首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The g = 4 and g = 2 multiline EPR signals arising from the Mn cluster of the photosynthetic oxygen-evolving complex (OEC) in the S2 state were studied in preparations of oriented photosystem II (PSII) membranes. The ammonia-modified forms of these two signals were also examined. The g = 4 signal obtained in oriented PSII membranes treated with NH4Cl at pH 7.5 displays at least 16 partially resolved Mn hyperfine transitions with a regular spacing of 36 G [Kim, D.H., Britt, R.D., Klein, M.P., & Sauer, K. (1990) J. Am. Chem. Soc. 112, 9389-9391]. The observation of this g = 4 "multiline signal" provides strong spectral evidence for a tetranuclear Mn origin for the g = 4 signal and is strongly suggestive of a model in which different spin state configurations of a single exchange-coupled Mn cluster give rise to the g = 4 and g = 2 multiline signals. A simulation shows the observed spectrum to be consistent with an S = 3/2 or S = 5/2 state of a tetranuclear Mn complex. The resolution of hyperfine structure on the NH3-modified g = 4 signal is strongly dependent on sample orientation, with no resolved hyperfine structure when the membrane normal is oriented perpendicular to the applied magnetic field. The dramatic NH3-induced changes in the g = 4 signal resolved in the spectra of oriented samples are suggestive that NH3 binding at the Cl- site of the OEC may represent direct coordination of NH3 to the Mn cluster.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Disagreement has remained about the spin state origin of the g = 4.1 EPR signal observed at X-band (9 GHz) from the S2 oxidation state of the Mn cluster of Photosystem II. In this study, the S2 state of PSII-enriched membrane fragments was examined at Q-band (34 GHz), with special interest in low-field signals. Light-induced signals at g = 3.1 and g = 4.6 were observed. The intensity of the signal at g = 3.1 was enhanced by the presence of F- and suppressed by the presence of 5% ethanol, indicating that it was from the same spin system as the X-band signal at g = 4.1. The Q-band signal at g = 4.6 was also enhanced by F-, but not suppressed by 5% ethanol, making its identity less clear. Although it can be accounted for by the same spin system, other sources for the signal are considered. The observation of the signal at g = 3.1 agrees well with a previous study at 15.5 GHz, in which the X-band g = 4.1 signal was proposed to arise from the middle Kramers doublet of a near rhombic S = 5/2 system. Zero-field splitting values of D = 0.455 cm(-1) and E/D = 0.25 are used to simulate the spectra.  相似文献   

3.
We investigate the electronic state of Mn(III) center with an integer electron spin S=2 in the manganese(III) protoporphyrin IX reconstituted myoglobin, Mn(III)Mb, by means of multi-frequency electron paramagnetic resonance (MFEPR) spectroscopy. Using a bimodal cavity resonator, X-band EPR signal from Mn(III) center in the Mn(III)Mb was observed near zero-field region. The temperature dependence of this signal indicates a negative axial zero-field splitting value, D<0. The EPR analysis shows that this signal is attributed to the transition between the closely spaced M(s)=+/-2 energy levels for the z-axis, corresponding to the heme normal. To determine the zero-field splitting (ZFS) parameters, EPR experiments on the Mn(III)Mb were performed at various temperatures for some frequencies between 30GHz and 130GHz and magnetic fields up to 14T. We observed several EPR spectra which are analyzed with a spin Hamiltonian for S=2, yielding highly accurate ZFS parameters; D=-3.79cm(-1) and |E|=0.08cm(-1) for an isotropic g=2.0. These ZFS parameters are compared with those in some Mn(III) complexes and Mn(III) superoxide dismutase (SOD), and effects on these parameters by the coordination and the symmetry of the ligands are discussed. To the best of our knowledge, these EPR spectra in the Mn(III)Mb are the very first MFEPR spectra at frequencies higher than Q-band in a metalloprotein with an integer spin.  相似文献   

4.
The parallel-mode electron paramagnetic resonance (EPR) spectrum of the S(1) state of the oxygen-evolving complex (OEC) shows a multiline signal centered around g=12, indicating an integer spin system. The series of [Mn(2)(2-OHsalpn)(2)] complexes were structurally characterized in four oxidation levels (Mn(II)(2), Mn(II)Mn(III), Mn(III)(2), and Mn(III)Mn(IV)). By using bulk electrolysis, the [Mn(III)Mn(IV)(2-OHsalpn)(2)(OH)] is oxidized to a species that contains Mn(IV) oxidation state as detected by X-ray absorption near edge spectroscopy (XANES) and that can be formulated as Mn(IV)(4) tetramer. The parallel-mode EPR spectrum of this multinuclear Mn(IV)(4) complex shows 18 well-resolved hyperfine lines center around g=11 with an average hyperfine splitting of 36 G. This EPR spectrum is very similar to that found in the S(1) state of the OEC. This is the first synthetic manganese model complex that shows an S(1)-like multiline spectrum in parallel-mode EPR.  相似文献   

5.
W F Beck  G W Brudvig 《Biochemistry》1986,25(21):6479-6486
The binding of several primary amines to the O2-evolving center (OEC) of photosystem II (PSII) has been studied by using low-temperature electron paramagnetic resonance (EPR) spectroscopy of the S2 state. Spinach PSII membranes treated with NH4Cl at pH 7.5 produce a novel S2-state multiline EPR spectrum with a 67.5-G hyperfine line spacing when the S2 state is produced by illumination at 0 degrees C [Beck, W. F., de Paula, J. C., & Brudvig, G. W. (1986) J. Am. Chem. Soc. 108, 4018-4022]. The altered hyperfine line spacing and temperature dependence of the S2-state multiline EPR signal observed in the presence of NH4Cl are direct spectroscopic evidence for coordination of one or more NH3 molecules to the Mn site in the OEC. In contrast, the hyperfine line pattern and temperature dependence of the S2-state multiline EPR spectrum in the presence of tris(hydroxymethyl)aminomethane, 2-amino-2-ethyl-1,3-propanediol, or CH3NH2 at pH 7.5 were the same as those observed in untreated PSII membranes. We conclude that amines other than NH3 do not readily bind to the Mn site in the S2 state because of steric factors. Further, NH3 binds to an additional site on the OEC, not necessarily located on Mn, and alters the stability of the S2-state g = 4.1 EPR signal species. The effects on the intensities of the g = 4.1 and multiline EPR signals as the NH3 concentration was varied indicate that both EPR signals arise from the same paramagnetic site and that binding of NH3 to the OEC affects an equilibrium between two configurations exhibiting the different EPR signals.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The S2 state electron paramagnetic resonance (EPR) multiline signal of Photosystem II has been simulated at Q-band (35 Ghz), X-band (9 GHz) and S-band (4 GHz) frequencies. The model used for the simulation assumes that the signal arises from an essentially magnetically isolated MnIII-MnIV dimer, with a ground state electronic spin ST = 1/2. The spectra are generated from exact numerical solution of a general spin Hamiltonian containing anisotropic hyperfine and quadrupolar interactions at both Mn nuclei. The features that distinguish the multiline from the EPR spectra of model manganese dimer complexes (additional width of the spectrum (195 mT), additional peaks (22), internal "superhyperfine" structure) are plausibly explained assuming an unusual ligand geometry at both Mn nuclei, giving rise to normally forbidden transitions from quadrupole interactions as well as hyperfine anisotropy. The fitted parameters indicate that the hyperfine and quadrupole interactions arise from Mn ions in low symmetry environments, corresponding approximately to the removal of one ligand from an octahedral geometry in both cases. For a quadrupole interaction of the magnitude indicated here to be present, the MnIII ion must be 5-coordinate and the MnIV 5-coordinate or possibly have a sixth, weakly bound ligand. The hyperfine parameters indicate a quasi-axial anisotropy at MnIII, which while consistent with Jahn-Teller distortion as expected for a d4 ion, corresponds here to the unpaired spin being in the ligand deficient, z direction of the molecular reference axis. The fitted parameters for MnIV are very unusual, showing a high degree of anisotropy not expected in a d3 ion. This degree of anisotropy could be qualitatively accounted for by a histidine ligand providing pi backbonding into the metal dxy orbital, together with a weakly bound or absent ligand in the x direction.  相似文献   

7.
During dark adaptation, a change in the O2-evolving complex (OEC) of spinach photosystem II (PSII) occurs that affects both the structure of the Mn site and the chemical properties of the OEC, as determined from low-temperature electron paramagnetic resonance (EPR) spectroscopy and O2 measurements. The S2-state multiline EPR signal, arising from a Mn-containing species in the OEC, exhibits different properties in long-term (4 h at 0 degrees C) and short-term (6 min at 0 degree C) dark-adapted PSII membranes or thylakoids. The optimal temperature for producing this EPR signal in long-term dark-adapted samples is 200 K compared to 170 K for short-term dark-adapted samples. However, in short-term dark-adapted samples, illumination at 170 K produces an EPR signal with a different hyperfine structure and a wider field range than does illumination at 160 K or below. In contrast, the line shape of the S2-state EPR signal produced in long-term dark-adapted samples is independent of the illumination temperature. The EPR-detected change in the Mn site of the OEC that occurs during dark adaptation is correlated with a change in O2 consumption activity of PSII or thylakoid membranes. PSII membranes and thylakoid membranes slowly consume O2 following illumination, but only when a functional OEC and excess reductant are present. We assign this slow consumption of O2 to a catalytic reduction of O2 by the OEC in the dark. The rate of O2 consumption decreases during dark adaptation; long-term dark-adapted PSII or thylakoid membranes do not consume O2 despite the presence of excess reductant.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The Mn(4) complex which is involved in water oxidation in photosystem II is known to exhibit three types of EPR signals in the S(2) state, one of the five redox states of the enzyme cycle: a multiline signal (spin 1/2), signals at g5 (spin 5/2) and a signal at g=4.1 (or g=4.25). The g=4.1 signal could be generated under two distinct sets of conditions: either by illumination at room temperature or at 200 K in certain experimental conditions (g4(S) signal) or by near-infrared illumination between approximately 77 and approximately 160 K of the S(2)-multiline state (g4(IR) signal). The two g=4.1 signals arise from states which have quite different stability in terms of temperature. In the present work we have compared these two signals in order to test if they originate from the same or from different chemical origins. The microwave power saturation properties of the two signals measured at 4.2 K were found to be virtually identical. Their temperature dependencies measured at non-saturating powers were also identical. The presence of Curie law behavior for the g4(S) and g4(IR) signals indicates that the states responsible for both signals are ground states. The orientation dependence, anisotropy and resolved hyperfine structure of the two g4 signals were also found to be virtually indistinguishable. We have been unable to confirm the behavior reported earlier indicating that the g4(S) signal is an excited state, nor were we able to confirm the presence of signal from a higher excited state in samples containing the g4(S), nor a radical signal in samples containing the g4(IR). These findings are best interpreted assuming that the two signals have a common origin i.e. a spin 5/2 ground state arising from a magnetically coupled Mn-cluster of 4 Mn ions.  相似文献   

9.
The alternative nitrogenase of Rhodobacter capsulatus, isolated from a nifHDK deletion mutant, has been purified to near homogeneity and identified as an 'iron only' nitrogenase. The dithionite-reduced component 1 ('FeFe protein') of this enzyme showed an EPR spectrum consisting of two components: a minor S = 1/2 signal at g = 1.93 and a very characteristic S = 3/2 signal of near-stoichiometric intensity at g = 5.44. This resonance is very close to the highest possible g value (g = 5.46) for the coinciding two intradoublet subspectra of an S = 3/2 system of maximal rhombicity (E/D = 0.33). The deviation from axial symmetry (increasing E/D) correlates with the stability, activity and substrate selectivity of the different (Mo, V, Fe) nitrogenases.  相似文献   

10.
Mn2+-ESR spectra of soybean, wax bean and lima bean agglutinin at Q- and X-band frequencies show nearly axially symmetric zero field splitting (ZFS); the dominant anisotropic term of the spin hamiltonian is the quadratic ZFS interaction. There is a relatively large distribution of ZFS parameters. No effects of specific inhibitor (N-acetylgalactosamine) on the soybean agglutinin spectrum were observed. The stoichiometric complex obtained on addition of Mn2+ to a Mn2+-free sample of this protein has a spectrum similar to that of the native protein. The small changes in the spectrum are interpreted in terms of a wider distribution of the ZFS parameters at the Mn binding site. Addition of Ca2+ to Mn2+-soybean agglutinin sharpens the lines, possibly because Ca2+ increases the rigidity of the complex.  相似文献   

11.
Using low frequency 2 to 4 GHz EPR at 10 K, we have resolved previously unseen hyperfine structure associated with the EPR-detectable copper signal of cytochrome c oxidase. The observed hyperfine structure appears consistent with hyperfine coupling to copper; although to account for all of the observed structure, an additional magnetic interaction is required as well. This work points out the utility of the 2 to 4 GHz EPR technique for resolving electronic hyperfine structural information from copper and possibly other paramagnetic sites in biomolecules when random variation in electronic g values is a cause of EPR line-broadening.  相似文献   

12.
EPR spectroscopy at 95 GHz was used to characterize the dynamics at the Mn(2+) binding site in single crystals of the saccharide-binding protein concanavalin A. The zero-field splitting (ZFS) tensor of the Mn(2+) was determined from rotation patterns in the a-c and a-b crystallographic planes, acquired at room temperature and 4.5 K. The analysis of the rotation patterns showed that while at room temperature there is only one type of Mn(2+) site, at low temperatures two types of Mn(2+) sites, not related by any symmetry, are distinguished. The sites differ in the ZFS parameters D and E and in the orientation of the ZFS tensor with respect to the crystallographic axes. Temperature-dependent EPR measurements on a crystal oriented with its crystallographic a axis parallel to the magnetic field showed that as the temperature increases, the two well-resolved Mn(2+) sextets gradually coalesce into a single sextet at room temperature. The line shape changes are characteristic of a two-site exchange. This was confirmed by simulations which gave rates in the range of 10(7)-10(8) s(-1) for the temperature range of 200-266 K and an activation energy of 23.8 kJ/mol. This dynamic process was attributed to a conformational equilibrium within the Mn(2+) binding site which freezes into two conformations at low temperatures.  相似文献   

13.
Low-temperature EPR spectroscopy with frequencies between 95 and 345 GHz and magnetic fields up to 12 T has been used to study metal sites in proteins or inorganic complexes and free radicals. The high-field EPR method was used to resolve g-value anisotropy by separating it from overlapping hyperfine couplings. The presence of hydrogen bonding interactions to the tyrosyl radical oxygens in ribonucleotide reductases were detected. At 285 GHz the g-value anisotropy from the rhombic type 2 Cu(II) signal in the enzyme laccase has its g-value anisotropy clearly resolved from slightly different overlapping axial species. Simple metal site systems with S>1/2 undergo a zero-field splitting, which can be described by the spin Hamiltonian. From high-frequency EPR, the D values that are small compared to the frequency (high-field limit) can be determined directly by measuring the distance of the outermost signal to the center of the spectrum, which corresponds to (2 S-1)* mid R: Dmid R: For example, D values of 0.8 and 0.3 cm(-1) are observed for S=5/2 Fe(III)-EDTA and transferrin, respectively. When D values are larger compared to the frequency and in the case of half-integer spin systems, they can be obtained from the frequency dependence of the shifts of g(eff), as observed for myoglobin in the presence ( D=5 cm(-1)) or absence ( D=9.5 cm(-1)) of fluoride. The 285 and 345 GHz spectra of the Fe(II)-NO-EDTA complex show that it is best described as a S=3/2 system with D=11.5 cm(-1), E=0.1 cm(-1), and g(x)= g(y)= g(z)=2.0. Finally, the effects of HF-EPR on X-band EPR silent states and weak magnetic interactions are demonstrated.  相似文献   

14.
Amino acid residue D1-Asp(170) of the D1-polypeptide of photosystem II was previously shown to be implicated in the binding and oxidation of the first manganese to be assembled into the Mn(4)Ca cluster of the oxygen-evolving complex (OEC). According to recent x-ray crystallographic structures of photosystem II, D1-Glu(333) is proposed to participate with D1-Asp(170) in the coordination of Mn4 of the OEC. Other residues in the C-terminal region of the D1-polypeptide are proposed to coordinate nearby manganese of the cluster. Site-directed replacements in Synechocystis sp. PCC 6803 at D1-His(332), D1-Glu(333), D1-Asp(342), D1-Ala(344), and D1-Ser(345) were examined with regard to their ability to influence the binding and oxidation of the first manganese in manganese-depleted photosystem II core complexes. Direct and indirect measurements reveal in all mutants, but most marked in D1-Glu(333) replaced by His, an impaired ability of Mn(2+) to reduce Y(Z)., indicating a reduced ability (elevated K(m)) compared with WT to bind and oxidize the first manganese of the OEC. The effect on the K(m) of these mutations is, however, considerably weaker than some of those constructed at D1-Asp(170) (replacement by Asn, Ala, and Ser). These observations imply that the C-terminal residues ultimately involved in manganese coordination contribute to the high affinity binding at D1-Asp(170) likely through electrostatic interactions. That these residues are far from D1-Asp(170) in the primary structure of the D1-polypeptide, imply that the C terminus of the D1-polypeptide is already close to its mature conformation at the first stages of assembly of the Mn(4)Ca cluster.  相似文献   

15.
X-band (9.1 GHz) and S-band (3.4 GHz) electron paramagnetic resonance (EPR) spectra for particulate methane monooxygenase (pMMO) in whole cells from Methylococcus capsulatus (Bath) grown on (63)Cu and (15)N were obtained and compared with previously reported spectra for pMMO from Methylomicrobium album BG8. For both M. capsulatus (Bath) and M. album BG8, two nearly identical Cu(2+) EPR signals with resolved hyperfine coupling to four nitrogens are observed. The EPR parameters for pMMO from M. capsulatus (Bath) (g( parallel) = 2.244, A( parallel) = 185 G, and A(N) = 19 G for signal one; g( parallel) = 2.246, A( parallel) = 180 G, and A(N) = 19 G for signal two) and for pMMO from M. album BG8 (g( parallel) = 2.243, A( parallel) = 180 G, and A(N) = 18 G for signal one; g( parallel) = 2. 251, A( parallel) = 180 G, and A(N) = 18 G for signal two) are very similar and are characteristic of type 2 Cu(2+) in a square planar or square pyramidal geometry. In three-pulse electron spin echo envelope modulation (ESEEM) data for natural-abundance samples, nitrogen quadrupolar frequencies due to the distant nitrogens of coordinated histidine imidazoles were observed. The intensities of the quadrupolar combination bands indicate that there are three or four coordinated imidazoles, which implies that most, if not all, of the coordinated nitrogens detected in the continuous wave spectra are from histidine imidazoles.  相似文献   

16.
Simulation of X- and Q-band electron paramagnetic resonance (EPR) spectra of an unsymmetric dinuclear [Mn(2)(II,III)L(mu-OAc)(2)]ClO(4) complex (1), (L is the dianion of 2-{[N,N-bis(2-pyridylmethyl)amino]methyl}-6-{[N-(3,5-di-tert-butyl-2-hydroxybenzyl)-N-(2-pyridylmethyl)amino]methyl}-4-methylphenol) was performed using one consistent set of simulation parameters. Rhombic g-tensors and hyperfine tensors were necessary to obtain satisfactory simulation of the EPR spectra. The anisotropy of the effective hyperfine tensors of each individual (55)Mn ion was further analyzed in terms of intrinsic hyperfine tensors. Detailed analysis shows that the hyperfine anisotropy of the Mn(III) ion is a result of the Jahn-Teller effect and thus an inherent character. In contrast, the anomalous hyperfine anisotropy of the Mn(II) ion is attributed as being transferred from the Mn(III) ion through the spin exchange interaction. The anisotropy parameter for the Mn(II) is deduced as D(II)=-1.26+/-0.2cm(-1). This is the first reported D(II) value for a Mn(II) ion in a weakly exchange coupled mixed-valence Mn(2)(II,III) complex with a bis-mu-acetato-bridge. The [see text] electronic configuration of the Mn(III) ion in 1 is revealed by the negative sign of its intrinsic hyperfine tensor anisotropy, Deltaa(III)=a(z)-a(x,y)=-46cm(-1). Lower spectral resolution of the Q-band EPR spectrum as compared to the X-band EPR spectrum is associated to large line width broadening of the x- and y-components in contrast to the z-component. The origins of the unequal distribution of line width between the z- and x-, y-components are discussed.  相似文献   

17.
The characteristic Mn hyperfine 'multiline' signal exhibited in the S2 state of the oxygen-evolving complex (OEC) complex of Photosystem II (PSII) has been shown to be heterogeneous in character. In this study, we have explored the effects that influence the proportions of the two forms of the S2 state multiline signal present in any sample. The narrow form of the signal is lost upon storage (weeks) at 77 K, whereas the broad form remains. In particular, we explore the roles of ethanol and methanol as well as effects of the second turnover of the enzyme on storage of the sample at 77 K. We find that in samples containing methanol, the narrow form may predominate upon the first flash, but the broad form predominates on the fifth flash and also in samples containing ethanol.  相似文献   

18.
Biogenesis and repair of the inorganic core (Mn4CaO(x)Cl(y)), in the water-oxidizing complex of photosystem II (WOC-PSII), occurs through the light-induced (re)assembly of its free elementary ions and the apo-WOC-PSII protein, a reaction known as photoactivation. Herein, we use electron paramagnetic resonance (EPR) spectroscopy to characterize changes in the ligand coordination environment of the first photoactivation intermediate, the photo-oxidized Mn3+ bound to apo-WOC-PSII. On the basis of the observed changes in electron Zeeman (g(eff)), 55Mn hyperfine (A(Z)) interaction, and the EPR transition probabilities, the photogenerated Mn3+ is shown to exist in two pH-dependent forms, differing in terms of strength and symmetry of their ligand fields. The transition from an EPR-invisible low-pH form to an EPR-active high-pH form occurs by deprotonation of an ionizable ligand bound to Mn3+, implicated to be a water molecule: [Mn3+ (OH2)] <--> [Mn3+ (OH-)]. In the absence of Ca2+, the EPR-active Mn3+ exhibits a strong pH dependence (pH approximately 6.5-9) of its ligand-field symmetry (rhombicity Delta delta = 10%, derived from g(eff)) and A(Z) (DeltaA(Z) = 22%), attributable to a protein conformational change. Binding of Ca2+ to its effector site eliminates this pH dependence and locks both g(eff) and A(Z) at values observed in the absence of Ca2+ at alkaline pH. Thus, Ca2+ directly controls the coordination environment and binds close to the high-affinity Mn3+, probably sharing a bridging ligand. This Ca2+ effect and the pH-induced changes are consistent with the ionization of the bridging water molecule, predicting that [Mn3+-(mu-O(-2))-Ca2+] or [Mn3+-(mu-OH(-))2-Ca2+] is the first light intermediate in the presence of Ca2+. The formation of this intermediate templates the apo-WOC-PSII for the subsequent rapid cooperative binding and photo-oxidation of three additional Mn2+ ions, forming the active water oxidase.  相似文献   

19.
Peterson S  Ahrling KA  Styring S 《Biochemistry》1999,38(46):15223-15230
The oxygen evolving complex (OEC) of photosystem II (PSII) gives rise to manganese-derived electron paramagnetic resonance (EPR) signals in the S0 and S2 oxidation states. These signals exhibit different microwave power saturation behavior between 4 and 10 K. Below 8 K, the S0 state EPR signal is a faster relaxer than the S2 multiline signal, but above 8 K, the S0 signal is the slower relaxer of the two. The different temperature dependencies of the relaxation of the S0 and S2 ground-state Mn signals are due to differences in the spin-lattice relaxation process. The dominating spin-lattice relaxation mechanism is concluded to be a Raman mechanism in the S0 state, with a T(4.1) temperature dependence of the relaxation rate. It is proposed that the relaxation of the S2 state arises from a Raman mechanism as well, with a T(6.8) temperature dependence of the relaxation rate, although the data also fit an Orbach process. If both signals relax through a Raman mechanism, the different exponents are proposed to reflect structural differences in the proteins surrounding the Mn cluster between the S0 and S2 states. The saturation of SII(slow) from the Y(D)(ox) radical on the D2 protein was also studied, and found to vary between the S0 and the S2 states of the enzyme in a manner similar to the EPR signals from the OEC. Furthermore, we found that the S2 multiline signal in the second turnover of the enzyme is significantly more difficult to saturate than in the first turnover. This suggests differences in the OEC between the first and second cycles of the enzyme. The increased relaxation rate may be caused by the appearance of a relaxation enhancer, or it may be due to subtle structural changes as the OEC is brought into an active state.  相似文献   

20.
Methionine aminopeptidases (MetAPs) are ubiquitous metallohydrolases that remove the N-terminal methionine from nascent polypeptide chains. Although various crystal structures of MetAP in the presence of inhibitors have been solved, the structural aspects of the product-bound step has received little attention. Both perpendicular- and parallel-mode electron paramagnetic resonance (EPR) spectra were recorded for the Mn(II)-loaded forms of the type-I (Escherichia coli) and type-II (Pyrococcus furiosus) MetAPs in the presence of the reaction product l-methionine (L-Met). In general, similar EPR features were observed for both [MnMn(EcMetAP-I)]-L-Met and [MnMn(PfMetAP-II)]-L-Met. The observed perpendicular-mode EPR spectra consisted of a six-line hyperfine pattern at g = 2.03 (A = 8.8 mT) with less intense signals with eleven-line splitting at g = 2.4 and 1.7 (A = 4.4 mT). The former feature results from mononuclear, magnetically isolated Mn(II) ions and this signal are 3-fold more intense in the [MnMn(PfMetAP-II)]-L-Met EPR spectrum than in the [MnMn(EcMetAP-I)]-L-Met spectrum. Inspection of the EPR spectra of both [MnMn(EcMetAP-I)]-L-Met and [MnMn(PfMetAP-II)]-L-Met at 40 K in the parallel mode reveals that the [Mn(EcMetAP-I)]-L-Met spectrum exhibits a well-resolved hyperfine split pattern at g = 7.6 with a hyperfine splitting constant of A = 4.4 mT. These data suggest the presence of a magnetically coupled dinuclear Mn(II) center. On the other hand, a similar feature was not observed for the [MnMn(PfMetAP-II)]-L-Met complex. Therefore, the EPR data suggest that L-Met binds to [MnMn(EcMetAP-I)] differently than [MnMn(PfMetAP-II)]. To confirm these data, the X-ray crystal structure of [MnMn(PfMetAP-II)]-L-Met was solved to 2.3 A resolution. Both Mn1 and Mn2 reside in a distorted trigonal bipyramidal geometry, but the bridging water molecule, observed in the [CoCo(PfMetAP-II)] structure, is absent. Therefore, L-Met binding displaces this water molecule, but the carboxylate oxygen atom of L-Met does not bridge between the two Mn(II) ions. Instead, a single carboxylate oxygen atom of L-Met interacts with only Mn1, while the N-terminal amine nitrogen atom binds to M2. This L-Met binding mode is different from that observed for L-Met binding [CoCo(EcMetAP-I)]. Therefore, the catalytic mechanisms of type-I MetAPs may differ somewhat from type-II enzymes when a dinuclear metalloactive site is present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号