首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yeast alpha 2 repressor positions nucleosomes in TRP1/ARS1 chromatin.   总被引:17,自引:11,他引:17       下载免费PDF全文
The yeast alpha 2 repressor suppresses expression of a-mating-type-specific genes in haploid alpha and diploid a/alpha cell types. We inserted the alpha 2-binding site into the multicopy TRP1/ARS1 yeast plasmid and examined the effects of alpha 2 on the chromatin structure of the derivative plasmids in alpha cells, and a/alpha cells. Whereas no effect on nucleosome position was observed in a cells, nucleosomes were precisely and stably positioned over sequences flanking the alpha 2 operator in alpha and a/alpha cells. In addition, when the alpha 2 operator was located upstream of the TRP1 gene, an extended array of positioned nucleosomes was formed in alpha cells and a/alpha cells, with formation of a nucleosome not present in a cells, and TRP1 mRNA production was substantially reduced. These data indicate that alpha 2 causes a positioning of nucleosomes over sequences proximal to its operator in TRP1/ARS1 chromatin and suggest that changes in chromatin structure may be related to alpha 2 repression of cell-type-specific genes.  相似文献   

2.
3.
5-Bromodeoxyuridine (BrdU) modulates expression of particular genes associated with cellular differentiation and senescence. Our previous studies have suggested an involvement of chromatin structure in this phenomenon. Here, we examined the effect of 5-bromouracil on nucleosome positioning in vivo using TALS plasmid in yeast cells. This plasmid can stably and precisely be assembled nucleosomes aided by the α2 repressor complex bound to its α2 operator. Insertion of AT-rich sequences into a site near the operator destabilized nucleosome positioning dependent on their length and sequences. Addition of BrdU almost completely disrupted nucleosome positioning through specific AT-tracts. The effective AT-rich sequences migrated faster on polyacrylamide gel electrophoresis, and their mobility was further accelerated by substitution of thymine with 5-bromouracil. Since this property is indicative of a rigid conformation of DNA, our results suggest that 5-bromouracil disrupts nucleosome positioning by inducing A-form-like DNA.  相似文献   

4.
In yeast alpha cells the a cell-specific genes STE6 and BAR1 are packaged as gene-sized chromatin domains of positioned nucleosomes. Organized chromatin depends on Tup1p, a corepressor that interacts with the N-terminal regions of H3 and H4. If Tup1p functions to organize or stabilize a chromatin domain, the protein might be expected to be present at a level stoichiometric with nucleosomes. Chromatin immunoprecipitation assays using Tup1p antibodies showed Tup1p to be associated with the entire genomic STE6 coding region. To determine stoichiometry of Tup1p associated with the gene, a yeast plasmid containing varying lengths of the STE6 gene including flanking control regions and an Escherichia coli lac operator sequence was constructed. After assembly into chromatin in vivo in Saccharomyces cerevisiae, minichromosomes were isolated using an immobilized lac repressor. In these experiments, Tup1p was found to be specifically associated with repressed STE6 chromatin in vivo at a ratio of about two molecules of the corepressor per nucleosome. These observations strongly suggest a structural role for Tup1p in repression and constrain models for organized chromatin in repressive domains.  相似文献   

5.
6.
In order to determine the time required for nucleosomes assembled on the daughter strands of replication forks to assume favoured positions with respect to DNA sequence, psoralen cross-linked replication intermediates purified from preparative two-dimensional agarose gels were analysed by exonuclease digestion or primer extension. Analysis of sites of psoralen intercalation revealed that nucleosomes in the yeast Saccharomyces cerevisiae rDNA intergenic spacer are positioned shortly after passage of the replication machinery. Therefore, both the 'old' randomly segregated nucleosomes as well as the 'new' assembled histone octamers rapidly position themselves (within seconds) on the newly replicated DNA strands, suggesting that the positioning of nucleosomes is an initial step in the chromatin maturation process.  相似文献   

7.
Telomeric DNAs consist of tandem repeats of G-clusters such as TTAGGG and TG1-3, which are the human and yeast repeat sequences, respectively. In the yeast Saccharomyces cerevisiae, the telomeric repeats are non-nucleosomal, whereas in humans, they are organized in tightly packaged nucleosomes. However, previous in vitro studies revealed that the binding affinities of human and yeast telomeric repeat sequences to histone octamers in vitro were similar, which is apparently inconsistent with the differences in the human and yeast telomeric chromatin structures. To further investigate the relationship between telomeric sequences and chromatin structure, we examined the effect of telomeric repeats on the formation of positioned nucleosomes in vivo by indirect end-label mapping, primer extension mapping and nucleosome repeat analyses, using a defined minichromosome in yeast cells. We found that the human and yeast telomeric repeat sequences both disfavour nucleosome assembly and alter nucleosome positioning in the yeast minichromosome. We further demonstrated that the G-clusters in the telomeric repeats are required for the nucleosome-disfavouring properties. Thus, our results suggest that this inherent structural feature of the telomeric repeat sequences is involved in the functional dynamics of the telomeric chromatin structure.  相似文献   

8.
We have investigated the sequences of the mouse and human H19 imprinting control regions (ICRs) to see whether they contain nucleosome positioning information pertinent to their function as a methylation-regulated chromatin boundary. Positioning signals were identified by an in vitro approach that employs reconstituted chromatin to comprehensively describe the contribution of the DNA to the most basic, underlying level of chromatin structure. Signals in the DNA sequence of both ICRs directed nucleosomes to flank and encompass the short conserved sequences that constitute the binding sites for the zinc finger protein CTCF, an essential mediator of insulator activity. The repeat structure of the human ICR presented a conserved array of strong positioning signals that would preferentially flank these CTCF binding sites with positioned nucleosomes, a chromatin structure that would tend to maintain their accessibility. Conversely, all four CTCF binding sites in the mouse sequence were located close to the centre of positioning signals that were stronger than those in their flanks; these binding sites might therefore be expected to be more readily incorporated into positioned nucleosomes. We found that CpG methylation did not effect widespread repositioning of nucleosomes on either ICR, indicating that allelic methylation patterns were unlikely to establish allele-specific chromatin structures for H19 by operating directly upon the underlying DNA-histone interactions; instead, epigenetic modulation of ICR chromatin structure is likely to be mediated principally at higher levels of control. DNA methylation did, however, both promote and inhibit nucleosome positioning at several sites in both ICRs and substantially negated one of the strongest nucleosome positioning signals in the human sequence, observations that underline the fact that this epigenetic modification can, nevertheless, directly and decisively modulate core histone-DNA interactions within the nucleosome.  相似文献   

9.
Previous structures of Lac repressor bound to DNA used a fully symmetric "ideal" operator sequence that is missing the central G-C base-pair present in the three natural operator sequences. Here we have determined the X-ray crystal structure of a dimeric Lac repressor bound to a 22 base-pair DNA with the natural operator O1 sequence and the anti-inducer ONPF, at 4.0 A resolution. The natural operator is bent in the same way as the symmetric sequence, due to the binding of the hinge helices of the repressor to the minor groove at the central GCGG sequence of O1. Comparison of the structures of the repressor bound to the natural and symmetric operators shows very similar overall structures, with only slight rearrangements of the headpiece domains of the repressor. Analysis of crystals with iodinated DNA shows that the operator is uniquely positioned and allows for the sequence registration of the DNA relative to the repressor to be determined. The kink in the operator is centered between the left half-site and the central G-C base-pair of O1. Our results are most consistent with a previously proposed model in which, relative to the complex with the symmetric operator, the repressor accommodates binding to the natural operator sequence by shifting the position of the right headpiece by one base-pair step towards the center of O1.  相似文献   

10.
Nucleosome positioning is an important mechanism for the regulation of eukaryotic gene expression. Folding of the chromatin fiber can influence nucleosome positioning, whereas similar electrostatic mechanisms govern the nucleosome repeat length and chromatin fiber folding in vitro. The position of the nucleosomes is directed either by the DNA sequence or by the boundaries created due to the binding of certain trans-acting factors to their target sites in the DNA. Increasing ionic strength results in an increase in nucleosome spacing on the chromatin assembled by the S-190 extract of Drosophila embryos. In this study, a mutant lac repressor protein R3 was used to find the mechanisms of nucleosome positioning on a plasmid with three R3-binding sites. With increasing ionic strength in the presence of R3, the number of positioned nucleosomes in the chromatin decreased, whereas the internucleosomal spacings of the positioned nucleosomes in a single register did not change. The number of the positioned nucleosomes in the chromatin assembled in vitro over different plasmid DNAs with 1-3 lac operators changed with the relative position and number of the R3-binding sites. We found that in the presence of R3, nucleosomes were positioned in the salt gradient method of the chromatin assembly, even in the absence of a nucleosome-positioning sequence. Our results show that nucleosome-positioning mechanisms are dominant, as the nucleosomes can be positioned even in the absence of regular spacing mechanisms. The protein-generated boundaries are more effective when more than one binding site is present with a minimum distance of approximately 165 bp, greater than the nucleosome core DNA length, between them.  相似文献   

11.
12.
By the use of psoralen crosslinking and primer extension, a method was developed which allows the analysis of chromatin structure in vivo. Using a yeast minichromosome, >9 nucleosomes were mapped with a resolution of at least +/-30 bp.  相似文献   

13.
Heterochromatin Protein 1 (HP1) is a structural component of silent chromatin at telomeres and centromeres. Euchromatic genes repositioned near heterochromatin by chromosomal rearrangements are typically silenced in an HP1-dependent manner. Silencing is thought to involve the spreading of heterochromatin proteins over the rearranged genes. HP1 associates with centric heterochromatin through an interaction with methylated lysine 9 of histone H3, a modification generated by SU(VAR)3-9. The current model for spreading of silent chromatin involves HP1-dependent recruitment of SU(VAR)3-9, resulting in the methylation of adjacent nucleosomes and association of HP1 along the chromatin fiber. To address mechanisms of silent chromatin formation and spreading, HP1 was fused to the DNA-binding domain of the E. coli lacI repressor and expressed in Drosophila melanogaster stocks carrying heat shock reporter genes positioned 1.9 and 3.7 kb downstream of lac operator repeats. Association of lacI-HP1 with the repeats resulted in silencing of both reporter genes and correlated with a closed chromatin structure consisting of regularly spaced nucleosomes, similar to that observed in centric heterochromatin. Chromatin immunoprecipitation experiments demonstrated that HP1 spread bi-directionally from the tethering site and associated with the silenced reporter transgenes. To examine mechanisms of spreading, the effects of a mutation in Su(var)3-9 were investigated. Silencing was minimally affected at 1.9 kb, but eliminated at 3.7 kb, suggesting that HP1-mediated silencing can operate in a SU(VAR)3-9-independent and -dependent manner.  相似文献   

14.
Transposon Tn903 contains the APH gene for kanamycin resistance, which is active in yeast [A. Jiménez and J. Davies (1980) Nature (London) 287, 869-871] and is flanked by two inverted repeats (IR) 1057 bp long. When plasmid pAJ50, carrying Tn903 and the 2-microns circle origin of replication, is cloned into Saccharomyces cerevisiae, nucleosomes are assembled in vivo on the prokaryotic DNA of the transposon. Indirect end labeling revealed that three nucleosomes are preferentially positioned on symmetrical sequences from both IRs. DNase I digestion also confirmed that the chromatin structure is symmetrical in both IRs. This suggests that sequence determinants are decisive for chromatin structure in these regions. We have calculated the rotational and translational fits [H. R. Drew and C. R. Calladine (1987) J. Mol. Biol. 195, 143-173] for the Tn903 sequence and the results indicate that the nucleosome positioning on the IRs is sequence-directed. Nucleosome deposition on the APH gene also occurs, but no clear positioning exists. Some sequence preference for positioning nucleosomes on the promoter can be predicted, especially from the translational fit. Experimental data indicate, however, that nucleosomes are absent from the promoter. Therefore, chromatin can be organized on prokaryotic DNA in a manner that resembles the typical eukaryotic chromatin structure.  相似文献   

15.
16.
17.
Micrococcal nuclease digestion has been used to investigate some fine details of the chromatin structure of the yeast SUC2 gene for invertase. Precisely positioned nucleosomes have been found on a 2 kb sequence from the 3' non-coding region, and four nucleosomes also seem to occupy fixed positions on the 5' flank. Eleven nucleosomes lie on the coding region, although their positioning is not as precise as in the flanks. When the gene is derepressed, these latter nucleosomes adopt a more open conformation and so do two of the nucleosomes positioned on the 5' flank. A dramatic change occurs in the 3' flank, whose involvement in the structural transitions of chromatin upon gene activation is postulated. All the observed features are conserved when the gene is inserted in either a single copy centromeric plasmid or in a multicopy, 2 micron circle-based plasmid.  相似文献   

18.
19.
ColE1-type vectors with fully repressible replication   总被引:18,自引:0,他引:18  
D Gil  J P Bouché 《Gene》1991,105(1):17-22
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号