首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 801 毫秒
1.
Insulin-like growth factor (IGF)-I is an important mitogen required by some cell types to progress from the G1 phase to the S phase of the cell cycle. IGF binding proteins (IGFBPs) can have opposing actions, in part by binding IGF-I, but also by direct inhibitory effects on target cells. As mitogens and anti-apoptotic agents, IGFs may be important in carcinogenesis, possibly by increasing the risk of cellular transformation by enhancing cell turnover. Indeed, many types of neoplastic cells express or overexpress IGF-I receptors, which stimulate mitogenesis when activated by IGF-I in vitro. In vivo, tissue IGF bioactivity is determined not only by circulating IGF-I and IGFBP levels, but also by local production of IGFs, IGFBPs, and possibly IGFBP proteases that enhance IGF-I availability by cleaving IGFBPs. Because determinants of tissue IGF bioactivity appear to be regulated in parallel with circulating IGF-I level, it is reasonable to hypothesize that the substantial intraindividual variability in circulating levels of IGF-I and IGFBP-3 may be important in determining risk of some cancers. In recent epidemiologic studies, relatively high plasma IGF-I and low IGFBP-3 levels have been independently associated with greater risk of prostate cancer in men, breast cancer among premenopausal women, and colorectal adenoma and cancer in men and women and possibly lung cancer. These include prospective data from the Physicians' Health Study and the Nurses' Health Study. In general, two- to fourfold elevated risks have been observed for prostate cancer in men in the top quartile of IGF-I relative to those in the bottom quartile, and low levels of IGFBP-3 were associated with an approximate doubling of risk. For breast cancer, an association with IGF-I for postmenopausal women was not apparent, but strong associations were observed for premenopausal cases in the Nurses' Health Study. Further study is needed to confirm this subgroup finding in women. Recent data also indicate that high IGF-I and low IGFBP-3 increase risk of colorectal cancer and large or villous adenomas. Of note, for colorectal neoplasia, fourfold elevated risks were observed in men and women with low IGFBP-3, whereas high IGF-I was associated with a doubling of risk. These emerging epidemiologic data indicate that high levels of IGF-I and low levels of IGFBP-3 are associated with an increased risk of at least several types of carcinoma that are common in economically developed countries. Further study is required to determine the clinical relevance of these findings.  相似文献   

2.
Interest in the role of the insulin-like growth factor (IGF) axis in growth control and carcinogenesis has recently been increased by the finding of elevated serum insulin-like growth factor I (IGF-I) levels in association with three of the most prevalent cancers in the United States: prostate cancer, colorectal cancer, and lung cancer. IGFs serve as endocrine, autocrine, and paracrine stimulators of mitogenesis, survival, and cellular transformation. These actions are mediated through the type 1 IGF-receptor (IGF-1R), a tyrosine kinase that resembles the insulin receptor. The availability of free IGF for interaction with the IGF-1R is modulated by the insulin-like growth factor-binding proteins (IGFBPs). IGFBPs, especially IGFBP-3, also have IGF-independent effects on cell growth. IGF-independent growth inhibition by IGFBP-3 is believed to occur through IGFBP-3-specific cell surface association proteins or receptors and involves nuclear translocation. IGFBP-3-mediated apoptosis is controlled by numerous cell cycle regulators in both normal and disease processes. IGFBP activity is also regulated by IGFBP proteases, which affect the relative affinities of IGFBPs, IGFs and IGF-1R. Perturbations in each level of the IGF axis have been implicated in cancer formation and progression in various cell types.  相似文献   

3.
Juul A 《Hormone research》1999,51(Z3):141-148
Insulin-like growth factor (IGF)-I has proven to be important in the diagnosis of childhood-onset growth hormone (GH) deficiency (GHD). However, the variability of IGF-I should be taken into account before it can be used in a clinical setting. GH replacement therapy in GHD patients increases IGF-I into the normal range, although there is a large variation. Excessively high (supranormal) GH-induced IGF-I levels are associated with increased prevalence of side effects in adults with GHD. Consequently, at most centres, GH doses are titrated according to IGF-I levels in GHD adults. Whether or not this should also be done in children has not been established. Due to the known variability of IGF-I, individual changes in IGF-I must exceed approximately 35% to be sufficiently significant to warrant a dose adjustment. Novel epidemiological studies have suggested that higher IGF-I levels are associated with an increased risk of prostate, breast and colorectal cancer compared with lower IGF-I levels in otherwise healthy subjects. Consequently, life-time exposure to IGF-I should be considered in all patients treated with GH, and IGF-I should preferably be kept within normal age-related ranges in children as well as in adults.  相似文献   

4.
O Ali  P Cohen  K-W Lee 《Hormones et métabolisme》2003,35(11-12):726-733
The Insulin-like Growth Factor (IGF) signaling system plays a central role in cellular growth, differentiation and proliferation. IGFBP-3 is the most abundant IGF binding protein in human serum and has been shown to be a growth inhibitory, apoptosis-inducing molecule, capable of acting via IGF-dependent and IGF-independent mechanisms. Over the last decade, several clinical studies have proposed that individuals with IGFBP-3 levels in the upper range of normal may have a decreased risk for certain common cancers. This includes evidence of a protective effect against breast cancer, prostate cancer, colorectal cancer, and lung cancer. In addition, a series of in vitro studies and animal experiments point towards an important role for IGFBP-3 in the regulation of cell growth and apoptosis. In this brief review, we discuss the biological role of IGFBP-3 and summarize the epidemiological and experimental evidence suggesting a role for IGFBP-3 as an anti-cancer molecule.  相似文献   

5.
IGF-1 has been shown to promote proliferation of normal epithelial breast cells, and the IGF pathway has also been linked to mammary carcinogenesis in animal models. We comprehensively examined the association between common genetic variation in the IGF1, IGFBP1, and IGFBP3 genes in relation to circulating IGF-I and IGFBP-3 levels and breast cancer risk within the NCI Breast and Prostate Cancer Cohort Consortium (BPC3). This analysis included 6,912 breast cancer cases and 8,891 matched controls (n = 6,410 for circulating IGF-I and 6,275 for circulating IGFBP-3 analyses) comprised primarily of Caucasian women drawn from six large cohorts. Linkage disequilibrium and haplotype patterns were characterized in the regions surrounding IGF1 and the genes coding for two of its binding proteins, IGFBP1 and IGFBP3. In total, thirty haplotype-tagging single nucleotide polymorphisms (htSNP) were selected to provide high coverage of common haplotypes; the haplotype structure was defined across four haplotype blocks for IGF1 and three for IGFBP1 and IGFBP3. Specific IGF1 SNPs individually accounted for up to 5% change in circulating IGF-I levels and individual IGFBP3 SNPs were associated up to 12% change in circulating IGFBP-3 levels, but no associations were observed between these polymorphisms and breast cancer risk. Logistic regression analyses found no associations between breast cancer and any htSNPs or haplotypes in IGF1, IGFBP1, or IGFBP3. No effect modification was observed in analyses stratified by menopausal status, family history of breast cancer, body mass index, or postmenopausal hormone therapy, or for analyses stratified by stage at diagnosis or hormone receptor status. In summary, the impact of genetic variation in IGF1 and IGFBP3 on circulating IGF levels does not appear to substantially influence breast cancer risk substantially among primarily Caucasian postmenopausal women.  相似文献   

6.
BACKGROUND: Little information is available on the relevance of parameters representing the insulin-like growth factor (IGF) system with regard to growth hormone (GH) treatment during childhood. In adults, high IGF-I levels were found to be associated with side effects and long-term risks. AIM/METHOD: Our aim was to monitor the serum levels of IGF-I, IGF-binding protein (IGFBP) 3, and IGFBP-2 during long-term GH treatment of 156 patients with GH deficiency (GHD) and of 153 non-GHD patients. We determined the extent to which the IGF parameters exceed the normal ranges and identified those parameters which are predictive of 1st-year growth. RESULTS: In prepubertal GHD children, the levels of IGF-I, IGFBP-3, and IGF-I/IGFBP-3 exceeded the 95th centile of the reference values for this age group in 2.3, 0.3, and 7.9% of the cases, respectively, whereas in prepubertal non-GHD children, the same parameters exceeded the 95th reference centile in 20.1, 3.5, and 32.2%, respectively. In pubertal GHD children IGF-I, IGFBP-3, and IGF-I/IGFBP-3 levels exceeded the 95th reference centile in 11.1, 1.5, and 15.4%, respectively. In pubertal non-GHD children, these levels also exceeded the 95th centile in 26.7, 7.0, and 41.4%, respectively. In both GHD and non-GHD groups, however, some patients had IGF parameters which were below the reference values. Our analysis showed that, in both groups, in addition to maximum GH, all IGF parameters (IGF-I, IGFBP-3, IGF-I/IGFBP-3 ratio, IGFBP-2 or derivatives) significantly extend the scope of a calculated model for predicting 1st-year height velocity. CONCLUSION: For reasons of safety and optimization of GH therapy, it is essential to follow up IGF-I, IGFBP-3, and IGFBP-2 levels regularly during childhood.  相似文献   

7.
Low birth weight has been associated with an increased incidence of ischaemic heart disease (IHD) and type 2 diabetes. Endocrine regulation of fetal growth by growth hormone (GH) and insulin-like growth factor (IGF)-I is complex. Placental GH is detectable in maternal serum from the 8th to the 12th gestational week, and rises gradually during pregnancy where it replaces pituitary GH in the maternal circulation. The rise in placental GH may explain the pregnancy-induced rise in maternal serum IGF-I levels. In the fetal compartment, IGF-I levels increase significantly in normally growing fetuses from 18 to 40 weeks of gestation, but IGF-I levels are four to five times lower than those in the maternal circulation. Thus IGF-I levels in fetal as well as in maternal circulation are thought to regulate fetal growth. Circulating levels of IGF-I are thought to be genetically controlled and several IGF-I gene polymorphisms have been described. IGF-I gene polymorphisms are associated with birth weight in some studies but not in all. Likewise, IGF-I gene polymorphisms are associated with serum IGF-I in healthy adults in some studies, although some controversy exists. Serum IGF-I decreases with increasing age in healthy adults, and this decline could hypothetically be responsible for the increased risk of IHD with ageing. A recent nested case-control study found that adults without IHD, but with low circulating IGF-I levels and high IGF binding protein-3 levels, had a significantly increased risk of developing IHD during a 15-year follow-up period. In summary, the GH/IGF-I axis is involved in the regulation of fetal growth. Furthermore, it has been suggested that low IGF-I may increase the risk of IHD in otherwise healthy subjects. Hypothetically, intrauterine programming of the GH/IGF axis may influence postnatal growth, insulin resistance and consequently the risk of cardiovascular disease. Thus IGF-I may serve as a link between fetal growth and adult-onset disease.  相似文献   

8.
Insulin-like growth factor 1 (IGF1)(CA)19 and insulin-like growth factor-binding protein-3 (IGFBP-3)-202A/C gene polymorphisms had been focused by many epidemiological studies recently, which were associated with common cancer risk including colorectal, breast, prostate, and lung cancer. However, the findings of epidemiological investigations are not coincident. We did a systematic review and meta-analysis of case–control studies, including studies nested in cohorts, of the association between IGF1(CA)19 and IGFBP-3-202A/C gene polymorphism and prostate, colorectal, premenopausal and postmenopausal breast cancer. We identified 17 eligible studies (24 datasets), which included 9,744 cases and 11,332 controls. The result displays that individuals carrying (CA)19 allele had a subtly decreased risk of all cancer sites [OR(95 % CI) 0.92(0.87,0.97); 0.882(0.809,0.962); 0.902(0.849,0.958)] and postmenopausal breast cancer [OR(95 % CI) 0.893(0.832,0.959); 0.834(0.719,0.968); 0.862(0.776,0.958)] in allele contrast model, CA19/CA19 vs. non-CA19/non-CA19 model, and recessive genetic model. In subgroup analysis according to ethnicities, (CA)19 repeat polymorphism had an increased risk of common cancers in Asian [OR (95 % CI) of allele contrast model: 1.105(1.000,1.224); additive model: 1.103(0.844,1.441), 1.197(1.013,1.413); recessive model: 1.039(0.831,1.300); and dominant model: 1.191(1.030,1.376)]. On the other hand, IGFBP-3-202A/C gene polymorphism did not seem to be associated with all the cancer sites in any genetic model and ethnicity. In conclusion, the result of this meta-analysis indicates that the IGF1(CA)19 polymorphism is a candidate gene polymorphism for cancer susceptibility regardless of environmental factors, especially in Asian.  相似文献   

9.
Insulin-like growth factors (IGF-I and II) are important endocrine, paracrine and autocrine mediators of physiological growth. They promote cellular proliferation, survival and differentiation. Their effects are mediated mainly through the IGF-I receptor, but IGFs also bind to the IGF-II/mannose 6-phosphate and insulin receptors. IGF activity is modulated by a family of six high-affinity IGF binding proteins (IGFBPs); in most situations, IGFBPs inhibit IGF actions but they may also enhance them. Assays are now available for IGF-I, IGF-II and individual IGFBPs. IGF-I and IGFBP-3 assays have some utility in the diagnosis and management of acromegaly and growth hormone deficiency. There is a large body of in vitro and in vivo evidence supporting a pathogenic role for alterations in the IGF system in many diseases, including diabetes, cancer, cardiovascular disease and neuromuscular disease. More recently, epidemiological studies have linked high IGF-I levels with some cancers and low IGF-I levels with ischaemic heart disease. Preliminary studies of recombinant IGF-I as a treatment for diabetes, osteoporosis and neuromuscular disease have been performed in humans. In contrast, there is considerable interest in developing IGF inhibitors for the treatment of cancer. This apparent paradox highlights the need to develop therapeutics beyond the natural ligands and inhibitors, with characteristics such as ligand and tissue specificity. This will only become possible as we increase our understanding of this complex system. Additionally, as IGF and IGFBP assays are becoming more readily available, their role in the diagnosis and monitoring of diseases should be more clearly defined in the near future.  相似文献   

10.
Background: Insulin-like growth factor binding protein-4 (IGFBP-4), a member of the insulin-like growth factor (IGF) family, transports, and regulates the activity of IGFs. The pregnancy-associated plasma protein-A (PAPP-A) has proteolytic activity towards IGFBP-4, and both proteins have been associated with a variety of cancers, including lung cancer. Thus, we aimed to evaluate the use of IGFBP-4 and PAPP-A as potential biomarkers for lung cancer. Methods: Eighty-three volunteers, including 60 patients with lung cancer and 23 healthy individuals, were included in this study. The patients with lung cancer were selected based on their treatment status, histological subgroup, and stage of the disease. Enzyme-linked immunosorbent assays were used to assess the serum levels of IGFBP-4 and PAPPA, whereas the IGF-1 levels were measured using a chemiluminescent immunometric assay. Results: The serum IGFBP-4 levels in all patient groups, regardless of the treatment status and histological differences, were significantly higher than those in the control group (p<0.005). However, the serum PAPP-A levels in the untreated patient group were found to be higher than those in the control group, but this difference was not statistically significant (p=0.086). Conclusions: The serum PAPP-A and IGFBP-4 levels are elevated in lung cancer. However, IGFBP-4 may have better potential than PAPP-A as a lung cancer biomarker.  相似文献   

11.
BACKGROUND/AIM: In healthy adults, serum insulin-like growth factor I (IGF), IGF-binding protein 3 (IGFBP-3), and acid-labile subunit (ALS) form a 150-kD ternary complex under the control of growth hormone (GH). Circulating IGF-I half-life, bioavailability, and endocrine actions depend on the ternary complex formation. Despite GH hypersecretion, serum IGF-I, IGFBP-3, and ALS levels have all been reported to be low in patients with anorexia nervosa (AN), while the degree of ternary complex formation in AN is unknown. METHODS: Serum ALS and 150-kD ternary complex formation were measured in 6 women with AN at the time of diagnosis and after partial weight recovery and in 6 healthy age-matched women serving as controls. RESULTS: Patients with AN had low levels of ALS and IGFBP-3 contained in the 150-kD ternary complex and in the non-150-kD fraction. Following partial weight recovery, the 150-kD IGFBP-3 ternary complex was fully normalized, despite only partial normalization of serum GH and IGF-I levels. Patients with AN did not present with IGFBP-3 proteolysis different from controls. CONCLUSION: The present data indicate a pivotal role of the nutritional status in the regulation of each of the three components of the 150-kDa ternary IGFBP-3 complex and in the formation of the complex itself.  相似文献   

12.
The metabolic aberrations associated with diabetes mellitus profoundly alter the growth hormone/insulin-like growth factor I (GH/IGF-I) system. In severe experimental diabetes, serum IGF-I level is reduced, reflecting altered hepatic expression. On the other hand, increased levels of kidney IGF-I have been implicated in the development of diabetic kidney disease. This study aimed to examine the effect of mild experimental diabetes with hypoinsulinemia on both the systemic and renal GH/IGF-I systems in a low-dose streptozotocin (STZ)-induced diabetic rat. Diabetic animals with mild hypoinsulinemia developed renal hyperfiltration within 3 days of diabetes, whereas the renal size increased significantly only between 30 and 48 days of diabetes. Plasma GHlevels were unchanged during the entire course of the study, but a decrease in serum IGF-I, IGF-binding protein 3 (IGFBP-3), and IGF-binding protein 4 (IGFBP-4) occurred after 10, 30, and 48 days. Kidney IGF-I and IGF-binding protein 1 (IGFBP-1) mRNA expression increased after 10 and 30 days of diabetes. A significant increase in kidney IGFBP-1/2, IGFBP-3, and IGFBP-4 proteins was seen after 48 days of diabetes.Apositive correlations was found between renal growth and insulin/glucose ratio (r = .57), kidney IGF-I (r = .57), IGFBP-1 mRNA(r = .43), IGFBP-1/2 (r = .41), and IGFBP-4 levels (r = .40). These results demonstrate hyperfiltration within 3 days of diabetes and a similar response in the IGF-I system in mildly and severely hypoinsulinemic rats; however, renomegaly develops slower in mildly diabetic rats at least partly due to delayed changes in the renal IGF and IGF BPs.  相似文献   

13.
Serum levels of growth hormone (GH)-dependent peptides could provide important and valuable measures of GH sensitivity and, potentially, responsiveness. In normal individuals, serum insulin-like growth factor I (IGF-I) concentrations are dependent on the dose of GH given, with IGF-I responsiveness not decreasing with age. Individuals heterozygous for the E180 GH receptor (GHR) splice mutation have normal IGF-I generation, but those homozygous for the E180 splice mutation have very low basal and stimulated IGF-I concentrations. Similar results are observed for the serum IGF-binding protein 3 (IGFBP-3) response to GH, with a correlation between changes in serum concentrations of IGF-I and changes in IGFBP-3 in normal, heterozygotic, GH-insensitive and GH-deficient participants. In individuals with the E180 splice mutation, IGF-I and IGFBP-3 tests show sensitivity and specificity for detecting GH insensitivity (GHI). In children with idiopathic short stature, it appears that some individuals have selective resistance to GH, with their ability to generate IGF-I more impaired than their ability to generate other GH-dependent peptides. This heterogeneous group may require individualization of GH dosage. IGF generation tests remain the best short-term, in vivo test for classic GHI, although diagnostic tests will undoubtedly require further modification to identify milder pathophysiologic abnormalities.  相似文献   

14.
The American black bear maintains lean body mass for months without food during winter denning. We asked whether changes in the growth hormone/insulin-like growth factor-I (GH-IGF-I) axis may contribute to this remarkable adaptation to starvation. Serum IGF-I levels were measured by radioimmunoassay, and IGF-binding proteins (IGFBPs) were analyzed by ligand blotting. Initial studies in bears living in the wild showed that IGF-I levels are highest in summer and lowest in early winter denning. Detailed studies in captive bears showed that IGF-I levels decline in autumn when bears are hyperphagic, continue to decline in early denning, and later rise above predenning levels despite continued starvation in the den. IGFBP-2 increased and IGFBP-3 decreased in early denning, and these changes were also reversed in later denning. Treatment with GH (0.1 mg·kg(-1)·day(-1) × 6 days) during early denning increased serum levels of IGF-I and IGFBP-3 and lowered levels of IGFBP-2, indicating that denning bears remain responsive to GH. GH treatment lowered blood urea nitrogen levels, reflecting effects on protein metabolism. GH also accelerated weight loss and markedly increased serum levels of free fatty acids and β-hydroxybutyrate, resulting in a ketoacidosis (bicarbonate decreased to 15 meq/l), which was reversed when GH was withdrawn. These results demonstrate seasonal regulation of GH/IGF-I axis activity in black bears. Diminished GH activity may promote fat storage in autumn in preparation for denning and prevent excessive mobilization and premature exhaustion of fat stores in early denning, whereas restoration of GH/IGF activity in later denning may prepare the bear for normal activity outside the den.  相似文献   

15.
AIMS: The impact of growth hormone (GH) and prednisolone on the GH/insulin-like growth factor (IGF) axis with special emphasis on IGF binding protein-3 (IGFBP-3) proteolysis was studied in 8 healthy adults in a double-blind cross-over study with four periods: (1) placebo; (2) s.c. GH 0.1 IU/kg/day; (3) oral prednisolone 50 mg/day, and (4) co-administration of GH and prednisolone. METHODS: Each treatment period lasted for 4 days followed by a washout period of 10 days. We measured IGF-I, IGF-II, IGFBP-1, IGFBP-2, IGFBP-3 by immunoassays, IGFBP-3 by Western ligand blotting (WLB) and finally in vitro IGFBP-3 proteolysis by a (125)I-IGFBP-3 degradation assay. RESULTS: IGF-I levels increased by 99% during GH administration and 67% during co-administration of GH and prednisolone (p < 0.0005), whereas no significant change was seen during prednisolone alone. IGFBP-1 levels decreased 55% during the prednisolone period (p < 0.002), but the between period changes were not significant (p < 0.1). IGFBP-2 decreased 33% during co-administration of GH and prednisolone (p < 0.002). IGFBP-3 increased 12% during GH and 7% during co-administration of GH and prednisolone (p < 0.003 and p < 0.03 compared to placebo, respectively), whereas prednisolone alone induced no significant changes. IGFBP-3 measured by WLB did not change significantly, neither did IGFBP-3 proteolysis. CONCLUSIONS: Prednisolone administration induces only minimal changes in circulating components of the IGF axis and is not accompanied by alterations in IGFBP-3 proteolysis. This indicates that the metabolic effects of glucocorticoids do not depend on serum IGF-I.  相似文献   

16.
BACKGROUND: A stepwise increment of the GH dose is an approach aimed at avoiding adverse events. We investigated GH sensitivity by studying IGF-I and IGFBP-3 concentrations during the initial phase of GH treatment. METHODS: Our investigation was part of the regular follow-up of prepubertal children with GH deficiency (GHD) (n = 31) and small for gestational age (SGA) (n = 23). Dosage was increased in three steps: one-third at the start, two-thirds after 14 days, and the full dose after 28 days (full dose: GHD = 28 microg/kg body weight (BW)/day; SGA = 60 microg/kg BW/day). Blood samples were taken on days 0, 14 and 28, as well as in conjunction with anthropometrical examinations after 3, 6 and 12 months. IGF-I and IGFBP-3 were measured by means of published in-house RIAs and age-related references were used to calculate standard deviation scores (SDS). Height velocity (cm/year) and Delta HT SDS were taken as growth response parameters. RESULTS: Before GH treatment (GHD vs. SGA; median and p values): age (years) (6.6 vs. 6.0; n.s.), HT SDS (-2.6 vs. -3.2; p < 0.05); GH amount after stepping up (mug/kg BW/day) (28 vs. 60; p < 0.01); BW SDS (-0.5 vs. -2.9; p < 0.01); max. GH stimulated (microg/l) (5.6 vs. 10.8; p < 0.01); IGF-I SDS (-3.5 vs. -1.8; p < 0.01); IGFBP-3 SDS (-2.0 vs. 0.8; p < 0.01). After 1 year of GH therapy: HT velocity (cm/year) (9.8 vs. 9.6; n.s.), Delta HT SDS (0.9 vs. 0.9; n.s.); WT velocity (kg/year) (3.3 vs. 3.5; n.s.). Our results show that changes in growth similar to GHD could be induced in SGA by a dosage that was twice as high as the replacement dose given in GHD. GH dose and HT velocity did not correlate in both groups. IGF-I and IGFBP-3 increased as follows in GHD and SGA during stepping up of the dosage (ng/ml, GHD vs. SGA): at start, 54 vs. 89; at day 14, 78 vs. 132; at day 28, 90 vs. 167; at 3 months, 118 vs. 218. There was the same relationship between dose levels and absolute IGF-I concentrations in both groups. In terms of IGF-I SDS, the dose-response curve in SGA showed a shift to the right in comparison to GHD, thus indicating lower sensitivity to GH. The dynamics of IGF-I and IGFBP-3 differed, as IGFBP-3 peaked earlier (on day 28). In GHD, IGF-I SDS at 3 months was -0.7 vs. +0.9 in SGA. Near-identical levels were found for Delta IGF-I SDS and IGFBP-3 SDS above basal levels for each time-point investigated. First year HT velocity in GHD correlated negatively with basal IGF-I SDS (R(2) = 0.33; p <0.001) and basal IGFBP-3 (R(2) = 0.17; p <0.05) but did not correlate with the IGF-I increment during the 0- to 3-month period. Conversely, first year HT velocity correlated (+) in SGA with the IGF SDS increment during the 0- to 3-month period (R(2) = 0.26; p = <0.05). Height velocity in SGA, however, correlated neither with basal IGF-I and IGFBP-3 nor with the 0- to 3-month increments of IGFBP-3 SDS. CONCLUSIONS: IGFs increase during initial GH therapy, thus raising questions about short-term IGF generation tests. (I) In terms of IGF generation, substantially lower sensitivity to GH was observable in SGA. (II) Higher GH sensitivity during first year catch-up growth is associated with GHD, but in SGA it is attributable to increases in IGF. A wider range of GH dosages needs to be explored in order to gain further insight into the relationship between GH dose, IGF levels, and growth. Monitoring IGFs is a practical means for exploring GH sensitivity during dosage stepping up.  相似文献   

17.
Insulin-like growth factor (IGF) binding protein-3 (IGFBP-3) is a growth hormone (GH) dependent carrier of the IGFs in human serum. Apart from GH regulation the hormonal control of IGFBP-3 production is not well established and although the liver is considered to be the main source of circulating IGFBP-3, there are no in vitro studies of the effect of both insulin and IGFs on the IGFBP-3 produced in human hepatoma cells. The effect of sex hormones as well as cortisol has not been studied. To elucidate this we performed cell culture studies on HepG2 cells in the presence of various effectors. Insulin, IGF-I and IGF-II brought about a 1.5-2-fold enhancement of IGFBP-3 release at 7.5-30 nM concentrations. In contrast, cortisol decreased IGFBP-3 secretion by 30-40% whereas estradiol, tamoxifen and testosterone had no effect at physiological concentrations. We conclude that, in addition to GH, also insulin, IGF-I and IGF-II and glucocorticoids can modulate IGFBP-3 secretion by human hepatoma cells.  相似文献   

18.
Circulating GH, IGF-I, IGFBP-3, and sex steroid concentrations decrease with age. GH or sex steroid treatment increases IGFBP-3, but little is known regarding the effects of these hormones on other IGFBPs. We assessed the effects of 26 wk of administration of GH, sex steroids, or GH + sex steroids on AM levels of IGF-I, IGFBPs 1-5, insulin, glucose, and osteocalcin and 2-h urinary excretion of deoxypyridinolline (DPD) cross-links in 53 women and 71 men aged 65-88 yr. Before treatment, in women and men, IGF-I was directly related to IGFBP-3 (P < 0.001 and P < 0.0001) and IGFBP-1 to IGFBP-2 (P = 0.0001). In women, IGFBP-1 was inversely related to insulin (P < 0.0005) and glucose (P < 0.005) and IGFBP-4 to osteocalcin (P < 0.01). IGFBP-4 and IGFBP-5 were not significantly related to DPD cross-links. GH and/or sex steroid increased IGF-I levels in both sexes, with higher concentrations in men (P < 0.001). In women, the IGF-I increment after GH was attenuated by hormone replacement therapy (HRT) coadministration (P < 0.05). Hormone administration also increased IGFBP-3. IGFBP-1 was unaffected by GH + sex steroids, whereas GH decreased IGFBP-2 by 15% in men (P < 0.05). Hormone administration did not change IGFBP-4, whereas in men IGFBP-5 increased by 20% after GH (P < 0.05) and 56% after GH + testosterone (P = 0.0003). These data demonstrate sexually dimorphic IGFBP responses to GH. Additionally, HRT attenuated or prevented GH-mediated increases in IGF-I and IGFBP-3. Whether GH and/or sex steroid administration alters local tissue production of IGFBPs and whether the latter influence autocrine or paracrine actions of IGF-I remain to be determined.  相似文献   

19.
Dunger D  Yuen K  Ong K 《Hormone research》2004,62(Z1):101-107
The effects of circulating insulin-like growth factor I (IGF-I) on glucose metabolism are well recognized. IGF-I is also important in maintaining beta-cell mass and regulating endogenous growth hormone (GH) levels. Low IGF-I levels could explain links between small birth size and the risk of developing type 2 diabetes mellitus in short, obese adults. In a recent prospective study, childhood insulin secretion was related to IGF-I levels and statural growth, whereas insulin sensitivity was related to early post-natal weight gain. Common genetic polymorphisms in the IGF1 gene have been linked to small birth size, post-natal growth and future diabetes risk, but these results have been inconsistent. Recent adult studies have demonstrated that lower baseline IGF-I levels predict the subsequent development of impaired glucose tolerance (IGT), type 2 diabetes and cardiovascular disease. Administration of low-dose GH therapy, at a dose that minimizes the lipolytic effects of GH and has the ability to increase IGF-I levels, enhances insulin sensitivity in young healthy adults and in GH-deficient adults and increases insulin secretion in individuals with IGT. Whether the administration of low-dose GH, recombinant IGF-I or combined IGF-I/IGF-binding protein 3 therapy prevents future development of IGT or type 2 diabetes in high-risk normoglycaemic and GH-deficient individuals merits further long-term studies.  相似文献   

20.
The impact of GH deficiency and rhGH replacement therapy on IGF-I, IGFBP-3 and ALS levels has been widely studied. There is less information available on IGF-II levels, the component of the ternary complex poorly dependent on GH. We investigate the components of IGFs system in 36 GHD adults (28M, 8F, age 45 +/- 14 yrs) before and after 12 months of rhGH therapy (mean dose 0.3 +/- 0.1 mg/day). One-hundred healthy sex- and age-matched subjects were studied for comparison. At baseline, GHD patients showed IGF-I and IGF-II levels and IGFs to IGFBP-3 molar ratios that were lower than controls. During therapy, IGF-I levels increased (p < 0.01) to normal range. IGF-II levels, though higher than at baseline (p < 0.01), remained lower than in controls (p < 0.01). ALS and IGFBP-3 significantly increased (p < 0.001). These modifications resulted in normalization in IGF-I to IGFBP-3 ratio, while no change in IGF-II to IGFBP-3 ratio was observed. In conclusion, the increase of serum IGF-II levels during rhGH treatment in GHD patients probably reflects the increase in the other components of ternary complex (ALS and IGFBP-3). However, serum IGF-II levels as well as IGF-II to IGFBP-3 ratio, although increased, were definitely lower than in controls. This last result, given the increasing evidences of a direct implication of IGF-II in cancer, may further confirm the safety of rhGH replacement in adults with severe GHD as diagnosed by appropriate stimulation tests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号