首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hyperzincemia has been reported to cause alterations in the homeostasis of glycid metabolism. To determine this effect on plasma glucose and insulin levels, we studied 36 normal individuals of both sexes aged 22–26 y after a 12-h fast. The tests were initiated at 7:00am when an antecubital vein was punctured and a device for infusion was installed and maintained with physiological saline. Zinc was administered orally at 8:00am. Subjects were divided into an experimental group of 22 individuals who received doses of 25, 37.5, and 50 mg of zinc and a control group of 14 individuals. Blood samples were collected over a period of 240 min after the basal samples (−30 and 0 min). We did not detect any change in plasma glucose or insulin levels, a fact that we attribute either to the ineffectiveness of the 50 mg dose of zinc or to the lack of human response to the acute action of this trace element. The individuals who ingested zinc showed a significant fall in plasma cortisol, probably caused by the action of this trace element.  相似文献   

2.
Acute or chronic zinc administration may cause hyperglycemia in experimental animals. These findings are attributed to permissive actions of glucocorticoids and glucagon upon hepatic gluconeogenesis and glycogenolysis. The effect of Zn++ on plasma glucose, C-peptide, glucagon, and cortisol was investigated in healthy and insulin-dependent diabetes mellitus (IDDM) patients. Ten normal individuals (5 of each sex, aged 24.10 ± 1.96) and 10 IDDM (5 of each sex, aged 25.20 ± 8.10) were tested at 7:00 AM after 12-h fast. Twenty-five mg of Zn++ were administered intravenously during 1 min, and blood samples were collected from the contralateral arm at 0, 3, 30, 60, 90 and 120 min after Zn++ injection. The plasma levels of glucose, C-peptide, and glucagon remained constant throughout the experimental period in both groups studied. Plasma cortisol levels decreased significantly, which is consistent with our previous findings. These results suggest that, in contrast to experimental animals, acute Zn++ administration, despite decreasing cortisol levels, does not change carbohydrate metabolism in human beings.  相似文献   

3.
A review of experimental studies of the effect of zinc nutrition on insulin metabolism is presented. In addition to a short introduction to the synthesis, secretion, and action of insulin, the effects of zinc deficiency—specifically on glucose tolerance, insulin secretion, insulin synthesis and storage, and on total insulin-like activity—are dealt with. The concentrations of zinc and chromium in serum, pancreas, and liver are compared to those of zinc-deficient animals and pair-fed controls. In contrast to pair-fed controls, zinc-deficient rats had unaltered proinsulin contents after glucose stimulation, but they showed a diminished glucose tolerance, lowered serum insulin content, and an elevated total insulin-like activity. The serum zinc concentration of the deficient animals was greatly reduced and did not change during glucose stimulation, whereas it rose in the case of the pair-fed controls. The serum chromium concentration increased in both groups in response to glucose stimulation. In the pancreas of the deficient animals, the zinc concentration was reduced 60% and it increased during the glucose tolerance test. In the liver there were no significant differences. The chromium concentrations were elevated in both the pancreas and liver of the zinc-deficient rats by 60 and 100%, respectively, and were not influenced by glucose injection. These studies show clearly that nutritional zinc deficiency influences insulin metabolism and action.  相似文献   

4.
In awake rats adapted to experimental conditions and allowed food ad libitum, hyperglycemia was induced by the administration of morphine 10 mg/kg through indwelling catheters in the external jugular vein. High glucose values were measured at 5, 15 and 25 min. Glucagon values were high at 5 and 15 min, and again at basal level at 25 min. Insulin was increased after morphine both at 5, 15 and 25 min, whereas somatostatin levels did not change after morphine. When morphine was administered together with naloxone after an initial 10 min period of naloxone administration, there was no increment in glucose, insulin or somatostatin values; neither at 5, 15 or 25 min. There was a remarkable glucagon decrease after naloxone and morphine remaining from 5 to 25 min. Then, one of the possible mechanisms for the hyperglycemic response after morphine may be an opioid effect on pancreas, stimulating glucagon and thereby causing hepatic glucose output.  相似文献   

5.
Insulin-dependent diabetes mellitus (IDDM) is an autoimmune disease that is characterized by selective destruction of insulin secreting pancreatic islets beta-cells. The formation of cytokines (IL-1beta, IL-6, TNF-alpha, etc.) leads to extensive morphological damage of beta-cells, DNA fragmentation, decrease of glucose oxidation, impaired glucose-insulin secretion and decreased insulin action and proinsulin biosynthesis. We examined the protective effect of a 1,4-dihydropyridine (DHP) derivative cerebrocrast (synthesized in the Latvian Institute of Organic Synthesis) on pancreatic beta-cells in rats possessing diabetes induced with the autoimmunogenic compound streptozotocin (STZ). Cerebrocrast administration at doses of 0.05 and 0.5 mg/kg body weight (p.o.) 1 h or 3 days prior to STZ as well as at 24 and 48 h after STZ administration partially prevented pancreatic beta-cells from the toxic effects of STZ, and delayed the development of hyperglycaemia. Administration of cerebrocrast starting 48 h after STZ-induced diabetes in rats for 3 consecutive days at doses of 0.05 and 0.5 mg/kg body weight (p.o.) significantly decreased blood glucose level, and the effect remained 10 days after the last administration. Moreover, in these rats, cerebrocrast evoked an increase of serum immunoreactive insulin (IRI) level during 7 diabetic days as compared to both the control normal rats and the STZ-induced diabetic control rats. The STZ-induced diabetic rats that received cerebrocrast had a significantly high serum IRI level from the 14th to 21st diabetic days in comparison with the STZ-induced diabetic control.The IRI level in serum as well as the glucose disposal rate were significantly increased after stimulation of pancreatic beta-cells with glucose in normal rats that received cerebrocrast, administered 60 min before glucose. Glucose disposal rate in STZ-induced diabetic rats as a result of cerebrocrast administration was also increased in comparison with STZ-diabetic control rats. Administration of cerebrocrast in combination with insulin intensified the effect of insulin. The hypoglycaemic effect of cerebrocrast primarily can be explained by its immunomodulative properties. Moreover, cerebrocrast can act through extrapancreatic mechanisms that favour the expression of glucose transporters, de novo insulin receptors formation in several cell membranes as well as glucose uptake.  相似文献   

6.
7.
Effects of intravenous (IV) infusion of secretin during IV infusion of glucose were examined in normal men. Secretin was administered according to three schedules: with each schedule a comparable priming dose was delivered in the first minute, but this was followed by a maintained (120 min) infusion of secretin at a relatively high rate, or by maintained infusion at one-third that rate, or by brief (15 min) infusion at the lower rate. The lower infusion rate produced increments in secretin in the blood within the range attainable during endogenous secretion. By comparison with effects of glucose alone each secretin infusion enhanced the increments of immunoreactive insulin in the blood. Enhancement of the early release (0-5 min) of insulin was similar with each type of secretin infusion, but the integrated changes in insulin levels through the total infusion period were related to the total doses of secretin. With each dose of secretin glucose tolerance was improved but the three mean glucose curves observed during infusions of secretin were not distinguishable from one another in spite of widely different integrated insulin responses. Secretin did not modify suppression of immunoreactive glucagon or free fatty acids in the blood during hyperglycemia. The results suggest that the effect of continuous administration of secretin on glucose tolerance is not simply related to its integrated insulinotropic action. It is suggested that the effect may be highly dependent on enhancement of insulin secretion early in the response to glycemia, or that it may be due to effects of secretin on glucose production or disposal which are not mediated by insulin.  相似文献   

8.
The effects of central (intracerebroventricular, 9 g fish–1) and peripheral (intraperitoneal, 4 mg kg–1) administration of bovine insulin, as well as the effect of hyperglycemia (oral administration of 1 g glucose fish–1) and brain glucodeprivation (intracerebroventricular administration of 2-deoxy-D-glucose) on food intake and levels of brain (telencephalon, preoptic area, and hypothalamus) biogenic amines (serotonin, dopamine, noradrenaline and their metabolites 5-hydroxyindoleacetic acid, and dihydroxyphenylacetic acid) were assessed on rainbow trout (Oncorhynchus mykiss). Treatment with insulin inhibited food intake after 26 or 52 h of administration, central or peripheral, respectively. This effect was still apparent after 74 h of central treatment. When assessing changes in the levels of biogenic amines after 26 h of central insulin administration, there was a significant increase in the levels of 5-hydroxyindoleacetic acid, and in the ratio of dihydroxyphenylacetic acid/dopamine of insulin-treated fish, in telencephalon and hypothalamus, respectively. These results suggest that peripherally administered insulin is involved in a feedback regulatory loop with food intake and body weight. Moreover, at least part of the effects of insulin could be mediated by hypothalamic dopaminergic activity. The strong hyperglycemia induced by oral administration of glucose did not induce significant changes either on food intake (control versus treated), or in brain levels of biogenic amines. The intracerebroventricular administration of 2-deoxy-D-glucose induced an increase in food intake without altering plasma glucose levels, suggesting that fish brain possesses a control system for detecting hypoglycemia in plasma and therefore keep brain glucose levels high enough for brain function.Abbreviations 2-DG 2 Deoxy-D-glucose - 5-HIAA 5-Hydroxyindoleacetic acid - 5-HT 5-Hydroxytryptamine or serotonin - DA Dopamine - DOPAC Dihydroxyphenylacetic acid - EDTA Ethylenediaminetetraacetic acid - FI Food intake - HPLC High pressure liquid chromatography - icv Intracerebroventricular - i.p. Intraperitoneal - MS 222 3-Aminobenzoic acid ethyl esther methanesulfonate salt - NA Noradrenaline  相似文献   

9.
Intravenous glucose tolerance tests (IVGTT) were performed on 30 anesthetized, captive Sumatran (Pongo pygmaeus abeli), Bornean (P. p. pygmaeus), and hybrid (P. p. ablie x P. p. pygmaeus) orangutans, and fasted blood samples were taken from two additional juvenile orangutans in 11 U.S. zoos from 1989 to 1997. The age range of animals was 3.5 to 40.5 years. Plasma and serum samples were assayed for glucose and insulin concentrations. Glucose disappearance rate (KG), an index of glucose tolerance, was calculated, as were the early (acute) and second phase insulin responses to administered glucose. The mean ± SE (and median) fasting glucose and insulin concentrations were 113 ± 16 mg/dL (90 mg/dL) and 45 ± 7 μU/mL (27 μU/mL), respectively. Two animals previously suspected to be diabetic were easily identified by their markedly elevated fasting glucose concentrations (380 and 562 mg/dL) and relatively low fasted insulin concentrations (21 and 14 μU/mL); their insulin responses during the IVGTTs were also low or non‐detectable. Without these diabetics, the mean ± SE (median) fasting glucose concentration was 92 ± 18 mg/dL (89 mg/dL). Two animals, ages 18 and 40, were identified as potentially pre‐diabetic based on age, adiposity, elevated fasted glucose (116 and 137 mg/dL, respectively), and elevated fasted insulin concentrations (114 and 217 μU/mL, respectively). In addition, nearly half of the animals of varying ages, all sub‐species and both sexes exhibited delayed or attenuated acute insulin responses during the IVGTTs, resulting in lower KG (P < 0.04) and suggesting propensity for glucose intolerance in captive orangutans. Glucose and insulin concentrations and insulin responses to glucose did not differ between females on hormonal contraception regimes and those not receiving treatment. Zoo Biol 19:193–208, 2000. © 2000 Wiley‐Liss, Inc.  相似文献   

10.
Studies performed on adult female rats over a period of 10 weeks indicated that the consumption of alcohol (20% v/v) did not appear to disturb the zinc or copper balance, nor did it adversely affect tissue zinc or copper levels, even in zinc-restricted animals. On the contrary, higher plasma zinc levels were consistently observed in animals receiving alcohol together with the experimental diets.  相似文献   

11.
M B Davidson  G Organ 《Peptides》1982,3(5):721-723
We sought to confirm the observation that 500 microU of insulin injected into the carotid artery of rats lowers plasma glucose by approximately 20 mg/dl within 2 minutes. In our hands, glucose concentrations fell gradually by approximately 20-25 mg/dl over a 45-60 minute period after insertion of a carotid artery cannula. This occurred whether 500 microU of insulin and/or anti-insulin serum or saline were injected toward the heart. There was no change in glucose concentrations following injection of 500 microU of insulin toward the head 45 minutes after insertion of the cannula. Thus, the hypoglycemic response to small amounts of insulin administered to the head via the carotid artery must be very sensitive to factors that are currently difficult to recognize.  相似文献   

12.
There is a strong positive correlation between insulin resistance and cardiac diseases. We have already shown that chronic exposure to the ketone body β-hydroxybutyrate (OHB) decreases insulin-mediated activation of protein kinase B (PKB) and glucose uptake in cardiomyocytes. To gain further insights into the mechanism underlying ketone body-induced insulin resistance, we examined whether OHB alters activation of the insulin-signaling cascade and whether the insulinomimetic agent vanadate could bypass insulin resistance and stimulate glucose uptake in these cells. Cardiomyocytes were incubated with 5 mM OHB, 50 μM vanadate or both for 16 h before the measurement of glucose uptake or the activation of insulin-signaling molecules. While chronic exposure to OHB did not alter insulin- or vanadate-mediated activation of the insulin receptor, it suppressed insulin receptor substrate-1 (IRS-1) tyrosine phosphorylation in response to both agonists. Furthermore, this treatment decreased by 54 and 36% the phosphorylation of the p85 regulatory subunit of phosphatidylinositol 3-kinase (PI3-K) and PKB in response to insulin, whereas it did not alter vanadate-mediated activation of these enzymes. Although insulin did not significantly stimulate p38MAPK phosphorylation, vanadate increased it by 3.8-fold. Furthermore, chronic exposure to OHB potentiated vanadate’s action, resulting in a 250% increase in enzyme activation compared to control cells. Though OHB induced a 2.1-fold increase of basal ERK1/2 phosphorylation, inhibition of this enzyme with the MEK inhibitor PD98059 demonstrated that ERK1/2 did not participate in OHB-induced insulin resistance. In conclusion, ketone bodies promote insulin resistance probably through decreased activation of the PI3-K/PKB signaling cascade. Furthermore, vanadate can bypass insulin resistance and stimulate glucose uptake in OHB-treated cardiomyocytes.  相似文献   

13.
Milk diet has long been recommended in the management of gastrointestinal pathologies. Since milk feeding represents a high fat-low carbohydrate diet and it is acknowledged that insulin resistance is one of the consequences of high fat feeding, it is important to know whether or not chronic milk feeding leads to an impairment of the insulin-mediated glucose metabolism. To examine this question, adult female rats were given raw cow's milk (50% of total calories as lipids) for 18 days. They were compared to rats raised in parallel and fed the standard laboratory diet (15% of total calories as lipids). At the end of the 18 day period, body weight, daily caloric intake, basal plasma glucose and insulin levels in the milk-fed rats were similar to those in the control rats.In vivo insulin action was assessed with the euglycemichyperinsulinemic clamp technique in anesthetized animals. These studies were coupled with the 2-deoxyglucose technique allowing a measurement of glucose utilization by individual tissues. In the milk fed rats: 1) the basal rate of endogenous glucose production was significantly (p<0.01) reduced (by 20%); 2) their hepatic glucose production was however normally suppressed by hyperinsulinemia; 3) their basal glucose utilization rate was significantly (p<0.01) reduced (by 20%); 4) their glucose utilization rate by the whole-body mass or by individual tissues was normally increased by hyperinsulinemia. These results indicate that insulin action in adult rats is not grossly altered after chronic milk-feeding, at least under the present experimental conditions.  相似文献   

14.
The insulin-like effects of various vanadium compounds (orthovanadate, vanadyl and peroxides of vanadate) on rates of glucose oxidation, lactate formation and glycogen synthesis were measured in isolated incubated epitrochlearis (mainly type 11 fibres) and soleus (mainly type I fibres) muscle preparations. There was a small stimulation of the rate of glucose utilisation in soleus muscle preparations in vitro by orthovanadate (1 mM). Orthovanadate or vanadyl, at 1 mM, had little effect on the rates of lactate formation or glycogen synthesis in isolated incubated epitrochlearis muscle preparations. In contrast, peroxides of vanadate (peroxovanadates, at 1 mM) significantly stimulated glucose utilisation in both soleus and epitrochlearis muscle preparations in vitro. The stimulation of the rate of glycogen synthesis was associated with an increase in the percentage of glycogen synthase in the I (or a) form. Peroxovanadates were administered in the drinking water to rats made insulin deficient by streptozotocin treatment. There was no decrease in the elevated level of blood glucose over an 8 day administration period. (Mol Cell Biochem 109: 157–162, 1992)  相似文献   

15.
We investigated influence of endogenous and exogenous melatonin on genetic and serologic aspects of secretory function of pancreas in rats. Thirty adult Wistar rats were divided into six groups. To achieve variable levels of endogenous melatonin, 10-day long-term exposure to light and darkness was implemented. Exogenous melatonin was administered orally (10 mg/kg of body weight). Blood glucose and serum levels of insulin, glucagon, and melatonin were measured by ELISA. Gene expression levels of insulin and glucagon were determined using the real time PCR. Results showed increase of blood glucose and decrease in serum levels of insulin after administration of melatonin without any significant difference in serum levels of glucagon. Gene expression levels of insulin in melatonin group were significantly lower than control group, while their glucagon was more. We concluded that oral administration of melatonin leads to increasing blood glucose, due to inhibition of insulin and stimulation of glucagon synthesis.  相似文献   

16.
To investigate whether correction of fasting hyperglycemia per se improves the insulin secretion in type 2 diabetic subjects, plasma insulin response to 75 g oral glucose load has been studied after acute and chronic normalization of fasting plasma glucose levels in 7 overt type 2 diabetic subjects. For the acute normalization of elevated fasting plasma glucose levels, an artificial endocrine pancreas was employed. Although fasting plasma glucose concentrations were normalized before the oral glucose challenge, insulin response to oral glucose was not improved compared to those without normalization of fasting plasma glucose levels. After 1-3 month control of hyperglycemia, the insulin response to glucose in the subjects was significantly improved compared to those without treatments. Results indicate that chronic metabolic control is essential for the improvement of insulin response to glucose in type 2 diabetic subjects, and also suggest that the impaired insulin secretion in type 2 diabetes is not due to hyperglycemia per se, but due to the metabolic derangements which lead to chronic hyperglycemia.  相似文献   

17.
Zinc improves both insulin secretion and insulin sensitivity, and exerts insulin-like effects. We investigated its acute effects on the parameters of glucose assimilation determined with the minimal model technique from frequent sampling intravenous glucose tolerance test (FSIVGTT) in seven healthy volunteers. FSIVGTTs (0.5 g/kg of glucose, followed by 2 U insulin iv injection at 19 min) were performed after the subjects had taken 20 mg zinc gluconate twice (the evening before and 30 min before the beginning of the test) or placebo pills (simple blind randomized protocol). Glucose assimilation was analyzed by calculating Kg (slope of the exponential decrease in glycemia), glucose effectiveness Sg (i.e., ability of glucose itself to increase its own disposal independent of insulin response), and SI (insulin sensitivity, i.e. the effect of increases in insulinemia on glucose disposal). The two latter parameters were calculated by fitting the experimental data with the two equations of Bergman’s “minimal model”. Zinc increased Kg (p<0.05) and Sg (p<0.05), whereas SI and insulin first-phase secretion did not significantly increase. This study suggests that zinc improves glucose assimilation, as evidenced by the increase in Kg, and that this improvement results mainly from an increase in glucose effectiveness (insulin-like effect), rather than an action on insulin response or insulin sensitivity.  相似文献   

18.
Thyroparathyroidectomy (TPTX) caused a significant increase in serum glucose and a corresponding fall in serum calcium in both fed and fasted rats. The increase in serum glucose, induced by TPTX, was markedly potentiated by a single intraperitoneal administration of calcium (2 mg/100 g BW) which caused a significant elevation of serum calcium in thyroparathyroidectomized rats. Parathyroid hormone (PTH; 20 U/100 g BW) administered subcutaneously to thyroparathyroidectomized rats, caused a significant decrease in serum glucose (0.1 g/100 g BW) to sham-operated rats significantly increased both serum glucose and insulin. The rise of serum glucose produced by a glucose load was markedly potentiated by TPTX, but the increase in serum insulin was not promoted significantly. The administration of PTH decreased both serum glucose and insulin levels increased by a glucose load to thyroparathyroidectomized rats, in a dose-dependent manner. The administration of calcitonin (80 MRC mU/100 g BW) significantly prevented the effect of PTH to decrease serum glucose after a glucose load to thyroparathyroidectomized rats, and calcitonin increased serum insulin. These results suggest that the effect of PTH on serum glucose does not involve insulin secretion.  相似文献   

19.
The major purpose of this study was to determine whether acute or chronic Pb exposure would increase urinary excretion of zinc in the rat. Four groups of unanesthetized rats were given 0, 0.03, 0.3, or 3 mg Pb (as acetate) kg intravenously, and urinary excretion of zinc, sodium, and potassium was monitored for 6 h. Only at the highest dose was urinary Zn excretion significantly elevated; there were no significant changes in sodium and potassium excretion at any dose. Two other groups of rats were studied for 9 weeks in metabolism cages before and during administration of either 500 ppm Pb (as acetate) or equimolar Na acetate in the drinking water. Two days after Pb treatment and continuing through day 35, Zn excretion was elevated in the Pb-exposed animals; beyond this day, zinc excretion became similar in the two groups. The difference in Zn excretion was not the result of lower water intake by the Pb-treated animals. At sacrifice (70 days after starting Pb exposure), Pb-exposed animals had lower Zn content of the plasma and testis, but there was no difference in kidney Zn. Plasma renin activity was significantly higher in Pb-exposed animals. We conclude that chronic Pb exposure in rats can result in some degree of decreased tissue zinc, which is, at least in part, secondary to increased urinary losses of zinc.  相似文献   

20.
Recent evidence indicates that hyperglycemia is an important risk factor for the development of cardiovascular disease. We tested the hypothesis that myocardial infarct size is related to blood glucose concentration in the presence or absence of ischemic preconditioning (PC) stimuli in canine models of diabetes mellitus and acute hyperglycemia. Barbiturate-anesthetized dogs were subjected to a 60-min period of coronary artery occlusion and 3-h reperfusion. Infarct size was 24 +/- 2% of the area at risk (AAR) for infarction in control dogs. PC significantly (P < 0.05) decreased the extent of infarction in normal (8 +/- 2% of AAR), but not diabetic (22 +/- 4% of AAR), dogs. Infarct size was linearly related to blood glucose concentration during acute hyperglycemia (r = 0.96; P < 0.001) and during diabetes (r = 0.74; P < 0.002) in the presence or absence of PC stimuli. Increases in serum osmolality caused by administration of raffinose (300 g) did not increase infarct size (11 +/- 3% of AAR) or interfere with the ability of PC to protect against infarction (2 +/- 1% of AAR). The results indicate that hyperglycemia is a major determinant of the extent of myocardial infarction in the dog.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号