首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During meiosis homologous chromosomes replicate once, pair, experience recombination, and undergo two rounds of segregation to produce haploid meiotic products. The rec8(+), rec10(+), and rec11(+) genes of the fission yeast Schizosaccharomyces pombe exhibit similar specificities for meiotic recombination and rec8(+) is required for sister chromatid cohesion and homolog pairing. We applied cytological and genetic approaches to identify potential genetic interactions and to gauge the fidelity of meiotic chromosome segregation in the mutants. The rec8(+) gene was epistatic to rec10(+) and to rec11(+), but there was no clear epistatic relationship between rec10(+) and rec11(+). Reciprocal (crossover) recombination in the central regions of all three chromosomes was compromised in the rec mutants, but recombination near the telomeres was nearly normal. Each of the mutants also exhibited a high rate of aberrant segregation for all three chromosomes. The rec8 mutations affected mainly meiosis I segregation. Remarkably, the rec10 and rec11 mutations, which compromised recombination during meiosis I, affected mainly meiosis II segregation. We propose that these genes encode regulators or components of a "meiotic chromatid cohesion" pathway involved in establishing, maintaining, and appropriately releasing meiotic interactions between chromosomes. A model of synergistic interactions between sister chromatid cohesion and crossover position suggests how crossovers and cohesion help ensure the proper segregation of chromosomes in each of the meiotic divisions.  相似文献   

2.
SMC protein is required for chromosome condensation and for the faithful segregation of daughter chromosomes in Bacillus subtilis. The visualization of specific sites on the chromosome showed that newly duplicated origin regions in growing cells of an smc mutant were able to segregate from each other but that the location of origin regions was frequently aberrant. In contrast, the segregation of replication termini was impaired in smc mutant cells. This analysis was extended to germinating spores of an smc mutant. The results showed that during germination, newly duplicated origins, but not termini, were able to separate from each other in the absence of SMC. Also, DAPI (4',6'-diamidino-2-phenylindole) staining revealed that chromosomes in germinating spores were able to undergo partial or complete replication but that the daughter chromosomes were blocked at a late stage in the segregation process. These findings were confirmed by time-lapse microscopy, which showed that after duplication in growing cells the origin regions underwent rapid movement toward opposite poles of the cell in the absence of SMC. This indicates that SMC is not a required component of the mitotic motor that initially drives origins apart after their duplication. It is also concluded that SMC is needed to maintain the proper layout of the chromosome in the cell and that it functions in the cell cycle after origin separation but prior to complete segregation or replication of daughter chromosomes. It is proposed here that chromosome segregation takes place in at least two steps: an SMC-independent step in which origins move apart and a subsequent SMC-dependent step in which newly duplicated chromosomes condense and are thereby drawn apart.  相似文献   

3.
How segregation of the chromosomes is coordinated with the ensuing cell cleavage to complete the cell cycle is not well understood. A recent study of cytokinesis in fission yeast by Pardo and Nurse suggests that the contractile ring is required for assembly of the post-mitotic microtubule array (PAA). In turn, the PAA is required to maintain the contractile ring at the cleavage plane, as well as to keep the nuclei separated at the poles of the cleaving cell. These functions may be particularly important for a cell cycle checkpoint ensuring that if cytokinesis is delayed, septation will occur between the two daughter nuclei.  相似文献   

4.
How segregation of the chromosomes is coordinated with the ensuing cell cleavage to complete the cell cycle is not well understood. A recent study of cytokinesis in fission yeast by Pardo and Nurse suggests that the contractile ring is required for assembly of the post-mitotic microtubule array (PAA). In turn, the PAA is required to maintain the contractile ring at the cleavage plane, as well as to keep the nuclei separated at the poles of the cleaving cell. These functions may be particularly important for a cell cycle checkpoint ensuring that if cytokinesis is delayed, septation will occur between the two daughter nuclei.  相似文献   

5.
Davis L  Smith GR 《Genetics》2003,163(3):857-874
Physical connection between homologous chromosomes is normally required for their proper segregation to opposite poles at the first meiotic division (MI). This connection is generally provided by the combination of reciprocal recombination and sister-chromatid cohesion. In the absence of meiotic recombination, homologs are predicted to segregate randomly at MI. Here we demonstrate that in rec12 mutants of the fission yeast Schizosaccharomyces pombe, which are devoid of meiosis-induced recombination, homologs segregate to opposite poles at MI 63% of the time. Residual, Rec12-independent recombination appears insufficient to account for the observed nonrandom homolog segregation. Dyad asci are frequently produced by rec12 mutants. More than half of these dyad asci contain two viable homozygous-diploid spores, the products of a single reductional division. This set of phenotypes is shared by other S. pombe mutants that lack meiotic recombination, suggesting that nonrandom MI segregation and dyad formation are a general feature of meiosis in the absence of recombination and are not peculiar to rec12 mutants. Rec8, a meiosis-specific sister-chromatid cohesin, is required for the segregation phenotypes displayed by rec12 mutants. We propose that S. pombe possesses a system independent of recombination that promotes homolog segregation and discuss possible mechanisms.  相似文献   

6.
In the fission yeast Schizosaccharomyces pombe, septum formation and cytokinesis are dependent upon the initiation, though not the completion of mitosis. A number of cell cycle mutants which show phenotypes consistent with a defect in the regulation of septum formation have been isolated. A mutation in the S. pombe cdc16 gene leads to the formation of multiple septa without cytokinesis, suggesting that the normal mechanisms that limit the cell to the formation of a single septum in each cycle do not operate. Mutations in the S. pombe early septation mutants cdc7, cdc11, cdc14 and cdc15 lead to the formation of elongated, multinucleate cells, as a result of S phase and mitosis continuing in the absence of cytokinesis. This suggests that in these cells, the normal mechanisms which initiate cytokinesis are defective and that they are unable to respond to this by preventing further nuclear cycles. Genetic analysis has implied that the products of some of these genes may interact with that of the cdc16 gene. To understand how the processes of septation and cytokinesis are regulated and coordinated with mitosis we are studying the early septation mutants and cdc16. In this paper, we present the cloning and analysis of the cdc16 gene. Deletion of the gene shows that it is essential for cell proliferation: spores lacking a functional cdc16 gene germinate, complete mitosis and form multiple septa without undergoing cell cleavage.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
In eucaryotes a cell cycle control called a checkpoint ensures that mitosis occurs only after chromosomes are completely replicated and any damage is repaired. The function of this checkpoint in budding yeast requires the RAD9 gene. Here we examine the role of the RAD9 gene in the arrest of the 12 cell division cycle (cdc) mutants, temperature-sensitive lethal mutants that arrest in specific phases of the cell cycle at a restrictive temperature. We found that in four cdc mutants the cdc rad9 cells failed to arrest after a shift to the restrictive temperature, rather they continued cell division and died rapidly, whereas the cdc RAD cells arrested and remained viable. The cell cycle and genetic phenotypes of the 12 cdc RAD mutants indicate the function of the RAD9 checkpoint is phase-specific and signal-specific. First, the four cdc RAD mutants that required RAD9 each arrested in the late S/G(2) phase after a shift to the restrictive temperature when DNA replication was complete or nearly complete, and second, each leaves DNA lesions when the CDC gene product is limiting for cell division. Three of the four CDC genes are known to encode DNA replication enzymes. We found that the RAD17 gene is also essential for the function of the RAD9 checkpoint because it is required for phase-specific arrest of the same four cdc mutants. We also show that both X- or UV-irradiated cells require the RAD9 and RAD17 genes for delay in the G(2) phase. Together, these results indicate that the RAD9 checkpoint is apparently activated only by DNA lesions and arrests cell division only in the late S/G(2) phase.  相似文献   

8.
Genome duplication and segregation normally are completed before cell division in all organisms. The temporal relation of duplication and segregation, however, can vary in bacteria. Chromosomal regions can segregate towards opposite poles as they are replicated or can stay cohered for a considerable period before segregation. The bacterium Vibrio cholerae has two differently sized circular chromosomes, chromosome I (chrI) and chrII, of about 3 and 1 Mbp, respectively. The two chromosomes initiate replication synchronously, and the shorter chrII is expected to complete replication earlier than the longer chrI. A question arises as to whether the segregation of chrII also is completed before that of chrI. We fluorescently labeled the terminus regions of chrI and chrII and followed their movements during the bacterial cell cycle. The chrI terminus behaved similarly to that of the Escherichia coli chromosome in that it segregated at the very end of the cell division cycle: cells showed a single fluorescent focus even when the division septum was nearly complete. In contrast, the single focus representing the chrII terminus could divide at the midcell position well before cell septation was conspicuous. There were also cells where the single focus for chrII lingered at midcell until the end of a division cycle, like the terminus of chrI. The single focus in these cells overlapped with the terminus focus for chrI in all cases. It appears that there could be coordination between the two chromosomes through the replication and/or segregation of the terminus region to ensure their segregation to daughter cells.  相似文献   

9.
Genetic and cytological approaches have yielded significant insight into the mapping and organization of genes located in the heterochromatin of Drosophila melanogaster. To date, only a few of these genes have been molecularly characterized in detail, and their function unveiled. As a further step towards the identification of heterochromatic gene functions, we have carried out a cytological analysis of mitotic and meiotic cell divisions in mutants carrying different allelic combinations of 1(2)41Aa, a gene located in the proximal heterochromatin of chromosome 2. Our results showed that larval brains of 1(2)41Aa mutants display a high frequency of cells with irregularly condensed chromosomes. In addition, defective chromosome condensation was detected in male meiosis, consequently affecting chromosome segregation and giving rise to irregular spermatids. Taken together, these findings indicate that 1(2)41Aa is a novel cell cycle gene required for proper chromosome condensation in both somatic and germ line cells.  相似文献   

10.
11.
Bacillus subtilis, a Gram-positive bacterium commonly found in soil, is an excellent model organism for the study of basic cell processes, such as cell division and cell differentiation, called sporulation. In B. subtilis the essential genetic information is carried on a single circular chromosome, the correct segregation of which is crucial for both vegetative growth and sporulation. The proper completion of life cycle requires each daughter cell to obtain identical genetic information. The consequences of inaccurate chromosome segregation can lead to formation of anucleate cells, cells with two chromosomes, or cells with incomplete chromosomes. Although bacteria miss the classical eukaryotic mitotic apparatus, the chromosome segregation is undeniably an active process tightly connected to other cell processes as DNA replication and compaction. To fully understand the chromosome segregation, it is necessary to study this process in a wider context and to examine the role of different proteins at various cell life cycle stages. The life cycle of B. subtilis is characteristic by its specific cell differentiation process where, two slightly different segregation mechanisms exist, specialized in vegetative growth and in sporulation.  相似文献   

12.
Topoisomerases catalyse changes in the topological state of DNA and are required for many aspects of DNA metabolism. While the functions of topoisomerases I and II in eukaryotes are well established, the role of topoisomerase III remains poorly defined. We have identified a gene in the fission yeast Schizosaccharomyces pombe, designated top3 (+), which shows significant sequence similarity to genes encoding topoisomerase III enzymes in other eukaryotic species. In common with murine TOP3 alpha, but in contrast to Saccharomyces cerevisiae TOP3, the S.pombe top3 (+)gene is essential for long-term cell viability. Fission yeast haploid spores containing a disrupted top3 (+)gene germinate successfully, but then undergo only a limited number of cell divisions. Analysis of these top3 mutants revealed evidence of aberrant mitotic chromosome segregation, including the 'cut' phenotype, where septation is completed prior to nuclear division. Consistent with the existence of an intimate association (originally identified in S.cerevisiae ) between topoisomerase III and DNA helicases of the RecQ family, deletion of the rqh1 (+)gene encoding the only known RecQ helicase in S.pombe suppresses lethality in top3 mutants. This conservation of genetic interaction between two widely diverged yeasts suggests that the RecQ family helicases encoded by the Bloom's and Werner's syndrome genes are likely to act in concert with topoisomerase III isozymes in human cells. Our data are consistent with a model in which the association of a RecQ helicase and topoisomerase III is important for facilitating decatenation of late stage replicons to permit faithful chromosome segregation during anaphase.  相似文献   

13.
Conditional mutants are a vital tool for analysis of gene function. The use of temperature-sensitive mutants in Schizosaccharomyces pombe has significantly promoted understanding of many cellular processes. A portable heat-inducible amino-terminal degron (N-degron) for conditional degradation of a gene product has been previously described in Saccharomyces cerevisiae. This paper describes the adaptation of the N-degron method to create temperature-sensitive (ts) mutants in S. pombe. A ts derivative of the mouse dihydrofolate reductase with an amino-terminal arginine (Arg-DHFR(ts)) previously described in S. cerevisiae was fused to the N-terminus of Bir1p, a nuclear protein involved in mitotic chromosome segregation in S. pombe. This fusion allele, referred to as bir1-td, conferred a chromosome segregation defect at 36 degrees C, as with previously described alleles of bir1. Deletion of the S. pombe E3 ubiquitin ligase (N-recognin), Ubr11p, reversed the temperature-dependent lethality of bir1-td, providing evidence for N-end rule mediated destruction of Bir1p. The methods we describe should therefore facilitate analysis of essential genes in fission yeast for which conditionally lethal mutants are unavailable.  相似文献   

14.
J H Thomas  D Botstein 《Cell》1986,44(1):65-76
We describe the phenotypes caused by a cold-sensitive lethal mutation (ndc1-1) that defines the NDC1 gene of yeast. Incubation of ndc1-1 at a nonpermissive temperature causes failure of chromosome separation in mitosis but does not block the cell cycle. This defect results in an asymmetric cell division in which one daughter cell doubles in ploidy and the other inherits no chromosomes. The spindle poles are properly segregated to the two daughter cells. The primary visible defect is that the chromosomes remain associated with only one pole, and are thus delivered to one daughter cell. Meiosis II, but not meiosis I, is sensitive to the ndc1-1 defect, suggesting that NDC1 is required for some feature common to mitosis and meiosis II. ndc1-1 appears to define a new class of cell cycle gene required for the attachment of chromosomes to the spindle pole.  相似文献   

15.
16.
Cell division must only occur once daughter chromosomes have been fully separated. However, the initiating event of bacterial cell division, assembly of the FtsZ ring, occurs while chromosome segregation is still ongoing. We show that a two-step DNA translocase system exists in Bacillus subtilis that couples chromosome segregation and cell division. The membrane-bound DNA translocase SpoIIIE assembled very late at the division septum, and only upon entrapment of DNA, while its orthologue, SftA (YtpST), assembled at each septum in B. subtilis soon after FtsZ. Lack of SftA resulted in a moderate segregation defect at a late stage in the cell cycle. Like the loss of SpoIIIE, the absence of SftA was deleterious for the cells during conditions of defective chromosome segregation, or after induction of DNA damage. Lack of both proteins exacerbated all phenotypes. SftA forms soluble hexamers in solution, binds to DNA and has DNA-dependent ATPase activity, which is essential for its function in vivo . Our data suggest that SftA aids in moving DNA away from the closing septum, while SpoIIIE translocates septum-entrapped DNA only when septum closure precedes complete segregation of chromosomes.  相似文献   

17.
18.
During meiosis, homologous chromosomes of a diploid cell are replicated and, without a second replication, are segregated during two nuclear divisions to produce four haploid cells (including discarded polar bodies in females of many species). Proper segregation of chromosomes at the first division requires in most species that homologous chromosomes be physically connected. Tension generated by connected chromosomes moving to opposite sides of the cell signals proper segregation. In the absence of the required connections, called crossovers, chromosomes often segregate randomly and produce aneuploid gametes and, thus, dead or disabled progeny. To be effective, crossovers must be properly distributed along chromosomes. Crossovers within or too near the centromere interfere with proper segregation; crossovers too near each other can ablate the required tension; and crossovers too concentrated in only one or a few regions would not re-assort most genetic characters important for evolution. Here, we discuss current knowledge of how the optimal distribution of crossovers is achieved in the fission yeast Schizosaccharomyces pombe, with reference to other well-studied species for comparison and illustration of the diversity of biology.  相似文献   

19.
Chromosome segregation ensures the equal partitioning of chromosomes at mitosis. However, long chromosome arms may pose a problem for complete sister chromatid separation. In this paper we report on the analysis of cell division in primary cells from field vole Microtus agrestis, a species with 52 chromosomes including two giant sex chromosomes. Dual chromosome painting with probes specific for the X and the Y chromosomes showed that these long chromosomes are prone to mis-segregate, producing DNA bridges between daughter nuclei and micronuclei. Analysis of mitotic cells with incomplete chromatid separation showed that reassembly of the nuclear membrane, deposition of INner CENtromere Protein (INCENP)/Aurora B to the spindle midzone and furrow formation occur while the two groups of daughter chromosomes are still connected by sex chromosome arms. Late cytokinetic processes are not efficiently inhibited by the incomplete segregation as in a significant number of cell divisions cytoplasmic abscission proceeds while Aurora B is at the midbody. Live-cell imaging during late mitotic stages also revealed abnormal cell division with persistent sister chromatid connections. We conclude that late mitotic regulatory events do not monitor incomplete sister chromatid separation of the large X and Y chromosomes of Microtus agrestis, leading to defective segregation of these chromosomes. These findings suggest a limit in chromosome arm length for efficient chromosome transmission through mitosis.Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

20.
Slowly growing Escherichia coli cells have a simple cell cycle, with replication and progressive segregation of the chromosome completed before cell division. In rapidly growing cells, initiation of replication occurs before the previous replication rounds are complete. At cell division, the chromosomes contain multiple replication forks and must be segregated while this complex pattern of replication is still ongoing. Here, we show that replication and segregation continue in step, starting at the origin and progressing to the replication terminus. Thus, early-replicated markers on the multiple-branched chromosomes continue to separate soon after replication to form separate protonucleoids, even though they are not segregated into different daughter cells until later generations. The segregation pattern follows the pattern of chromosome replication and does not follow the cell division cycle. No extensive cohesion of sister DNA regions was seen at any growth rate. We conclude that segregation is driven by the progression of the replication forks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号