首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heat stress on structure and ligand binding of beta-LG has been studied by fluorescence, circular dichroism and gel electrophoresis at pH 6.5. Native PAGE gel electrophoresis shows that denaturation of beta-LG is reversible up to 75 degrees C then it becomes irreversible due to aggregation of beta-LG. Formation of aggregated beta-LG is completed at 95 degrees C. Circular dichroism results indicate that formation of aggregated beta-LG is accompanied by the scrambling of disulfide bonds (creation of new intramolecular and intermolecular disulfide bridges and rearrangement of old intramolecular disulfide bridges). Addition of ethanolic retinol causes a change in polarity of the solution and favors transformation of the beta<-->alpha structure. In the presence of retinol, the alpha-helix content of the secondary structure of heat-treated beta-LG is increased and the major portion of its secondary structure is helical. Fluorescence results show that heat-treated beta-LG at 95 degrees C can still bind retinol. The refolding of the tertiary structure of beta-LG heat-denatured at 95 degrees C may recreate a retinol binding site. Surprisingly, the affinity of the new site for retinol is higher than that of native beta-LG; however, the apparent molar ratio is lower than one. The binding properties of beta-LG for terpenoids have been measured after its heat treatment at 20, 75 and 95 degrees C. The intensity of tryptophan emission at 330 nm was changed only in the case of the interaction with beta-ionone. Other ligands probably cannot bind to beta-LG or they bind in a binding site far from the tryptophan residues, hence not affecting its fluorescence.  相似文献   

2.
Yang MC  Guan HH  Liu MY  Lin YH  Yang JM  Chen WL  Chen CJ  Mao SJ 《Proteins》2008,71(3):1197-1210
Beta-lactoglobulin (beta-LG), one of the most investigated proteins, is a major bovine milk protein with a predominantly beta structure. The structural function of the only alpha-helix with three turns at the C-terminus is unknown. Vitamin D(3) binds to the central calyx formed by the beta-strands. Whether there are two vitamin D binding-sites in each beta-LG molecule has been a subject of controversy. Here, we report a second vitamin D(3) binding site identified by synchrotron X-ray diffraction (at 2.4 A resolution). In the central calyx binding mode, the aliphatic tail of vitamin D(3) clearly inserts into the binding cavity, where the 3-OH group of vitamin D(3) binds externally. The electron density map suggests that the 3-OH group interacts with the carbonyl of Lys-60 forming a hydrogen bond (2.97 A). The second binding site, however, is near the surface at the C-terminus (residues 136-149) containing part of an alpha-helix and a beta-strand I with 17.91 A in length, while the span of vitamin D(3) is about 12.51 A. A remarkable feature of the second exosite is that it combines an amphipathic alpha-helix providing nonpolar residues (Phe-136, Ala-139, and Leu-140) and a beta-strand providing a nonpolar (Ile-147) and a buried polar residue (Arg-148). They are linked by a hydrophobic loop (Ala-142, Leu-143, Pro-144, and Met-145). Thus, the binding pocket furnishes strong hydrophobic force to stabilize vitamin D(3) binding. This finding provides a new insight into the interaction between vitamin D(3) and beta-LG, in which the exosite may provide another route for the transport of vitamin D(3) in vitamin D(3) fortified dairy products. Atomic coordinates for the crystal structure of beta-LG-vitamin D(3) complex described in this work have been deposited in the PDB (access code 2GJ5).  相似文献   

3.
The interaction of bovine and human whey proteins with retinol and palmitic acid has been studied. Using gel filtration it was found that bovine β-lactoglobulin and α-lactalbumin and serum albumin from both species bind retinol in vitro while the ability to bind palmitic acid is restricted to bovine β-lactoglobulin and bovine and human serum albumin. Using equilibrium dialysis, β-lactoglobulin was found to display two binding sites for retinol per dimeric molecule with an association constant of 1.5 × 104m-1. Competition experiments showed that when the concentration ratio between total fatty acids and retinol is similar to that found in milk, palmitic acid competes with the binding of retinol to β-lactoglobulin.  相似文献   

4.
Monoclonal antibody (mAb) #1-30-44 recognized an acid-sensitive conformational epitope of rabies virus glycoprotein (G). The antigenicity of G protein exposed on the cell surface was lost when the infected cells were exposed to pH 5.8. By comparing the deduced amino acid sequence of G protein between the HEP-Flury strain and the epitope-negative CVS strain as well as the mAb-resistant escape mutants, two distant sites that contained Lys-202 and Asn-336 were shown to be involved in the epitope formation. Lys-202 is located in the so-called neurotoxin-like sequence, while Asn-336 is included in antigenic site III and is very near the amino acid at position 333, which is known to affect greatly the neuropathogenicity of rabies virus when changed. Consistent with this finding, antigenicity of a neurovirulent revertant of the HEP-Flury strain, in which Gln-333 of G protein was replaced by Arg, was also affected as shown by its greatly decreased reactivity with mAb #1-30-44 compared to that of the original avirulent HEP virus. Based on these results, we hypothesize that the neurotoxin-like domain and some amino acids in antigenic site III come into contact with each other to form a conformational epitope for mAb #1-30-44, and such a configuration would be lost when exposed to acidic conditions to perform a certain low pH-dependent function of G protein.  相似文献   

5.
The mechanism(s) by which fatty acids are sequestered and transported in muscle have not been fully elucidated. A potential key player in this process is the protein myoglobin (Mb). Indeed, there is a catalogue of empirical evidence supporting direct interaction of globins with fatty acid metabolites; however, the binding pocket and regulation of the interaction remains to be established. In this study, we employed a computational strategy to elucidate the structural determinants of fatty acids (palmitic & oleic acid) binding to Mb. Sequence analysis and docking simulations with a horse (Equus caballus) structural Mb reference reveals a fatty acid-binding site in the hydrophobic cleft near the heme region in Mb. Both palmitic acid and oleic acid attain a “U” shaped structure similar to their conformation in pockets of other fatty acid-binding proteins. Specifically, we found that the carboxyl head group of palmitic acid coordinates with the amino group of Lys45, whereas the carboxyl group of oleic acid coordinates with both the amino groups of Lys45 and Lys63. The alkyl tails of both fatty acids are supported by surrounding hydrophobic residues Leu29, Leu32, Phe33, Phe43, Phe46, Val67, Val68 and Ile107. In the saturated palmitic acid, the hydrophobic tail moves freely and occasionally penetrates deeper inside the hydrophobic cleft, making additional contacts with Val28, Leu69, Leu72 and Ile111. Our simulations reveal a dynamic and stable binding pocket in which the oxygen molecule and heme group in Mb are required for additional hydrophobic interactions. Taken together, these findings support a mechanism in which Mb acts as a muscle transporter for fatty acid when it is in the oxygenated state and releases fatty acid when Mb converts to deoxygenated state.  相似文献   

6.
An hereditary abnormal antithrombin III (ATIII Geneva) with defective heparin cofactor activity was characterized by DNA single strand amplification and subsequent direct sequencing. ATIII Geneva was found to have a G to A transition in Exon IIIa leading to an Arg-129 to Gln mutation. This amino acid is part of the ATIII region comprising residues 114-154, which contains the highest proportion of basic residues (Arg or Lys), and is known from chemical modification studies to be involved in heparin binding. The variant protein did not bind heparin-Sepharose and was isolated from the propositus plasma by immunoaffinity chromatography. High affinity (for ATIII) heparin had only a minimal effect on thrombin and activated factor X inhibition by the purified abnormal ATIII. Taken together, these results demonstrate an important role for Arg-129 in the binding and interaction of ATIII with heparin of high affinity. We propose that a cooperation between Lys-125, Arg-129, Lys-136, and Arg-47 exposed at the surface of the inhibitor allows the binding of the essential pentasaccharide domain of heparin which is specific for the ATIII interaction.  相似文献   

7.
Ophiobolin A, a fungal toxin that affects maize and rice, has previously been shown to inhibit calmodulin by reacting with the lysine (Lys) residues in the calmodulin. In the present study we mutated Lys-75, Lys-77, and Lys-148 in the calmodulin molecule by site-directed mutagenesis, either by deleting them or by changing them to glutamine or arginine. We found that each of these three Lys residues could bind one molecule of ophiobolin A. Normally, only Lys-75 and Lys-148 bind ophiobolin A. Lys-77 seemed to be blocked by the binding of ophiobolin A to Lys-75. Lys-75 is the primary binding site and is responsible for all of the inhibition of ophiobolin A. When Lys-75 was removed, Lys-77 could then react with ophiobolin A to produce inhibition. Lys-148 was shown to be a binding site but not an inhibition site. The Lys-75 mutants were partially resistant to ophiobolin A. When both Lys 75 and Lys-77 or all three Lys residues were mutated, the resulting calmodulins were very resistant to ophiobolin A. Furthermore, Lys residues added in positions 86 and/or 143 (which are highly conserved in plant calmodulins) did not react with ophiobolin A. None of the mutations seemed to affect the properties of calmodulin. These results show that ophiobolin A reacts quite specifically with calmodulin.  相似文献   

8.
The IL-2 receptor alpha-chain alters the binding of IL-2 to the beta-chain   总被引:7,自引:0,他引:7  
The binding of IL-2 to its high affinity receptor results in the formation of the ternary complex consisting of IL-2, alpha-chain (p55, Tac) and beta-chain (p75). We studied the role of alpha-chain in IL-2 binding to the high affinity receptor using IL-2 analog Lys20 which was made by the substitution of Lys for Asp20 of wild-type rIL-2. Lys20 bound to MT-1 cells solely expressing alpha-chain at low affinity, but did not bind to YT-2C2 cells which solely expressed beta-chain. However, direct binding of radiolabeled Lys20 to ED515-D cells, an HTLV-I-infected and IL-2-dependent T cell line, revealed both high affinity and low affinity binding although the Kd value of high affinity binding was 50 to 100 times higher than that of the high affinity binding of wild-type rIL-2. High affinity binding of Lys20 was completely blocked by 2R-B mAb recognizing IL-2R beta-chain. Anti-Tac mAb recognizing IL-2R alpha-chain abolished all of the specific Lys20 bindings. In contrast to the replacement of cell bound 2R-B mAb with wild-type rIL-2 at 37 degrees C, the addition of an excess of Lys20 did not cause the detachment of cell-bound radiolabeled or FITC-labeled 2R-B mAb. Consistent with the results of binding studies, Lys20 induced the proliferation of ED515-D cells, but not large granular lymphocyte leukemic cells. The growth of ED-515D cells was completely suppressed by either anti-Tac mAb or 2R-B mAb. These results strongly suggest that coexpression of the IL-2R alpha- and beta-chains alters the binding affinity of Lys20 and that the interaction between IL-2 and the alpha-chain is a key event in the formation of the IL-2/IL-2R ternary complex.  相似文献   

9.
Because of wide ligand-binding ability and significant industrial interest of beta-lactoglobulin (beta-LG), its binding properties have been extensively studied. However, there still exists a controversy as to where a ligand binds, since at least two potential hydrophobic binding sites in beta-LG have been postulated for ligand binding: an internal one (calyx) and an external one (near the N-terminus). In this work, the local polarity and hydrophobic binding sites of beta-LG have been characterized by using N-terminal specific fluorescence labeling combined with a polarity-sensitive fluorescent probe 3-(4-chloro-6-hydrazino- 1,3,5-triazinylamino)-7-(dimethylamino)-2-methylphenazine (CHTDP). The polarity within the calyx is found to be extremely low, which is explained in terms of superhydrophobicity possibly resulting from its nanostructure, and the polarity is increased with the destruction of the calyx by heat treatment. However, the polarity of the N-terminal domain in native beta-LG is decreased after thermal denaturation. This polarity trend toward decreasing instead of increasing shows that beta-LG may have no definite external hydrophobic binding site. The hydrophobic binding of a ligand such as CHTDP at the surface of the protein is probably achieved via appropriate assembling of corresponding hydrophobic residues rather than via a fixed external hydrophobic binding site. Also, the ligand-binding location in beta-LG is found to be relevant to not only experimental conditions (pH < or = 6.2 or pH > 7.1) but also binding mechanisms (hydrophobic affinity or electrostatic interaction).  相似文献   

10.
Ever since the fortuitous observation that beta-lactoglobulin (beta-Lg), the major whey protein in the milk of ruminants, bound retinol, the details of the binding have been controversial. beta-Lg is a lipocalin, like plasma retinol-binding protein, so that ligand association was expected to make use of the central cavity in the protein. However, an early crystallographic analysis and some of the more recent solution studies indicated binding elsewhere. We have now determined the crystal structures of the complexes of the trigonal form of beta-Lg at pH 7.5 with bound retinol (R=21.4% for 7329 reflections between 20 and 2.4 A resolution, R(free)=30.6%) and with bound retinoic acid (R=22.7% for 7813 reflections between 20 and 2.34 A resolution, R(free)=29.8%). Both ligands are found to occupy the central calyx in a manner similar to retinol binding in retinol-binding protein. We find no evidence of binding at the putative external binding site in either of these structural analyses. Further, competition between palmitic acid and retinol reveals only palmitate bound to the protein. An explanation is provided for the lack of ligand binding to the orthorhombic crystal form also obtained at pH 7.5. Finally, the possible function of beta-Lg is discussed in the light of its species distribution and similarity to other lipocalins.  相似文献   

11.
When bovine beta-lactoglobulin (beta-LG) was refolded after extensive denaturation in 4.8 M guanidine hydrochloride (GuHCl), the functional activity of the protein, retinol binding, as measured by the enhancement of this ligand's fluorescence, was completely recovered. In contrast, the room-temperature tryptophan phosphorescence lifetime of the refolded protein, a local measure of the residue environment, was approximately 10 ms, significantly shorter than the phosphorescence lifetime of the untreated native protein (approximately 20 ms). The lability of the freshly refolded protein, as monitored by following the time course of its unfolding when incubated in 2.5 M GuHCl through the change in fluorescence intensity at 385 nm, was also determined and found to be increased significantly relative to untreated native protein. In contrast to the long term postactivation conformational changes detected previously in Escherichia coli alkaline phosphatase (Subramaniam V, Bergenhem NCH, Gafni A, Steel DG, 1995, Biochemistry 34:1133-1136), we found no changes in either the lability or phosphorescence decays of beta-LG during a period of 24 h. Our results are in agreement with the report by Hattori et al. (1993, J Biol Chem 268:22414-22419), using conformation-specific monoclonal antibodies to recognize native-like structure, that long-term changes occur in the protein conformation, compared with the native structure, on refolding.  相似文献   

12.
The epitopes for twelve monoclonal antibodies against the cytoplasmic side of the acetylcholine receptor (AChR) alpha subunit were precisely mapped using over 300 continuously overlapping synthetic peptides attached on poly(ethylene) rods. mAb cross-reactive between Torpedo and human AChR generally bound to the homologous peptides from both species. Epitopes 4-10-residues long were identified. One mAb could bind to either arm on both sides of a beta-turn structure. Five mAb bound to a very-immunogenic cytoplasmic epitope on alpha 373-380 (VICE-alpha). Three of the mAb against VICE-alpha were earlier found to cross-react with non-AChR protein(s), present in thymomas from myasthenia gravis patients but absent in thymomas from non-myasthenics. Since VICE-alpha has a potentially crucial pathogenic role, the antigenic role of each residue within it was subsequently studied by 55 analogues, most having single amino acid substitutions. All the mAb against VICE-alpha bound similarly but not identically to the analogues, thus explaining their known binding heterogeneity. Lys373 proved indispensable for mAb binding. Ile376, Glu377, Gly378 and Lys380 were quite critical, while Ser374, Ala375 and Val379 seemed rather inactive. These data should prove instructive in searches for VICE-alpha-like epitopes carrying autoantigens with potential involvement in myasthenia gravis and should further expand the applications of the anti-(AChR) mAb in AChR studies.  相似文献   

13.
Liver fatty acid-binding protein (FABP) is able to bind to anionic phospholipid vesicles under conditions of low ionic strength. This binding results in the release of ligand, the fluorescent fatty acid analogue 11-dansylaminoundecanoic acid (DAUDA), with loss of fluorescence intensity (Davies, J. K., Thumser, A. E. A., and Wilton, D. C. (1999) Biochemistry 38, 16932-16940). Using a strategy of charge reversal mutagenesis, the potential role of specific cationic residues in promoting interfacial binding of FABP to anionic phospholipid vesicles has been investigated. Cationic residues chosen included those within the alpha-helical region (Lys-20, Lys-31, and Lys-33) and those that make a significant contribution to the positive surface potential of the protein (Lys-31, Lys-36, Lys-47, Lys-57, and Arg-126). Only three cationic residues make a significant contribution to interfacial binding, and these residues (Lys-31, Lys-36, and Lys-57) are all located within the ligand portal region, where the protein may be predicted to exhibit maximum disorder. The binding of tryptophan mutants, F3W, F18W, and C69W, to dioleoylphosphatidylglycerol vesicles, containing 5 mol% of the fluorescent phospholipid dansyldihexadecanoylphosphatidylethanolamine, was monitored by fluorescence resonance energy transfer (FRET). All three mutants showed enhanced dansyl fluorescence due to FRET on addition of phospholipid to protein; however, this fluorescence was considerably greater with the F3W mutant, consistent with the N-terminal region of the protein coming in close proximity to the phospholipid interface. These results were confirmed by succinimide quenching studies. Overall, the results indicate that the portal region of liver FABP and specifically Lys-31, Lys-36, and Lys-57 are involved in the interaction with the interface of anionic vesicles and that the N-terminal region of the protein undergoes a conformational change, resulting in DAUDA release.  相似文献   

14.
We prepared two beta-lactoglobulin (beta-LG)-carboxymethyl dextran (CMD) conjugates (Conj. 10A and Conj. 10B) by using a water-soluble carbodiimide to decrease the immunogenicity of beta-LG. The molar ratios of beta-LG to CMD in the conjugates were 5:1 (Conj. 10A) and 2:1 (Conj. 10B). The beta-LG-CMD conjugates maintained the retinol-binding activity of native beta-LG. Intrinsic fluorescence study indicated that shielding of the surface of beta-LG by CMD occurred in each conjugate, which was eminent in Conj. 10B. A local conformational change around (125)Thr-(135)Lys (alpha-helix) in each conjugate was detected by ELISA with monoclonal antibodies. The denaturation temperature of beta-LG evaluated by differential scanning calorimetry was greatly enhanced in each conjugate. The anti-beta-LG antibody response was markedly reduced after immunization with the beta-LG-CMD conjugates in BALB/c, C57BL/6, and C3H/He mice. We determined the B cell epitopes of beta-LG and each conjugate recognized in these mice and found that the linear epitope profiles of the beta-LG-CMD conjugates were similar to those of beta-LG, while the antibody response for each epitope was dramatically reduced. The reduced immunogenicity of beta-LG was most marked in the case of Conj. 10B, which contained more CMD than Conj. 10A, and was effectively shielded by CMD. We concluded that masking of epitopes by CMD is responsible for the decreased immunogenicity of the beta-LG in these conjugates.  相似文献   

15.
Helical complexes formed between fd DNA and reductively methylated fd gene 5 protein were indistinguishable by electron microscopy from complexes formed with the nonmethylated protein. 13C NMR spectroscopy of 13C-enriched N epsilon, N epsilon-dimethyllsyl residues of the protein showed that three of these residues (Lys-24, Lys-46, and Lys-69) were selectively perturbed by binding of the oligomer d(pA)7. These were the same lysyl residues that we previously found to be most protected from methylation by binding of the protein to poly[r(U)] [Dick, L. R., Sherry, A. D., Newkirk, M. M., & Gray D. M. (1988) J. Biol. Chem. 263, 18864-18872]. Thus, these lysines are probably directly involved in the nucleic acid binding function of the protein. Negatively charged chelates of lanthanide ions were used to perturb the 13C NMR resonances of labeled lysyl and amino-terminal residues of the gene 5 protein. The terbium chelate was found to bind tightly (Ka approximately 10(5) M-1) to the protein with a stoichiometry of 1 chelate molecule per protein dimer. 13C resonances of Lys-24, Lys-46, and Lys-69 were maximally shifted by the terbium chelate and were maximally relaxed by the gadolinium chelate. Also, the terbium chelate was excluded by the oligomer d(pA)7. Computer fits of the induced chemical shifts of 13C resonances with those expected for various positions of the terbium chelate failed to yield a possible chelate binding site unless the chemical shift for Lys-24 was excluded from the fitting process.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Horseradish peroxidase (HRP) is an important heme enzyme with enormous medical diagnostic, biosensing, and biotechnological applications. Thus, any improvement in the applicability and stability of the enzyme is potentially interesting. We previously reported that covalent attachment of an electron relay (anthraquinone 2-carboxylic acid) to the surface-exposed Lys residues successfully improves electron transfer properties of HRP. Here we investigated structural and functional consequences of this modification, which alters three accessible charged lysines (Lys-174, Lys-232, and Lys-241) to the hydrophobic anthraquinolysine residues. Thermal denaturation and thermoinactivation studies demonstrated that this kind of modification enhances the conformational and operational stability of HRP. The melting temperature increased 3 degrees C and the catalytic efficiency enhanced by 80%. Fluorescence and circular dichroism investigations suggest that the modified HRP benefits from enhanced aromatic packing and more buried hydrophobic patches as compared to the native one. Molecular dynamics simulations showed that modification improves the accessibility of His-42 and the heme prosthetic group to the peroxide and aromatic substrates, respectively. Additionally, the hydrophobic patch, which functions as a binding site or trap for reducing aromatic substrates, is more extended in the modified enzyme. In summary, this modification produces a new derivative of HRP with enhanced electron transfer properties, catalytic efficiency, and stability for biotechnological applications.  相似文献   

17.
18.
Site-directed mutagenesis was used to determine how the allosteric properties of aspartate transcarbamoylase (ATCase) are affected by amino acid replacements in the nucleotide binding region of the regulatory polypeptide chains. Amino acid substitutions were made for both Lys-60 and Lys-94 in the regulatory chain since those residues have been implicated by x-ray diffraction studies, chemical modification experiments, and site-directed mutagenesis as playing a role in binding CTP and ATP. Lys-60 was replaced by His, Arg, Gln, and Ala, and Lys-94 was changed to His. These mutant forms of ATCase exhibit bewildering changes in the allosteric properties compared to the wild-type enzyme as well as altered affinities for the nucleotide effectors. The enzyme containing His-60 lacks both homotropic and heterotropic effects and exhibits no detectable binding of nucleotides. In contrast, the holoenzymes containing either Gln-60 or Arg-60 retain both homotropic and heterotropic effects. Replacement of Lys-60 by Ala yields a derivative exhibiting altered heterotropic effects involving insensitivity to CTP and activation by ATP. The mutant enzyme containing His-94 in place of Lys exhibits cooperativity with reduced affinity for nucleotides. The multiple substitutions at Lys-60 in the nucleotide binding region of the regulatory chains of ATCase demonstrate that different amino acids in the same location can alter indirectly the delicate balance of interactions responsible for the allosteric properties of ATCase. The studies show that it is hazardous and frequently unwarranted from single amino acid replacements of a specific residue to attribute to that residue the properties observed for the wild-type enzyme.  相似文献   

19.
Affinity labeling with palmitic acid was used to identify long chain fatty acid-binding sites of bovine serum albumin. [1-14C]Palmitic acid was activated by esterification with N-ethyl-5-phenyl-isoxazolium-3'-sulfonate (Woodward's Reagent K). The product was purified by chromatography and shown to compete with unesterified fatty acids for binding sites on bovine serum albumin. Activated [14C]palmitic acid coupled covalently to albumin producing [14C]palmitoyl-albumins containing from 0.12 to a maximum of 6.9 mol of attached label per mol of albumin. The presence of the covalently attached affinity label depressed binding of other long chain fatty acids to albumin. Albumin carrying 1 eq. of [14C]palmitate was cleaved using cyanogen bromide, pepsin, and trypsin. Radioactive peptides were isolated by high pressure liquid chromatography. Three peptides accounted for greater than 90% of the label. Residues labeled with [14C]palmitate were identified as Lys-116, Lys-349 and Lys-473, and the relative distribution of label was 10, 45, and 45% respectively, consistent with the presence of two strong binding sites in the COOH-terminal half of albumin and a somewhat weaker site in the NH2-terminal half.  相似文献   

20.
M Sheinblatt 《Biopolymers》1989,28(11):1913-1921
The stabilization of the folded conformation of lysozyme, arising from the binding of the inhibitor (NAG)3 against induced denaturation, is demonstrated from the 1H-nmr spectra of the enzyme. The nmr spectra reveal that the binding of the denaturant (GuHCl) to the enzyme is associated with changes in the conformation of the enzyme. The binding site of the inhibitor site C also serves as one of the binding sites of GuHCl. The observation that higher denaturant concentrations are required in the unfolding of Lys-(NAG)3 as compared to free Lys can be explained partly in terms of the existence of a competitive binding to the enzyme involving the (NAG)3 and GuHCl molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号