首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The proto-oncogene c-myc governs the expression of a number of genes targeting cell growth and apoptosis, and its expression levels are distorted in many cancer forms. The current investigation presents an analysis by proteolysis, circular dichroism, fluorescence and Biacore of the folding and ligand-binding properties of the N-terminal transactivation domain (TAD) in the c-Myc protein. A c-Myc sub-region comprising residues 1-167 (Myc1-167) has been investigated that includes the unstructured c-Myc transactivation domain (TAD, residues 1-143) together with a C-terminal segment, which appears to promote increased folding. Myc1-167 is partly helical, binds both to the target proteins Myc modulator-1 (MM-1) and TATA box-binding protein (TBP), and displays the characteristics of a molten globule. Limited proteolysis divides Myc1-167 in two halves, by cleaving in a predicted linker region between two hotspot mutation regions: Myc box I (MBI) and Myc box II (MBII). The N-terminal half (Myc1-88) is unfolded and does not alone bind to target proteins, whereas the C-terminal half (Myc92-167) has a partly helical fold and specifically binds both MM-1 and TBP. Although this might suggest a bipartite organization in the c-Myc TAD, none of the N and C-terminal fragments bind target protein with as high affinity as the entire Myc1-167, or display molten globule properties. Furthermore, merely linking the MBI with the C-terminal region, in Myc38-167, is not sufficient to achieve binding and folding properties as in Myc1-167. Thus, the entire N and C-terminal regions of c-Myc TAD act in concert to achieve high specificity and affinity to two structurally and functionally orthogonal target proteins, TBP and MM-1, possibly through a mechanism involving molten globule formation. This hints towards understanding how binding of a range of targets can be accomplished to a single transactivation domain.  相似文献   

2.
3.
The product of the c-myc proto-oncogene, c-Myc, is a sequence-specific DNA binding protein with an N-terminal transactivation domain and a C-terminal DNA binding domain. Several lines of evidence indicate that c-Myc activity is essential for normal cell cycle progression. Since the abundance of c-Myc during the cell cycle is constant, c-Myc's activity may be regulated at a post-translational level. We have shown previously that the N-terminus of c-Myc can form a specific complex with the product of the retinoblastoma gene, pRb, in vitro. These data suggested a model in which pRb, or pRb-related proteins, regulate c-Myc activity through direct binding. We show here that the pRb-related protein p107, but not pRb itself, forms a specific complex with the N-terminal transactivation domain of c-Myc in vivo. Binding of p107 to c-Myc causes a significant inhibition of c-Myc transactivation. Expression of c-Myc releases cells from a p107-induced growth arrest, but not from pRb-induced growth arrest. Our data suggest that p107 can control c-Myc activity through direct binding to the transactivation domain and that c-Myc is a target for p107-mediated growth suppression.  相似文献   

4.
5.
6.
Khrapunov S  Brenowitz M 《Biochemistry》2007,46(16):4876-4887
The localization of a single tryptophan to the N-terminal domain and six tyrosines to the C-terminal domain of TBP allows intrinsic fluorescence to separately report on the structures and dynamics of the full-length TATA binding protein (TBP) of Saccharomyces cerevisiae and its C-terminal DNA binding domain (TBPc) as a function of self-association and DNA binding. TBPc is more compact than the C-terminal domain within the full-length protein. Quenching of the intrinsic fluorescence by DNA and external dynamic quenchers shows that the observed tyrosine fluorescence is due to the four residues surrounding the "DNA binding saddle" of the C-terminal domain. TBP's N-terminal domain unfolds and changes its position relative to the C-terminal domain upon DNA binding. It partially shields the DNA binding saddle in octameric TBP, shifting upon dissociation to monomers to expose the saddle to DNA. Structure-energetic correlations were obtained by comparing the contribution that electrostatic interactions make to DNA binding by TBP and TBPc; DNA binding by TBPc is more hydrophobic than that by TBP, suggesting that the N-terminal domain either interacts with bound DNA directly or screens a part of the C-terminal domain, diminishing its electronegativity. The competition between divalent cations, K+, and DNA is not straightforward. Divalent cations strengthen binding of TBP to DNA and do so more strongly for TBPc. We suggest that divalent cations affect the structure of the bound DNA perhaps by stabilizing its distorted conformation in complexes with TBPc and TBP and that the N-terminal domain mimics the effects of divalent cations. These data support an autoinhibitory mechanism in which competition between the N-terminal domain and DNA for the saddle diminishes the DNA binding affinity of the full-length protein.  相似文献   

7.
The activity and stability of the tumor suppressor p53 are regulated by interactions with key cellular proteins such as MDM2 and CBP/p300. The transactivation domain (TAD) of p53 contains two subdomains (AD1 and AD2) and interacts directly with the N-terminal domain of MDM2 and with several domains of CBP/p300. Here we report the NMR structure of the full-length p53 TAD in complex with the nuclear coactivator binding domain (NCBD) of CBP. Both the p53 TAD and NCBD are intrinsically disordered and fold synergistically upon binding, as evidenced by the observed increase in helicity and increased level of dispersion of the amide proton resonances. The p53 TAD folds to form a pair of helices (denoted Pα1 and Pα2), which extend from Phe19 to Leu25 and from Pro47 to Trp53, respectively. In the complex, the NCBD forms a bundle of three helices (Cα1, residues 2066-2075; Cα2, residues 2081-2092; and Cα3, residues 2095-2105) with a hydrophobic groove into which p53 helices Pα1 and Pα2 dock. The polypeptide chain between the p53 helices remains flexible and makes no detectable intermolecular contacts with the NCBD. Complex formation is driven largely by hydrophobic contacts that form a stable intermolecular hydrophobic core. A salt bridge between D49 of p53 and R2105 of NCBD may contribute to the binding specificity. The structure provides the first insights into simultaneous binding of the AD1 and AD2 motifs to a target protein.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
16.
We have studied the DNA binding activity of recombinant yeast TATA Binding Protein (TBP) with particular interest in the role played by the non-conserved N-terminal domain. By comparing the DNA binding activity of wild type yeast TBP with a mutant form of TBP that lacks the non-conserved N-terminal domain (TBP delta 57), we have determined that the N-terminus of TBP alters both the shape and the stability of the TBP-DNA complex. Measurements of the DNA bending angle indicate that the N-terminus enhances the bending of the DNA that is induced by TBP binding and greatly destabilizes the TBP-DNA complex during native gel electrophoresis. In solution, the N-terminus has only a slight effect on the equilibrium dissociation constant and the dissociation rate constant. However, the N-terminal domain reduces the association rate constant in a temperature dependent manner and increases the apparent activation energy of the TBP-DNA complex formation by 3 kcal/mole. These data suggest that a conformational change involving the N-terminus of TBP may be one of the isomerization steps in the formation of a stable TBP-DNA complex.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号