首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sudden outbreak of severe acute respiratory syndrome (SARS) in 2002 prompted the establishment of a global scientific network subsuming most of the traditional rivalries in the competitive field of virology. Within months of the SARS outbreak, collaborative work revealed the identity of the disastrous pathogen as SARS-associated coronavirus (SARS-CoV). However, although the rapid identifi-  相似文献   

2.
Severe acute respiratory coronavirus (SARS-CoV) spike (S) glycoprotein fusion core consists of a six-helix bundle with the three C-terminal heptad repeat (HR2) helices packed against a central coiled-coil of the other three N-terminal heptad repeat (HR1) helices. Each of the three peripheral HR2 helices shows prominent contacts with the hydrophobic surface of the central HR1 coiled-coil. The concerted protein-protein interactions among the HR helices are responsible for the fusion event that leads to the release of the SARS-CoV nucleocapsid into the target host-cell. In this investigation, we applied recombinant protein and synthetic peptide-based biophysical assays to characterize the biological activities of the HR helices. In a parallel experiment, we employed a HIV-luc/SARS pseudotyped virus entry inhibition assay to screen for potent inhibitory activities on HR peptides derived from the SARS-CoV S protein HR regions and a series of other small-molecule drugs. Three HR peptides and five small-molecule drugs were identified as potential inhibitors. ADS-J1, which has been used to interfere with the fusogenesis of HIV-1 onto CD4+ cells, demonstrated the highest HIV-luc/SARS pseudotyped virus-entry inhibition activity among the other small-molecule drugs. Molecular modeling analysis suggested that ADS-J1 may bind to the deep pocket of the hydrophobic groove on the surface of the central coiled-coil of SARS-CoV S HR protein and prevent the entrance of the SARS-CoV into the host cells.  相似文献   

3.
Coronavirus replication is facilitated by a number of highly conserved viral proteins. The viruses also encode accessory genes, which are virus group specific and believed to play roles in virus replication and pathogenesis in vivo. Of the eight putative accessory proteins encoded by the severe acute respiratory distress syndrome associated coronavirus (SARS-CoV), only two-open reading frame 3a (ORF3a) and ORF7a-have been identified in virus-infected cells to date. The ORF7b protein is a putative viral accessory protein encoded on subgenomic (sg) RNA 7. The ORF7b initiation codon overlaps the ORF7a stop codon in a -1 shifted ORF. We demonstrate that the ORF7b protein is expressed in virus-infected cell lysates and from a cDNA encoding the gene 7 coding region, indicating that the sgRNA7 is bicistronic. The translation of ORF7b appears to be mediated by ribosome leaky scanning, and the protein has biochemical properties consistent with that of an integral membrane protein. ORF7b localizes to the Golgi compartment and is incorporated into SARS-CoV particles. We therefore conclude that the ORF7b protein is not only an accessory protein but a structural component of the SARS-CoV virion.  相似文献   

4.
The details of the mechanism by which severe acute respiratory syndrome-associated coronavirus (SARS-CoV) causes severe pneumonia are unclear. We investigated the immune responses and pathologies of SARS-CoV-infected BALB/c mice that were immunized intradermally with recombinant vaccinia virus (VV) that expressed either the SARS-CoV spike (S) protein (LC16m8rVV-S) or simultaneously all the structural proteins, including the nucleocapsid (N), membrane (M), envelope (E), and S proteins (LC16m8rVV-NMES) 7-8 wk before intranasal SARS-CoV infection. The LC16m8rVV-NMES-immunized group exhibited as severe pneumonia as the control groups, although LC16m8rVV-NMES significantly decreased the pulmonary SARS-CoV titer to the same extent as LC16m8rVV-S. To identify the cause of the exacerbated pneumonia, BALB/c mice were immunized with recombinant VV that expressed the individual structural proteins of SARS-CoV (LC16mOrVV-N, -M, -E, -S) with or without LC16mOrVV-S (i.e., LC16mOrVV-N, LC16mOrVV-M, LC16mOrVV-E, or LC16mOrVV-S alone or LC16mOrVV-N + LC16mOrVV-S, LC16mOrVV-M + LC16mOrVV-S, or LC16mOrVV-E + LC16mOrVV-S), and infected with SARS-CoV more than 4 wk later. Both LC16mOrVV-N-immunized mice and LC16mOrVV-N + LC16mOrVV-S-immunized mice exhibited severe pneumonia. Furthermore, LC16mOrVV-N-immunized mice upon infection exhibited significant up-regulation of both Th1 (IFN-gamma, IL-2) and Th2 (IL-4, IL-5) cytokines and down-regulation of anti-inflammatory cytokines (IL-10, TGF-beta), resulting in robust infiltration of neutrophils, eosinophils, and lymphocytes into the lung, as well as thickening of the alveolar epithelium. These results suggest that an excessive host immune response against the nucleocapsid protein of SARS-CoV is involved in severe pneumonia caused by SARS-CoV infection. These findings increase our understanding of the pathogenesis of SARS.  相似文献   

5.
Wu S  Xu J  Liu J  Yan X  Zhu X  Xiao G  Sun L  Tien P 《The journal of gene medicine》2007,9(12):1080-1086
BACKGROUND: The worldwide epidemic of severe acute respiratory syndrome (SARS) in 2003 was caused by a novel coronavirus called SARS-CoV. We report the use of DNAzyme (catalytic DNA) to target the 5'-untranslated region (5'UTR) of a highly conserved fragment in the SARS genome as an approach to suppression of SARS-CoV replication. A mono-DNA enzyme (Dz-104) possessing the 10-23 catalytic motif was synthesized and tested both in vitro and in cell culture. MATERIALS AND METHODS: SARS-CoV total RNA was isolated, extracted from the SARS-CoV-WHU strain and converted into cDNA. We designed a RNA-cleaving 10-23 DNAzyme targeting at the loop region of the 5'UTR of SARS-CoV. The designed DNAzyme, Dz-104, and its mutant version, Dz-104 (mut), as a control consist of 9 + 9 arm sequences with a 10-23 catalytic core. In vitro cleavage was performed using an in vitro transcribed 5'UTR RNA substrate. A vector containing a fused 5'UTR and enhanced green fluorescent protein (eGFP) was co-transfected with the DNAzyme into E6 cells and the cells expressing eGFP were visualized with fluorescence microscopy and analyzed by fluorescence-activated cell sorting (FACS). RESULTS AND CONCLUSIONS: Our results demonstrated that this DNAzyme could efficiently cleave the SARS-CoV RNA substrate in vitro and inhibit the expression of the SARS-CoV 5'UTR-eGFP fusion RNA in mammalian cells. This work presents a model system to rapidly screen effective DNAzymes targeting SARS and provides a basis for potential therapeutic use of DNA enzymes to combat the SARS infection.  相似文献   

6.
Conserved among all coronaviruses are four structural proteins: the matrix (M), small envelope (E), and spike (S) proteins that are embedded in the viral membrane and the nucleocapsid phosphoprotein (N), which exists in a ribonucleoprotein complex in the lumen. The N-terminal domain of coronaviral N proteins (N-NTD) provides a scaffold for RNA binding, while the C-terminal domain (N-CTD) mainly acts as oligomerization modules during assembly. The C terminus of the N protein anchors it to the viral membrane by associating with M protein. We characterized the structures of N-NTD from severe acute respiratory syndrome coronavirus (SARS-CoV) in two crystal forms, at 1.17 A (monoclinic) and at 1.85 A (cubic), respectively, resolved by molecular replacement using the homologous avian infectious bronchitis virus (IBV) structure. Flexible loops in the solution structure of SARS-CoV N-NTD are now shown to be well ordered around the beta-sheet core. The functionally important positively charged beta-hairpin protrudes out of the core, is oriented similarly to that in the IBV N-NTD, and is involved in crystal packing in the monoclinic form. In the cubic form, the monomers form trimeric units that stack in a helical array. Comparison of crystal packing of SARS-CoV and IBV N-NTDs suggests a common mode of RNA recognition, but they probably associate differently in vivo during the formation of the ribonucleoprotein complex. Electrostatic potential distribution on the surface of homology models of related coronaviral N-NTDs suggests that they use different modes of both RNA recognition and oligomeric assembly, perhaps explaining why their nucleocapsids have different morphologies.  相似文献   

7.
Ren W  Qu X  Li W  Han Z  Yu M  Zhou P  Zhang SY  Wang LF  Deng H  Shi Z 《Journal of virology》2008,82(4):1899-1907
Severe acute respiratory syndrome (SARS) is caused by the SARS-associated coronavirus (SARS-CoV), which uses angiotensin-converting enzyme 2 (ACE2) as its receptor for cell entry. A group of SARS-like CoVs (SL-CoVs) has been identified in horseshoe bats. SL-CoVs and SARS-CoVs share identical genome organizations and high sequence identities, with the main exception of the N terminus of the spike protein (S), known to be responsible for receptor binding in CoVs. In this study, we investigated the receptor usage of the SL-CoV S by combining a human immunodeficiency virus-based pseudovirus system with cell lines expressing the ACE2 molecules of human, civet, or horseshoe bat. In addition to full-length S of SL-CoV and SARS-CoV, a series of S chimeras was constructed by inserting different sequences of the SARS-CoV S into the SL-CoV S backbone. Several important observations were made from this study. First, the SL-CoV S was unable to use any of the three ACE2 molecules as its receptor. Second, the SARS-CoV S failed to enter cells expressing the bat ACE2. Third, the chimeric S covering the previously defined receptor-binding domain gained its ability to enter cells via human ACE2, albeit with different efficiencies for different constructs. Fourth, a minimal insert region (amino acids 310 to 518) was found to be sufficient to convert the SL-CoV S from non-ACE2 binding to human ACE2 binding, indicating that the SL-CoV S is largely compatible with SARS-CoV S protein both in structure and in function. The significance of these findings in relation to virus origin, virus recombination, and host switching is discussed.  相似文献   

8.
Summary The spike (S) glycoprotein is thought to play a complex and central role in the biology and pathogenesis of SARS coronavirus infection. In this study, a recombinant protein (rS268, corresponding to residues 268–1255 of SARS-CoV S protein) was expressed in Escherichia coli and was purified to near homogeneity. After immunization with rS268, S protein-specific BALB/c antisera and mAbs were induced and confirmed using ELISA, Western blot and IFA. Several BALB/c mAbs were found to be effectively to neutralize the infection of Vero E6 cells by SARS-CoV in a dose-dependent manner. Systematic epitope mapping showed that all these neutralizing mAbs recognized a 15-residues peptide (CB-119) corresponding to residues 1143–1157 (SPDVDLGDISGINAS) that was located to the second heptad repeat (HR2) region of the SARS-CoV spike protein. The peptide CB-119 could specifically inhibit the interaction of neutralizing mAbs and spike protein in a dose-dependent manner. Further, neutralizing mAbs, but not control mAbs, could specifically interact with CB-119 in a dose-dependent manner. Results implicated that the second heptad repeat region of spike protein could be a good target for vaccine development against SARS-CoV.  相似文献   

9.
Severe acute respiratory syndrome coronavirus encodes several accessory proteins of unknown function. We previously showed that one such protein, encoded by ORF6, enhanced the growth of mouse hepatitis virus in tissue culture cells and in mice. Protein 6 consists of an N-terminal hydrophobic peptide and a C-terminal region containing intracellular protein sorting motifs. Herein, we show that mutation of the hydrophobic region but not the sorting motifs affected the ability of protein 6 to enhance virus growth. Collectively, these results support the notion that the 6 protein interacts with membrane-bound viral replication or assembly machinery to directly enhance virus replication and virulence in animals.  相似文献   

10.
The severe acute respiratory syndrome coronavirus (SARS-CoV) synthesizes several putative viral envelope proteins, including the spike (S), membrane (M), and small envelope (E) glycoproteins. Although these proteins likely are essential for viral replication, their specific roles in SARS-CoV entry have not been defined. In this report, we show that the SARS-CoV S glycoprotein mediates viral entry through pH-dependent endocytosis. Further, we define its cellular tropism and demonstrate that virus transmission occurs through cell-mediated transfer by dendritic cells. The S glycoprotein was used successfully to pseudotype replication-defective retroviral and lentiviral vectors that readily infected Vero cells as well as primary pulmonary and renal epithelial cells from human, nonhuman primate, and, to a lesser extent, feline species. The tropism of this reporter virus was similar to that of wild-type, replication-competent SARS-CoV, and binding of purified S to susceptible target cells was demonstrated by flow cytometry. Although myeloid dendritic cells were able to interact with S and to bind virus, these cells could not be infected by SARS-CoV. However, these cells were able to transfer the virus to susceptible target cells through a synapse-like structure. Both cell-mediated infection and direct infection were inhibited by anti-S antisera, indicating that strategies directed toward this gene product are likely to confer a therapeutic benefit for antiviral drugs or the development of a SARS vaccine.  相似文献   

11.
Chou CY  Chang HC  Hsu WC  Lin TZ  Lin CH  Chang GG 《Biochemistry》2004,43(47):14958-14970
SARS (severe acute respiratory syndrome) has been one of the most severe viral infectious diseases last year and still remains as a highly risky public health problem around the world. Exploring the types of interactions responsible for structural stabilities of its component protein molecules constitutes one of the approaches to find a destabilization method for the virion particle. In this study, we performed a series of experiments to characterize the quaternary structure of the dimeric coronavirus main protease (M(pro), 3CL(pro)). By using the analytical ultracentrifuge, we demonstrated that the dimeric SARS coronavirus main protease exists as the major form in solution at protein concentration as low as 0.10 mg/mL at neutral pH. The enzyme started to dissociate at acidic and alkali pH values. Ionic strength has profound effect on the dimer stability indicating that the major force involved in the subunit association is ionic interactions. The effect of ionic strength on the protease molecule was reflected by the drastic change of electrostatic potential contour of the enzyme in the presence of NaCl. Analysis of the crystal structures indicated that the interfacial ionic interaction was attributed to the Arg-4...Glu-290 ion pair between the subunits. Detailed examination of the dimer-monomer equilibrium at different pH values reveals apparent pK(a) values of 8.0 +/- 0.2 and 5.0 +/- 0.1 for the Arg-4 and Glu-290, respectively. Mutation at these two positions reduces the association affinity between subunits, and the Glu-290 mutants had diminished enzyme activity. This information is useful in searching for substances that can intervene in the subunit association, which is attractive as a target to neutralize the virulence of SARS coronavirus.  相似文献   

12.
In 2002, severe acute respiratory syndrome (SARS)-coronavirus (CoV) appeared as a novel human virus with high similarity to bat coronaviruses. However, while SARS-CoV uses the human angiotensin-converting enzyme 2 (ACE2) receptor for cellular entry, no coronavirus isolated from bats appears to use ACE2. Here we show that signatures of recurrent positive selection in the bat ACE2 gene map almost perfectly to known SARS-CoV interaction surfaces. Our data indicate that ACE2 utilization preceded the emergence of SARS-CoV-like viruses from bats.  相似文献   

13.
The causative agent of severe acute respiratory syndrome (SARS) is the SARS-associated coronavirus, SARS-CoV. The viral nucleocapsid (N) protein plays an essential role in viral RNA packaging. In this study, recombinant SARS-CoV N protein was shown to be dimeric by analytical ultracentrifugation, size exclusion chromatography coupled with light scattering, and chemical cross-linking. Dimeric N proteins self-associate into tetramers and higher molecular weight oligomers at high concentrations. The dimerization domain of N was mapped through studies of the oligomeric states of several truncated mutants. Although mutants consisting of residues 1-210 and 1-284 fold as monomers, constructs consisting of residues 211-422 and 285-422 efficiently form dimers. When in excess, the truncated construct 285-422 inhibits the homodimerization of full-length N protein by forming a heterodimer with the full-length N protein. These results suggest that the N protein oligomerization involves the C-terminal residues 285-422, and this region is a good target for mutagenic studies to disrupt N protein self-association and virion assembly.  相似文献   

14.
Han YS  Chang GG  Juo CG  Lee HJ  Yeh SH  Hsu JT  Chen X 《Biochemistry》2005,44(30):10349-10359
Viral proteases are essential for pathogenesis and virulence of severe acute respiratory syndrome coronavirus (SARS-CoV). Little information is available on SARS-CoV papain-like protease 2 (PLP2), and development of inhibitors against PLP2 is attractive for antiviral therapy. Here, we report the characterization of SARS-CoV PLP2 (from residues 1414 to 1858) purified from baculovirus-infected insect cells. We demonstrate that SARS-CoV PLP2 by itself differentially cleaves between the amino acids Gly180 and Ala181, Gly818 and Ala819, and Gly2740 and Lys2741 of the viral polypeptide pp1a, as determined by reversed-phase high-performance liquid chromatography analysis coupled with mass spectrometry. This protease is especially selective for the P1, P4, and P6 sites of the substrate. The study demonstrates, for the first time among coronaviral PLPs, that the reaction mechanism of SARS-CoV PLP2 is characteristic of papain and compatible with the involvement of the catalytic dyad (Cys)-S(-)/(His)-Im(+)H ion pair. With a fluorogenic inhibitor-screening platform, we show that zinc ion and its conjugates potently inhibit the enzymatic activity of SARS-CoV PLP2. In addition, we provided evidence for evolutionary reclassification of SARS-CoV. The results provide important insights into the biochemical properties of the coronaviral PLP family and a promising therapeutic way to fight SARS-CoV.  相似文献   

15.
Solowiej J  Thomson JA  Ryan K  Luo C  He M  Lou J  Murray BW 《Biochemistry》2008,47(8):2617-2630
Severe acute respiratory syndrome (SARS) was a worldwide epidemic caused by a coronavirus that has a cysteine protease (3CLpro) essential to its life cycle. Steady-state and pre-steady-state kinetic methods were used with highly active 3CLpro to characterize the reaction mechanism. We show that 3CLpro has mechanistic features common and disparate to the archetypical proteases papain and chymotrypsin. The kinetic mechanism for 3CLpro-mediated ester hydrolysis, including the individual rate constants, is consistent with a simple double displacement mechanism. The pre-steady-state burst rate was independent of ester substrate concentration indicating a high commitment to catalysis. When homologous peptidic amide and ester substrates were compared, a series of interesting observations emerged. Despite a 2000-fold difference in nonenzymatic reactivity, highly related amide and ester substrates were found to have similar kinetic parameters in both the steady-state and pre-steady-state. Steady-state solvent isotope effect (SIE) studies showed an inverse SIE for the amide but not ester substrates. Evaluation of the SIE in the pre-steady-state revealed normal SIEs for both amide and ester burst rates. Proton inventory (PI) studies on amide peptide hydrolysis were consistent with two proton-transfer reactions in the transition state while the ester data was consistent with a single proton-transfer reaction. Finally, the pH-inactivation profile of 3CLpro with iodoacetamide is indicative of an ion-pair mechanism. Taken together, the data are consistent with a 3CLpro mechanism that utilizes an "electrostatic" trigger to initiate the acylation reaction, a cysteine-histidine catalytic dyad ion pair, an enzyme-facilitated release of P1, and a general base-catalyzed deacylation reaction.  相似文献   

16.
The severe acute respiratory syndrome coronavirus papain-like protease (SARS-CoV PLpro) is involved in the processing of the viral polyprotein and, thereby, contributes to the biogenesis of the virus replication complex. Structural bioinformatics has revealed a relationship for the SARS-CoV PLpro to herpesvirus-associated ubiquitin-specific protease (HAUSP), a ubiquitin-specific protease, indicating potential deubiquitinating activity in addition to its function in polyprotein processing (T. Sulea, H. A. Lindner, E. O. Purisima, and R. Menard, J. Virol. 79:4550-4551, 2005). In order to confirm this prediction, we overexpressed and purified SARS-CoV PLpro (amino acids [aa]1507 to 1858) from Escherichia coli. The purified enzyme hydrolyzed ubiquitin-7-amino-4-methylcoumarin (Ub-AMC), a general deubiquitinating enzyme substrate, with a catalytic efficiency of 13,100 M(-1)s(-1), 220-fold more efficiently than the small synthetic peptide substrate Z-LRGG-AMC, which incorporates the C-terminal four residues of ubiquitin. In addition, SARS-CoV PLpro was inhibited by the specific deubiquitinating enzyme inhibitor ubiquitin aldehyde, with an inhibition constant of 210 nM. The purified SARS-CoV PLpro disassembles branched polyubiquitin chains with lengths of two to seven (Ub2-7) or four (Ub4) units, which involves isopeptide bond cleavage. SARS-CoV PLpro processing activity was also detected against a protein fused to the C terminus of the ubiquitin-like modifier ISG15, both in vitro using the purified enzyme and in HeLa cells by coexpression with SARS-CoV PLpro (aa 1198 to 2009). These results clearly establish that SARS-CoV PLpro is a deubiquitinating enzyme, thereby confirming our earlier prediction. This unexpected activity for a coronavirus papain-like protease suggests a novel viral strategy to modulate the host cell ubiquitination machinery to its advantage.  相似文献   

17.
SARS-CoV grows in a variety of tissues that express its receptor, although the mechanism for high replication in the lungs and severe respiratory illness is not well understood. We recently showed that elastase enhances SARS-CoV infection in cultured cells, which suggests that SARS development may be due to elastase-mediated, enhanced SARS-CoV infection in the lungs. To explore this possibility, we examined whether co-infection of mice with SARS-CoV and Pp, a low-pathogenic bacterium which elicits elastase production in the lungs, induces exacerbation of pneumonia. Mice co-infected with SARS-CoV and Pp developed severe respiratory disease with extensive weight loss, resulting in a 33~90% mortality rate. Mice with exacerbated pneumonia showed enhanced virus infection in the lungs and histopathological lesions similar to those found in human SARS cases. Intranasal administration of LPS, another elastase inducer, showed an effect similar to that of Pp infection. Thus, this study shows that exacerbated pneumonia in mice results from co-infection with SARS-CoV and a respiratory bacterium that induces elastase production in the lungs, suggesting a possible role for elastase in the exacerbation of pneumonia.  相似文献   

18.
The severe acute respiratory syndrome (SARS) is a newly emerging human infectious disease caused by the severe acute respiratory syndrome coronavirus (SARS-CoV). The spike (S) protein of SARS-CoV is a major virion structural protein. It plays an important role in the interaction with receptors and neutralizing antibodies. In this study, the S1 domain of the spike protein and three truncated fragments were expressed by fusion with GST in a pGEX-6p-1 vector. Western blot results demonstrated that the 510-672 fragment of the S1 domain is a linear epitope dominant region. To map the antigenic epitope of this linear epitope dominant region, a set of 16 partially overlapping fragments spanning the fragment were fused with GST and expressed. Four antigenic epitopes S1C3 (539-559), S1C4 (548-567), S1C7/8 (583-606), and S1C10/11 (607-630) were identified. Immunization of mice with each of the four antigenic epitope-fused proteins revealed that all four proteins could elicit spike protein specific antisera. All of them were able to bind to the surface domain of the whole spike protein expressed by recombinant baculovirus in insect cells. Identification of antigenic epitopes of the spike protein of SARS-CoV may provide the basis for the development of immunity-based prophylactic, therapeutic, and diagnostic clinical techniques for the severe acute respiratory syndrome.  相似文献   

19.
Arbely E  Granot Z  Kass I  Orly J  Arkin IT 《Biochemistry》2006,45(38):11349-11356
In an attempt to understand what distinguishes severe acute respiratory syndrome (SARS) coronavirus (SCoV) from other members of the coronaviridae, we searched for elements that are unique to its proteins and not present in any other family member. We identified an insertion of two glycine residues, forming the GxxxG motif, in the SCoV spike protein transmembrane domain (TMD), which is not found in any other coronavirus. This surprising finding raises an "oligomerization riddle": the GxxxG motif is a known dimerization signal, while the SCoV spike protein is known to be trimeric. Using an in vivo assay, we found that the SCoV spike protein TMD is oligomeric and that this oligomerization is driven by the GxxxG motif. We also found that the GxxxG motif contributes toward the trimerization of the entire spike protein; in that, mutations in the GxxxG motif decrease trimerization of the full-length protein expressed in mammalian cells. Using molecular modeling, we show that the SCoV spike protein TMD adopts a distinct and unique structure as opposed to all other coronaviruses. In this unique structure, the glycine residues of the GxxxG motif are facing each other, enhancing helix-helix interactions by allowing for the close positioning of the helices. This unique orientation of the glycine residues also stabilizes the trimeric bundle during multi-nanosecond molecular dynamics simulation in a hydrated lipid bilayer. To the best of our knowledge, this is the first demonstration that the GxxxG motif can potentiate other oligomeric forms beside a dimer. Finally, according to recent studies, the stabilization of the trimeric bundle is linked to a higher fusion activity of the spike protein, and the possible influence of the GxxxG motif on this feature is discussed.  相似文献   

20.
This paper describes the structure determination of nsp3a, the N-terminal domain of the severe acute respiratory syndrome coronavirus (SARS-CoV) nonstructural protein 3. nsp3a exhibits a ubiquitin-like globular fold of residues 1 to 112 and a flexibly extended glutamic acid-rich domain of residues 113 to 183. In addition to the four beta-strands and two alpha-helices that are common to ubiquitin-like folds, the globular domain of nsp3a contains two short helices representing a feature that has not previously been observed in these proteins. Nuclear magnetic resonance chemical shift perturbations showed that these unique structural elements are involved in interactions with single-stranded RNA. Structural similarities with proteins involved in various cell-signaling pathways indicate possible roles of nsp3a in viral infection and persistence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号