cell spread. Therefore, gD- PrV can be passaged in noncomplementing cells by cocultivating infected and noninfected cells. Whereas infectivity was found to be strictly cell associated in early passages, repeated passaging resulted in the appearance of infectivity in the supernatant, finally reaching titers as high as 10(7) PFU/ml (PrV gD- Pass). Filtration experiments indicated that this infectivity was not due to the presence of infected cells, and the absence of gD was verified by Southern and Western blotting and by virus neutralization. Infection of bovine kidney cells constitutively expressing PrV gD interfered with the infectivity of wild-type PrV but did not inhibit that of PrV gD- Pass. Similar results were obtained after passaging of a second PrV mutant, PrV-376, which in addition to gD also lacks gG, gI, and gE. Penetration assays demonstrated that PrV gD- Pass entered cells much more slowly than wild-type PrV. In summary, our data demonstrate the existence of a gD-independent mode of initiation of infection in PrV and indicate that the essential function(s) that gD performs in wild-type PrV infection can be compensated for after passaging. Therefore, regarding the requirement for gD, PrV seems to be intermediate between herpes simplex virus type 1, in which gD is necessary for penetration and cell-to-cell spread, and varicella-zoster virus (VZV), which lacks a gD gene. Our data show that the relevance of an essential protein can change under selective pressure and thus demonstrate a way in which VZV could have evolved from a PrV-like ancestor. 相似文献
16.
Simultaneous deletion of pseudorabies virus tegument protein UL11 and glycoprotein M severely impairs secondary envelopment 下载免费PDF全文
The pseudorabies virus (PrV) proteins UL11, glycoprotein E (gE), and gM are involved in secondary envelopment of tegumented nucleocapsids in the cytoplasm. To assess the relative contributions of these proteins to the envelopment process, virus mutants with deletions of either UL11, gM, or gE as well as two newly constructed mutant viruses with simultaneous deletions of UL11 and gE or of UL11 and gM were analyzed in cell culture for their growth phenotype. We show here that simultaneous deletion of UL11 and gE reduced plaque size in an additive manner over the reduction observed by deletion of only UL11 or gE. However, one-step growth was not further impaired beyond the level of the UL11 deletion mutant. Moreover, in electron microscopic analyses PrV-DeltaUL11/gE exhibited a phenotype similar to that of the UL11 mutant virus. In contrast, plaque formation was virtually abolished by the simultaneous absence of UL11 and gM, and one-step growth was significantly reduced. Electron microscopy showed the presence of huge intracytoplasmic inclusions in PrV-DeltaUL11/gM-infected cells, with a size reaching 3 micro m and containing nucleocapsids embedded in tegument. We hypothesize that UL11 and gM are involved in different steps during secondary envelopment and that simultaneous deletion of both interrupts both processes, resulting in the observed drastic impairment of secondary envelopment. 相似文献
17.
Replication and virulence of pseudorabies virus mutants lacking glycoprotein gX. 总被引:1,自引:10,他引:1 下载免费PDF全文
Pseudorabies virus (PRV) glycoprotein gX accumulates in the medium of infected cells. In an attempt to study the function of gX, two viruses were constructed that lacked a functional gX gene. One virus, PRV delta GX1, was derived by insertion of the herpes simplex virus thymidine kinase gene into the gX-coding region. The other virus, PRV delta GXTK-, was derived by subsequent deletion of the inserted herpes simplex virus thymidine kinase gene. Both viruses replicated in cell cultures but produced no gX. Furthermore, PRV delta GX1 was capable of killing mice with a 50% lethal dose of less than 100 PFU. 相似文献
18.
19.
Identification and characterization of pseudorabies virus glycoprotein gM as a nonessential virion component. 总被引:3,自引:5,他引:3 下载免费PDF全文
Sequence analysis within BamHI fragment 3 of the pseudorabies virus (PrV) genome revealed an open reading frame homologous to the UL10 gene of herpes simplex virus. A rabbit antiserum directed against a synthetic oligopeptide representing the carboxy-terminal 18 amino acids of the predicted UL10 product recognized a major 45-kDa protein in lysates of purified Pr virions. In addition, a second protein of 90 kDa which could represent a dimeric form was observed. Enzymatic deglycosylation showed that the PrV UL10 protein is N glycosylated. Therefore, it was designated PrV gM according to its homolog in herpes simplex virus. A PrV mutant lacking ca. 60% of UL10 coding sequences was able to productively replicate on noncomplementing cells, demonstrating that PrV gM is not required for viral replication in cell culture. However, infectivity of the mutant virus was reduced and penetration was delayed, indicating a modulatory role of PrV gM in the initiation of infection. 相似文献
20.
Early interactions of pseudorabies virus with host cells: functions of glycoprotein gIII. 总被引:1,自引:10,他引:1 下载免费PDF全文
Adsorption of mutants of pseudorabies virus (PrV) lacking glycoprotein gIII is slower and less efficient than is that of wild-type virus (C. Schreurs, T. C. Mettenleiter, F. Zuckermann, N. Snugg, and T. Ben-Porat, J. Virol. 62:2251-2257, 1988). To ascertain the functions of gIII in the early interactions of PrV with its host cells, we compared the effect on wild-type virus and gIII- mutants of antibodies specific for various PrV proteins. Although adsorption of wild-type virus was inhibited by polyvalent antisera against PrV as well as by sera against gIII and gp50 (but not sera against gII), adsorption of the gIII- mutants was not inhibited by any of these antisera. These results suggest that, in contrast to adsorption of wild-type PrV, the initial interactions of the gIII- mutants with their host cells are not mediated by specific viral proteins. Furthermore, competition experiments showed that wild-type Prv and the gIII- mutants do not compete for attachment to the same cellular components. These findings show that the initial attachment of PrV to its host cells can occur by a least two different modes--one mediated by glycoprotein gIII and the other unspecific. gIII- mutants not only did not adsorb as readily to cells as did wild-type virus but also did not penetrate cells as rapidly as did wild-type virus after having adsorbed. Antibodies against gIII did not inhibit the penetration of adsorbed virus (wild type or gIII-), whereas antibodies against gII and gp50 did. It is unlikely, therefore, that gIII functions directly in virus penetration. Our results support the premises that efficient adsorption of PrV to host cell components is mediated either directly or indirectly by gIII (or a complex of viral proteins for which the presence of gIII is functionally essential) and that this pathway of adsorption promotes the interactions of other viral membrane proteins with the appropriate cellular proteins, leading to the rapid penetration of the virus into the cells. The slower penetration of the gIII- mutants than of wild-type PrV appears to be related to the slower and less efficient alternative mode of adsorption of PrV that occurs in the absence of glycoprotein gIII. 相似文献