首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The physicochemical properties of complexes formed between the glucocorticoid antagonist, RU38486, and the glucocorticoid receptor in rat thymus cytosol were investigated and compared with those of complexes formed with the potent agonist, triamcinolone acetonide. The equilibrium dissociation constant for the interaction of [3H]RU38486 with the molybdate-stabilized glucocorticoid receptor was lower than that for [1,2,4-3H]triamcinolone acetonide at 0 degree C but higher at 25 degrees C, suggesting that hydrophobic interactions play a major role in the binding of RU38486. Differences in equilibrium constants were reflected in corresponding differences in dissociation rate constants; association rate constants for the two steroids were similar. The rate of dissociation of [3H]RU38486 from the glucocorticoid receptor was higher in the absence of molybdate than in its presence both at 0 degree C and at 25 degrees C, suggesting that molybdate modifies the physical state of the antagonist-receptor complex, but other physical properties were similar both in the presence and in the absence of molybdate. The rate of inactivation of the unoccupied glucocorticoid receptor at 25 degrees C in the absence of molybdate was lower in phosphate buffer than in Tris-HCl buffer but the rate of dissociation of [3H]RU38486 was the same in both buffers. The binding of RU38486 afforded little, if any, protection against inactivation in either buffer; [3H]RU38486 dissociated irreversibly from the inactivated receptor at the same rate as from the non-inactivated complex but molybdate had no effect on the dissociation kinetics of the inactivated complex. It is concluded that RU38486 interacts with the ground state of the glucocorticoid receptor in a manner which neither promotes receptor transformation nor prevents receptor inactivation.  相似文献   

2.
Glucocorticoid receptors of S49.1 mouse lymphoma cells were analyzed under a variety of conditions. The complexes with an agonist or a steroidal antagonist can be formed in cytosolic extracts, they are of high molecular weight, Mr approximately 330,000 and have a Stokes radius of 82 A. Cross-linking by several agents stabilized this structure against subunit dissociation which produces the activated receptor form of 60 A and DNA-binding ability. Careful analysis of intermediate cross-linked forms lead to the conclusion that the large receptor structure is a hetero-tetramer consisting of one hormone-bearing polypeptide of Mr approximately 94,000, two 90 kDa subunits and a protein component of Mr approximately 50,000. The 90 kDa subunits are the heat shock protein hsp90. The high molecular weight receptor form also exists in intact cells as revealed again by cross-linking. The cytosolic complex with the antagonist can become activated to the DNA-binding form upon warming but simultaneously looses the ligand. Ligand rebinding does not occur subsequent to receptor dissociation. Upon incubation of intact cells at 37 degrees C with agonist or antagonist the respective receptor-ligand complexes are formed. The agonist complex is immediately activated, however, the antagonist complex remains stable in the undissociated state. This explains the biological effect of the antagonist.  相似文献   

3.
The data reported here demonstrate that the synthetic steroid RU 38486 functions as an optimal antagonist in the glucocorticoid-sensitive human leukemic cell line CEM-C7. This steroid blocks the ability of the potent agonist triamcinolone acetonide (TA) to induce glutamine synthetase activity and to ultimately cause cell lysis, but when given alone does not exhibit partial agonist activity. Both [3H]RU 38486 and [3H]TA bind with high affinity and specificity to cytosolic glucocorticoid receptors in this cell line. However, under a variety of in vitro conditions (elevated temperature and presence of exogenous ATP), [3H]TA promotes receptor activation more effectively than [3H]RU 38486. This difference in the extent of activation was verified by two independent techniques: DEAE-cellulose chromatography and DNA-cellulose binding. [3H]RU 38486 and [3H]TA dissociate at the same rate from the unactivated receptors but at 25 degrees C (not 0 degree C) [3H]RU 38486 dissociates slightly more rapidly from the activated receptors. The defective receptors in the glucocorticoid-resistant subclone 3R7 appear to be "activation labile" (rapid dissociation of ligand from activated form) using either tritiated steroid. Once activated in vivo, the CEM-C7 [3H]TA- and [3H]RU 38486-receptor complexes undergo similar nuclear translocation and those activated complexes generated in vitro appear to bind to nonspecific DNA-cellulose with the same relative affinities. Thus the precise mechanism(s) by which RU 38486 exerts its potent antiglucocorticoid effect in this human cell line cannot be easily explained in terms of a defect in one of the crucial steps (specific high affinity binding, activation, translocation, DNA binding) required to elicit a physiological response. However, the data presented here do suggest that when comparing an antagonist and agonist which both bind to receptors with the same relative high affinity, the agonist may be more effective in facilitating the conformational change associated with in vitro activation.  相似文献   

4.
RU 38486: a potent antiglucocorticoid in vitro and in vivo   总被引:7,自引:0,他引:7  
The antiglucocorticoid activity of RU 38486, was studied both in vitro and in vivo. In vitro studies, RU 38486 was characterized by a high affinity (3 times higher than that of dexamethasone) for the cytosolic glucocorticoid receptor in rat hepatoma tissue culture (HTC) cells. This high affinity was due to a very low dissociation rate of the complexes formed with the receptor. In whole cells it was a potent full antagonist of dexamethasone-induced tyrosine aminotransferase (TAT) activity: the IC50 was 6-7 times lower than the concentration of the dexamethasone used. It was devoid of any glucocorticoid activity up to a concentration of 10 microM. In in vivo studies using adrenalectomized rats, RU 38486 totally inhibited dexamethasone-induced hepatic tryptophan oxygenase (TO) activity. It is also the first pure antagonist of dexamethasone-induced hepatic TAT. However, doses as high as 5 mg/kg of body weight were required for a 50% inhibition of the effect of dexamethasone at 0.01 mg/kg. RU 38486 did not display any glucocorticoid effect on these two responses up to 50 mg/kg.  相似文献   

5.
A pure glucocorticoid agonist RU 28362 and the potent antagonist RU 38486 were compared with dexamethasone for the evolution and the molecular nature of the GR during insulin-dependent conversion of 3T3-F442A preadipocytes into mature cells. In the whole cell assay system, the affinity for preadipocyte GR was observed in the order RU 38486 greater than RU 28362 greater than dexamethasone. The GR complex was most stable in presence of dexamethasone followed by the antagonist RU 38486 = the agonist RU 28362. Similar results were obtained in mature adipocytes but the binding of RU 38486 was more equivocal. An insulin-dependent differentiation process did not alter any of these parameters but increased the number of GR nearly fivefold over a 2-week period. Ion-exchange analysis of the cytosolic receptor revealed that the differentiation process was not accompanied by the appearance of any novel or new forms of GR, contrary to the situation in the liver, since both RU 38486 and dexamethasone were bound to identical molecular species of GR. These data provide a defined system for further analysis of cellular receptor as a function of steroid, tissue, and species, contrary to the classical dogma where GR is generally thought to be identical as a passive vehicle for the steroid in all circumstances, and affinity for steroid is generally equated with receptor stability.  相似文献   

6.
Triamcinolone acetonide (TA), coupled to bovine serum albumin, was used to obtain a polyclonal anti-TA antibody in the rabbit. This idiotype differed from rat glucocorticoid receptor and transcortin in several respects. RU 38486, a synthetic antagonist with high affinity for the receptor, could neither bind the anti-TA antibody nor displace the idiotype bound 3H-TA. Similarly, corticosterone, the natural rodent ligand, had no affinity for the idiotype. These results imply differences in the conformation and topology of the corticoid binding domains, contrary to the current notion where all agonists and antagonists would saturate an identical configuration.  相似文献   

7.
Depending on their interaction with intracellular proteins, G protein-coupled receptors (GPCR) often display different affinities for agonists at 37 degrees C. Determining the affinity at that temperature is often difficult in intact cells as most GPCRs are internalized after activation. When sequestration of the B2 bradykinin receptor (B2R) was inhibited by either 0.5 M sucrose or phenylarsine oxide (PAO), a shift in the affinity was detected when the incubation temperature was raised from 4 degrees C to 37 degrees C or lowered from 37 degrees C to 4 degrees C. In contrast, binding of the antagonist [3H]NPC 17731 was temperature-independent. B2R mutants displayed different affinity shifts allowing conclusions on the role of the involved amino acids. By inhibiting receptor sequestration it was possible to determine also dissociation of [3H]BK and of [3H]NPC 17731 from intact cells at 37 degrees C. Surprisingly, both dissociation rates were markedly enhanced by the addition of unlabeled ligand, most likely via prevention of reassociation of dissociated [3H]ligand. This suggests that dissociated [3H]ligand cannot move freely away from the receptor. In summary, our data demonstrate that inhibition of receptor internalization either by PAO or sucrose provides an excellent method to study receptor function and the effects of mutations in intact cells.  相似文献   

8.
The biological potencies of four antiglucocorticoids, RU486 (RU), dexamethasone-oxetanone (DOX), R5020, and progesterone have been studied with respect to dexamethasone induction of tyrosine aminotransferase (TAT) in rat hepatoma tissue culture (HTC) cells. Their inhibitory effects in whole-cell competition binding studies (at 37 degrees C) and in TAT induction studies were analyzed by Dixon plots and Schild plots, respectively. We show that: In both cases, there is an actual competition of each antiglucocorticoid with the agonist dexamethasone for the same binding site; the two Kd values derived from the two plots are almost identical for each antiglucocorticoid; RU486 can be distinguished from the three other antiglucocorticoids by its high biological efficacy and its high affinity for the glucocorticoid receptor in whole cells at 37 degrees C (identical to its affinity in cytosol at 0 degree C). These results imply that: There is a linear correlation between the antagonist efficacies of antiglucocorticoids and their affinities for the glucocorticoid receptor in whole cells at 37 degrees C; the antagonistic action is solely mediated by competition with the agonist for the receptor binding site; this is verified by the fact that in all cases, in the presence or absence of antiglucocorticoids, a specific TAT induction level was always related to the same level of receptor saturation by the agonist in whole cells; the phenomena responsible for the high antagonist efficacy of RU486 are also responsible for its high affinity in whole cells at 37 degrees C.  相似文献   

9.
We have previously shown that the biological efficacy of an antiglucocorticoid is directly related to its affinity for the glucocorticoid receptor in whole cells at 37 degrees C. We have also shown that RU 486-receptor complexes differ from other antiglucocorticoid-receptor complexes in so far as their affinity is as high at 37 degrees C in whole cells as at 0 degree C in a cell-free system, whereas a decrease by a factor of 5-10 is observed with the other antagonists. The aim of the present paper was to evaluate the contributions of temperature and cellular integrity (or the biological events linked to temperature and cellular integrity) to the affinity of a steroid for its receptor for the purpose of determining the parameters favorable to high affinity, which is the prerequisite of a potent antagonist. We provide evidence showing that: (1) an increase in temperature has an unfavorable effect on the affinity of a glucocorticoid for its receptor (4-6-fold decrease between 0 and 37 degrees C), (2) RU 486, like an agonist, forms a complex with the cytosolic glucocorticoid receptor, which satisfies the criteria for an "activated" complex under "in vitro activating treatment", (3) these biological post-binding events (either agonistic or otherwise nature), which change the nature of the complexes, contribute to compensating for the negative effect of rising temperatures on their apparent dissociation constant. We conclude that potent antiglucocorticoids must have a chemical structure allowing them to induce biological post-binding events, such as receptor activation, but in an abortive form which thus effectively "traps" the receptor in a non-functional state.  相似文献   

10.
The activity of RU38486 has been studied in Burkitt's lymphoma cells which are Epstein-Barr virus (EBV) positive. The early antigens (EA) of the virus are induced by dexamethasone (DXM) in Daudi but not in Raji cells, whereas a growth factor (transforming growth factor-beta, TGF-beta) induces the EA in both cell lines. RU38486 blocks the EA induction obtained by DXM or by TGF-beta in either cell line. In order to understand the interaction of RU38486, we considered its binding to specific receptors. We first investigated the binding of the antagonist in whole cells at 22 degrees C. A number of specific binding sites higher for RU38486 than for DXM was found, suggesting that RU38486 may bind to the glucocorticoid receptor and also to other cellular structures which we called the antiglucocorticoid binding sites ("AGBS"). To support this hypothesis, competition experiments have been conducted between RU38486 and other steroid hormones (progesterone and testosterone) since it is known that RU38486 is also able to interact with their cognate receptors. Binding studies of RU38486 in vitro at 4 degrees C in the presence of cytosolic extracts from Daudi and Raji cells led to conclusions similar to those drawn from the whole cell experiments: more complexes were formed with RU38486 than with DXM. Finally, the steroid-receptor complexes were incubated with DNA-cellulose. Since the binding measured for RU38486 was higher than for DXM, we suspect that sites different from the classical glucocorticoid receptor sites are also able to interact with DNA. The blockage exerted by RU38486 on the EA induced by glucocorticoids or by non-steroidal molecules and the lack of responsiveness to glucocorticoids in Raji cells are discussed in the light of the present findings.  相似文献   

11.
The glucocorticoid antagonist 17 alpha-methyltestosterone inhibits binding of the agonist [3H]triamcinolone acetonide ot the glocucorticoid receptor in cytosol prepared from rat pituitary tumor GH1 cells. Competitive binding studies indicate that the dissociation constant for 17 alpha-methyltestosterone is about 1 microM. After incubation of intact GH1 cells with 10 nM [3H]triamcinolone acetonide at 37 C and subsequent cell fractionation at 4 C, three glucocorticoid receptor forms are observed: cytosolic 10 S receptor, cytosolic 4 S receptor, and nuclear receptor. Concurrent incubation with 17 alpha-methyltestosterone reduces the amount of [3H]triamcinolone acetonide bound to each of these receptor forms. Ligand-exchange assays performed at 0 C in intact cells using [3H]triamcinolone acetonide show that the exchangeable antagonist is associated predominantly with cytosolic 10 S receptor. Immunochemical analysis using monoclonal antibody BuGR2 indicates that 17 alpha-methyltestosterone does not cause substantial accumulation of glucocorticoid receptors in GH1 cell nuclei and, when present together with agonist, reduces nuclear accumulation of receptor seen with agonist alone. Results from dense amino acid labeling studies show that unlike [3H]triamcinolone acetonide, 17 alpha-methyltestosterone does not reduce the total amount of cellular glucocorticoid receptor and does not reduce receptor half-life. These results are consistent with a model for glucocorticoid receptor transformation in which binding of agonist promotes the dissociation of an oligomeric 10 S cytosolic receptor protein to its DNA-binding 4 S subunit. The antagonist 17 alpha-methyltestosterone competes with agonist for binding to the 10 S cytosolic receptor but does not appear to promote dissociation of the oligomer, thus inhibiting agonist-mediated nuclear actions of the glucocorticoid receptor.  相似文献   

12.
The nonactivated glucocorticoid receptor (Mr approximately 330,000, Strokes radius = 82 A) contained in cell extracts and complexed with a steroidal ligand was previously investigated by chemical cross-linking. It was identified as a heterotetramer composed of one receptor polypeptide, two molecules of the 90-kDa heat shock protein hsp90, and one 59-kDa protein subunit (Rexin, M., Busch, W., and Gehring, U. (1991) J. Biol. Chem. 266, 24601-24605). We now have used the cross-linking technique to investigate the receptor structure in intact WEHI-7 mouse lymphoma cells at 37 degrees C and under steroid-free conditions. Using immunochemical methods we show that the receptor present in whole cells likewise exists as a high molecular weight structure of Strokes radius 82 A. It has a subunit composition identical to that of the nonactivated receptor-steroid complex in cell extracts. This is the first account of a steroid hormone receptor in its native state as it is contained in target cells under physiological conditions and before a hormonal signal is received.  相似文献   

13.
The synthetic antiglucocorticoid RU 38486 interacts with cardiac cytoplasmic glucocorticoid receptors and competes for in vitro binding with the potent agonist triamcinolone acetonide. In addition to binding to receptors with high affinity, RU 38486 also facilitates the in vitro conformational change in the receptor which is a consequence of the physiologically relevant activation step during which the receptor is converted from a non DNA- to a DNA-binding form. This ability of RU 38486 to promote receptor activation is reflected by both the appropriate shift in the elution profile of [3H]RU 38486-receptor complexes from DEAE-cellulose as well as by an increased binding of these complexes to DNA-cellulose. Although less effective than triamcinolone acetonide, RU 38486 promotes in vitro receptor activation under a variety of experimental conditions, including incubation of labeled cardiac cytosols at 25 degrees C for 30 min or at 15 degrees C for 30 min in the presence of 5 mM pyridoxal 5'-phosphate. Once thermally activated, the cardiac [3H]triamcinolone acetonide and [3H]RU 38486-receptor complexes bind to nonspecific DNA-cellulose with the same relative affinities, as evidenced by the fact that 50% of both activated complexes are eluted at approx. 215-250 mM NaCl. Thus, this pure antiglucocorticoid does promote, at least to some extent, many of the crucial in vitro events including high-affinity binding, activation, and DNA binding which have been shown to be required to elicit a physiological response in vivo.  相似文献   

14.
In an attempt to elucidate the relationship between the antiglucocorticoid effect and the state of differentiation of the target cells, we studied the metabolism of the potent antagonist in cultured liver and hepatoma cells (HTC, FAZA). After incubation of [3H]RU38486 with the cells for different periods of time, the native steroid and its metabolites were extracted and analyzed by thin layer chromatography. We observed that RU38486 was not metabolized in the transformed cell lines after a 3 h incubation. In contrast RU38486 was extensively metabolized in cultured liver cells. The observed degration could help explain why RU38486 inhibited tyrosine aminotransferase induction in hepatoma cells at a concentration 100 times lower than that needed in liver cells. Moreover this catabolism concerned specifically the antagonist RU38486 since other steroids tested (dexamethasone, promegestone) underwent a much slower degradation. Indirect experiments suggest that the alterations of the RU38486 molecule might be at least partially related to the cytochrome P-450 which is very active in the hepatocytes. This study was paralleled by testing the effect of the antagonist on the growth of hepatoma cells. RU38486 exerted an antiproliferative effect in absence of serum. On the basis of the low metabolism of RU38486 and of its antiproliferative effect in hepatoma cells. one can emphasize that RU38486 might represent a potential drug for use in cancer therapy.  相似文献   

15.
The metabolism of the potent antagonist RU38486 has been studied in cultured liver cells and in two hepatoma cell lines. In the liver cells, this steroid undergoes a rapid degradation, whereas in hepatoma cells grown in similar conditions only a minor degradation occurs. Moreover the rate of degradation is much higher for the antagonist steroid than for the agonist steroid tested, dexamethasone. The high antiglucocorticoid potency and the relative instability of the RU38486 molecule are very important to define its different effects and its mechanism of action in liver and in liver derived tumor cells. RU38486 may represent a useful drug in cancerotherapy.  相似文献   

16.
The interaction of various antiglucocorticoids with the glucocorticoid receptor from intact rat thymocytes was investigated. Reversible antiglucocorticoids (RU 486, cortexolone, progesterone) underwent more limited nuclear transfer than potent glucocorticoids (dexamethasone, triamcinolone acetonide, progesterone). This behavior was correlated with an impeded dissociation of cytosolic antiglucocorticoid receptor complexes preformed in intact cells, as assayed by high-performance size exclusion chromatography in physiological conditions (i.e., isotonic molybdate-free buffer). Antagonist-receptor complexes remained in a 7-8-nm form whatever the antiglucocorticoid tested (including dexamethasone mesylate and trifluoroperazine, a nonsteroidal antiglucocorticoid) and the incubation time at 37 degrees C, whereas agonist-receptor complexes were rapidly converted into 5-nm species. This stabilization was not detectable by conventional sucrose gradient centrifugation because of artifactual dissociation of untransformed complexes, a pitfall overcome by resorting to vertical tube centrifugation. Moreover, the low amount of nuclear antiglucocorticoid receptor complexes was also in the undissociated form, in contrast with nuclear agonist-receptor complexes. Immunological probes demonstrated that the 90-kDa non-steroid-binding component was associated with the antiglucocorticoid-stabilized receptor. Thus, whatever their chemical structure and their affinity for the receptor, antiglucocorticoids stabilize the oligomeric form of the glucocorticoid receptor in intact cells. Our data, demonstrating for the first time that all antiglucocorticoids probably act via a common mechanism, suggest a key role for subunit dissociation during in vivo receptor activation.  相似文献   

17.
A1 adenosine receptor-binding subunits can be visualized using high affinity antagonist and agonist photoaffinity radioligands. In the present study, we examined whether agonists and antagonists bind to the same receptor-binding subunit and if agonists and antagonists induce different conformational states of the receptor in intact membranes. It was demonstrated that several agonist and antagonist photoaffinity receptor-binding subunit. When the agonist and antagonist photoaffinity labeled peptides were denatured and subjected to partial peptide map analysis using a two-dimensional gel electrophoresis system similar peptide fragments were generated from each specifically labeled protein. This suggests that both classes of ligand label and incorporate into the same binding subunit. Proteolytic digestions of agonist- and antagonist-occupied receptors in native intact membranes revealed distinct and different peptide fragments depending on whether the ligand was an agonist or an antagonist. Manipulation of incubation conditions to perturb ligand-receptor interactions alter the pattern of peptide fragments generated with each specific protease. These data suggest that agonist and antagonist photoaffinity probes interact with an incorporate into the same binding subunit but that agonist binding is associated with a unique and detectable receptor conformation.  相似文献   

18.
M Rexin  W Busch  B Segnitz  U Gehring 《FEBS letters》1988,241(1-2):234-238
Mouse lymphoma cells contain a nonactivated glucocorticoid receptor of Mr approximately 330,000 which is heteromeric in nature and is unable to bind to DNA. Following affinity labeling of the steroid-binding subunit and subsequent cross-linking with dimethyl suberimidate at various times either in cell extracts or in intact cells, a series of labeled bands was detected in SDS gels. From the molecular masses of completely and partially cross-linked complexes we conclude that the large nonactivated receptor is a tetramer composed of two 90 kDa subunits, one 50 kDa polypeptide and one steroid-binding subunit.  相似文献   

19.
C Hurd  V K Moudgil 《Biochemistry》1988,27(10):3618-3623
We have examined and compared the binding characteristics of the progesterone agonist R5020 [promegestone, 17,21-dimethylpregna-4,9(10)-diene-3,20-dione] and the progesterone antagonist RU486 [mifepristone, 17 beta-hydroxy-11 beta-[4-(dimethylamino) phenyl]-17 alpha-(prop-1-ynyl)-estra-4,9-dien-3-one] in calf uterine cytosol. Both steroids bound cytosol macromolecule(s) with high affinity, exhibiting Kd values of 5.6 and 3.6 nM for R5020 and RU486 binding, respectively. The binding of the steroids to the macromolecule(s) was rapid at 4 degrees C, showing saturation of binding sites at 1-2 h for [3H]progesterone and 2-4 h for both [3H]R5020 and [3H]RU486. Addition of molybdate and glycerol to cytosol increased the extent of [3H]R5020 binding. The extent of [3H]RU486 binding remained unchanged in the presence of molybdate, whereas glycerol had an inhibitory effect. Molybdate alone or in combination with glycerol stabilized the [3H]R5020- and [3H]RU486-receptor complexes at 37 degrees C. Although the rate of association of [3H]RU486 with the cytosolic macromolecule was slower than that of [3H]R5020, its dissociation from the ligand-macromolecule complex was significantly slower than [3H]R5020. Competitive steroid binding analysis revealed that [3H]progesterone, [3H]R5020, and [3H]RU486 compete for the same site(s) in the uterine cytosol, suggesting that all three bind to the progesterone receptor (PR). Sedimentation rate analysis showed that both steroids were bound to a molecule that sediments in the 8S region. The 8S [3H]R5020 and [3H]RU486 peaks were abolished by excess radioinert progesterone, RU486, or R5020.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
We previously reported, using a coimmunoprecipitation assay, that the B form (PR-B) of the human progesterone receptor from T47D human breast cancer cells dimerizes in solution with the A receptor (PR-A) and that the extent of dimerization correlates with receptor binding activity for specific DNA sequences [DeMarzo, A.M., Beck, C.A., O?ate, S.A., & Edwards, D.P. (1991) Proc. Natl. Acad. Sci. U.S.A. 88, 72-76]. This suggested that solution dimerization is an intermediate step in the receptor activation process. The present study has tested the effects of the progesterone antagonist RU486 on solution dimerization of progesterone receptors (PR). As determined by the coimmunoprecipitation assay, RU486 binding did not impair dimerization of receptors; rather, the antagonist promoted more efficient solution dimerization than the progestin agonist R5020. This enhanced receptor dimerization correlated with a higher DNA binding activity for transformed receptors bound with RU486. RU486 has been shown previously to produce two other alterations in the human PR when compared with R5020. PR-RU486 complexes in solution exhibit a faster sedimentation rate (6 S) on salt-containing sucrose density gradients than PR-R5020 complexes (4 S), and PR-DNA complexes have a faster electrophoretic mobility on gel-shift assays in the presence of RU486. We presently show that the 6 S PR-RU486 complex is a receptor monomer, not a dimer. The increased sedimentation rate and increased mobility on gel-shift assays promoted by RU486 were also observed with recombinant PR-A and PR-B separately expressed in insect cells from baculovirus vectors. These results suggest that RU486 induces a distinct conformational change both in PR monomers in solution and in dimers bound to DNA. We also examined whether conformational changes in PR induced by RU486 would prevent a PR polypeptide bound to RU486 from heterodimerization with another PR polypeptide bound to R5020. To evaluate this, PR-A and PR-B that were separately bound to R5020 or RU486 in whole cells were mixed in vitro. PR-A-RU486 was capable of dimerization with PR-B-R5020, and this was demonstrated for heterodimers both formed in solution and bound to specific DNA. The capability to form heterodimers in vitro raises the possibility that the antagonist action of RU486 in vivo could in part be imposed in a dominant negative fashion through heterodimerization between one receptor subunit bound to an agonist and another bound to RU486.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号