首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Research into the geographical pattern of tooth size in the red fox,Vulpes vulpes (Linnaeus, 1758) in the Holarctic was conducted on a sample of 3806 skulls belonging to 41 fox populations. The Nearctic was represented by 948 specimens (249 females, 359 males, 340 specimens of unknown sex) belonging to 13 populations, whereas the Palearctic was represented by 2858 red foxes (1034 females, 1256 males, 568 specimens of unknown sex) from 32 populations. In the Nearctic, the largest foxes live on Kodiak Island (V. v. harrimani) and the Kenai Peninsula (V. v. kenaiensis), while the smallest ones live in California (V. v. necator) and Georgia (V. v. fulvus). In the Palearctic, the largest foxes come from the Far East (V. v. jakutensis, V. v. beringiana, V. v. tobolica), while the smallest are from the southern borders of the Eurasian range (V. v. pusilla, V. v. barbara, V. v. arabica). In both the Palearctic and Nearctic, tooth size in the fox varies depending on the geo-climatic factors. The fox’s tooth size confirms the general basis of Bergmann’s rule. In the Palearctic, specimens with larger teeth occur in cooler habitats with greater seasonality. These are first and foremost Northern and Far Eastern populations. In the Nearctic, tooth size in red foxes depends on the temperature and humidity of their habitat. Competition within the species and between species has important impact on the variation and dimorphism of tooth size in the red fox. Both in the Nearctic and Palearctic, red foxes from regions of sympatric co-occurrence with other closely relatedVulpes species, are more sexually dimorphic in terms of tooth size than red foxes from allopatric regions. Analysis of morphological distance on the basis of the size of dental characteristics shows, that in the Palearctic, the foxes from India (V. v. pusilla), while in the Nearctic, the population from Kodiak Island (V. v. harrimani) are most distant from the remaining populations. Geographic barriers such as the Bering Strait, Parry Channel, Mackenzie River, Kolyma and Omolon River systems have had a critical impact on red fox evolution. The most likely place for the evolution and diversification of the phyletic lineVulpes vulpes seems to be the Middle East region.  相似文献   

2.
Frequency distributions of dental morphotype characters (groups of morphotypes from A to S) in 43 red fox Vulpes vulpes (Linnaeus, 1758) populations from the Holarctic region were analysed. Definite but different geographical gradients in morphotype dental patterns were found both in the Palearctic and Nearctic. In the Nearctic, a great number of characters present geographical gradient related to longitude whereas, in the Palearctic, gradient relates to latitude. Mean annual temperature and mean annual sum of precipitations play a significant role in shaping the geographical variation of morphotype characters. The shape of the teeth in the centre of the morphogenetic field is more heavily geo-climatically conditioned than the morphotype characters in the teeth at the ends of the cheek teeth field. There was an attempt to reconstruct the evolutionary changes in the morphotype dental pattern in the V. vulpes line. The morphotype pattern in the red fox dentition partially follows the phylogeographical evolutionary trends in Canidae in the northern hemisphere. However, the picture of morphotype variation is influenced by both earlier episodes of human interference (reintroductions of foxes in North America) and the recent phenomenon of heavy opportunism of the species.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 90 , 61–84.  相似文献   

3.
Geographic variation in sexual dimorphism of tooth size was assessed for the red fox Vulpes vulpes (Linnaeus, 1758) across the whole northern range of the species. Twenty-one measurements of tooth size and skull length were taken from 2849 specimens (1577 males and 1272 females) originating from 12 Nearctic and 25 Palearctic localities. The index of sexual dimorphism was calculated as a quotient of the mean measure of certain characters in males by the respective mean in females ( M m/ M f). In the whole range, the males were larger than females and mean dimorphism index of tooth size ranged from 1.01 to 1.06. On average, the tooth measurements in males were 3.6% larger than in females. The highest dimorphism was observed in the canines. Dimorphism of tooth size was higher in the Palearctic than Nearctic. Statistically significant differences between regions were found for lengths of C1, C1 and M1. In the Palearctic, higher values of the dimorphism indices were observed particularly in the southern parts of the Eurasian range of the red fox and in Great Britain. For a few metrical traits, sexual dimorphism indices presented significant relations to some geo-climatic variables. The geographic pattern of size dimorphism in the red fox seems to be shaped by sexual selection, intraspecific and interspecific competition and population density.  相似文献   

4.
Polymorphism and differentiation of the chromosome banding sequence pools and genomic DNA were studied in three natural populations of Chironomus entis from Europe and North America. These populations showed a moderate level of chromosomal polymorphism and high RAPD polymorphism of genomic DNA. The Palearctic and Nearctic populations of this species did not differ significantly in the levels of chromosome and genomic DNA polymorphism. Estimation of the cytogenetic (GDcg) and genetic (GDDNA) distances between these C. entis populations showed that their chromosome banding sequence pools and cytogenetic structures are differentiated to a greater extent than genomic DNA. The values of cytogenetic and genetic distances between the Palearctic and Nearctic populations of C. entis are higher than the values of the corresponding distances between the Nearctic populations, but they do not reach the level of divergence between species.  相似文献   

5.
Using RAPD markers, polymorphism and differentiation of genomic DNA was examined in seven natural populations of Chironomus plumosus from Europe, Siberia, and North America. All these populations showed high polymorphism of genomic DNA. The Palearctic and Nearctic populations of this species were not statistically significantly different in the genomic DNA polymorphism level. The genetic distance (GD), which characterizes the extent of intraspecific differentiation of population genetic structure, was determined among the natural populations of C. plumosus. The genetic distance was on average 0.245. It was demonstrated that genetic structures of the Palearctic and Nearctic populations of C. plumosus was differentiated to a higher extent than in Palearctic. However, the genetic distances between the populations from different zoogeographical zones (0.313) did not exceed the level characteristic of the among-population differences, which do not disturb the species genetic integrity.  相似文献   

6.
Analysis of banding sequences of polytene chromosomes in Palearctic (Russian) and Nearctic (North American) Chironomus entis shows strong karyotype divergence between populations on the two continents. Four out of seven chromosomal arms in the North American C. entis karyotype are characterized by sequences found only in the Nearctic. In total, 44 banding sequences are now known for this species across the Holarctic, including 22 exclusively Palearctic, 6 Holarctic, and 16 exclusively Nearctic sequences. The degree of cytogenetic differentiation between Palearctic and Nearctic C. entis populations is an order of magnitude greater than differentiation among populations within either continent, but is only one third as great as the cytogenetic distance between the sibling species C. entis and C. plumosus. C. entis is the only sibling species of C. plumosus uncovered during cytological identification of Chironomus species from more than 50 North American lakes, indicating that the plumosus sibling-species group is much smaller in the Nearctic than in the Palearctic, where a dozen sibling species are known. Cytogenetic distance values calculated between Nearctic and Palearctic representatives of both C. entis and its sibling species C. plumosus are similar, but result from different patterns of karyotype divergence. New World C. entis is distinguished from Old World populations by the 16 uniquely Nearctic sequences, four of which occur in the homozygous state. In contrast, North American C. plumosus has fewer uniquely Nearctic sequences, and only one that occurs as a homozygote. However, four chromosomal arms in C. plumosus that are polymorphic in the Palearctic show fixation, or near fixation, of Holarctic sequences in the Nearctic C. plumosus karyotype. Thus, both the fixation of Holarctic sequences, and the occurrence or fixation of distinctly Nearctic sequences, contribute significantly to karyotype divergence. Patterns of karyotype divergence in Palearctic and Nearctic populations of different Holarctic chironomid species are discussed relative to intercontinental cytogenetic differentiation in other dipterans.  相似文献   

7.
Mandibular premolars are increasingly used in taxon-specific diagnostic analyses of hominins. Among the principal difficulties in these evaluations is the absence of discrete, discernible, and comparable anatomical structures for rigorous quantitative assessment. Previous research has addressed either internal crown surface features (such as cusps and fossae) or the morphology of the crown outline. In the present paper, we integrate both types of information in the examination of morphological variation of lower P4s (n = 96) among various fossil hominin species with an emphasis on genus Homo. We use a set of 34 2D landmarks combining coordinate data from four classical dental landmarks on the occlusal surface and 30 sliding semilandmarks of the crown outline. Our results indicate that external shape variation is closely related to the configuration of the occlusal morphological features and influenced by dental size. The external and internal shapes of P4 are polymorphic but still useful in depicting a primitive-derived gradient. The primitive pattern seems to have been an asymmetrical contour with a mesially displaced metaconid, development of a bulging talonid, and a broad occlusal polygon. The trend toward dental reduction during the Pleistocene produced different morphological variants with a reduced occlusal polygon and decreased lingual occlusal surface in later Homo species. Homo heidelbergensis/neanderthalensis have fixed plesiomorphic traits in high percentages, whereas in modern humans a symmetrical outline with a centered metaconid and talonid reduction evolved.  相似文献   

8.
The data on the structure and level of chromosomal polymorphism in natural populations of species of the genus Chironomus are summarized. A very high level of chromosomal polymorphism was noted for most species. Paracentric inversions prevailed among the chromosomal rearrangements found in natural populations. Changes in the set and frequency of inversion sequences are the most important factor of cytogenetic divergence of populations. Several cytogenetic types of populations were distinguished. The Palaearctic and Nearctic populations of Holarctic species diverged to a greater extent due to the formation of endemic Palearctic and Nearctic inversion sequences. The sequences common for both regions indicated a common ancestry of the populations. The cytogenetic distances between the Palearctic and Nearctic populations are greater by an order of magnitude than those between populations within each zoogeographic region. Divergence of species karyotypes was found to result from fixation of different inversion sequences in the course of evolution. The karyotypes of Palearctic and Nearctic species mainly differ by the presence of endemic Palearctic and Nearctic banding sequences. Several basic sequences common for some species allow the cytogenetic history of their origin to be revealed. A NJ phylogenetic tree was built for the genus Chironomus, demonstrating chromosomal evolution of its species.  相似文献   

9.
Genetic diversity was studied at allozyme loci in two Palearctic and one Nearctic population of Aedimorphus (=Aedes) vexans, a species of public health and veterinary importance. The population from Serbia was the most polymorphic (P= 35%) with the highest observed heterozygosity (Ho= 0.027). The lowest observed heterozygosity (Ho= 0.010) was obtained for the Nearctic population. All analyses based on individual (STRUCTURE analysis) and population level (pairwise FST,Nm values, AMOVA, Nei's D value) revealed significant structuring between Nearctic and Palearctic populations, indicating a lack of gene flow and thus, the presence of independent gene pools. Taxon‐specific alleles at the diagnostic Ao, Hk‐2, Hk‐3, Hk‐4, Idh‐1, and Idh‐2 loci were used for identification and separation of Nearctic and Palearctic populations. Population genetics study provided valuable information on the correct distinction of Am. vexans populations and their adaptive potential that could find a future use in the studies of vector competence and development of vector‐control strategies.  相似文献   

10.

Background

The causes for the higher biodiversity in the Neotropics as compared to the Nearctic and the factors promoting species diversification in each region have been much debated. The refuge hypothesis posits that high tropical diversity reflects high speciation rates during the Pleistocene, but this conclusion has been challenged. The present study investigates this matter by examining continental patterns of avian diversification through the analysis of large-scale DNA barcode libraries.

Methodology and Principal Findings

Standardized COI datasets from the avifaunas of Argentina, the Nearctic, and the Palearctic were analyzed. Average genetic distances between closest congeners and sister species were higher in Argentina than in North America reflecting a much higher percentage of recently diverged species in the latter region. In the Palearctic genetic distances between closely related species appeared to be more similar to those of the southern Neotropics. Average intraspecific variation was similar in Argentina and North America, while the Palearctic fauna had a higher value due to a higher percentage of variable species. Geographic patterning of intraspecific structure was more complex in the southern Neotropics than in the Nearctic, while the Palearctic showed an intermediate level of complexity.

Conclusions and Significance

DNA barcodes can reveal continental patterns of diversification. Our analysis suggests that avian species are older in Argentina than in the Nearctic, supporting the idea that the greater diversity of the Neotropical avifauna is not caused by higher recent speciation rates. Species in the Palearctic also appear to be older than those in the Nearctic. These results, combined with the patterns of geographic structuring found in each region, suggest a major impact of Pleistocene glaciations in the Nearctic, a lesser effect in the Palearctic and a mild effect in the southern Neotropics.  相似文献   

11.
Fossil, archaeological, and morphometric data suggest that indigenous red foxes in North America were derived from vicariance in two disjunct refugia during the last glaciation: one in Beringia and one in the contiguous USA. To test this hypothesis, we conducted a phylogeographical analysis of the North American red fox within its presettlement range. We sequenced portions of the mitochondrial cytochrome b (354 bp) gene and D-loop (342 bp) from 220 historical red fox specimens. Phylogenetic analysis of the cytochrome b gene produced two clades that diverged c . 400 000 years before present ( bp ): a Holarctic and a Nearctic clade. D-loop analyses of the Nearctic clade indicated three distinct subclades (≥ 99% Bayesian posterior probability); two that were more recently derived (rho estimate c . 20 000 bp ) and were restricted to the southwestern mountains and the eastern portion of North America, and one that was older (rho estimate c . 45 000 bp ) and more widespread in North America. Populations that migrated north from the southern refugium following deglaciation were derived from the colonization of North America during or prior to the Illinoian glaciation (300 000–130 000 bp ), whereas populations that migrated south from the northern refugium represent a more recent colonization event during the Wisconsin glaciation (100 000–10 000 bp ). Our findings indicate that Nearctic clade red foxes are phylogenetically distinct from their Holarctic counterparts, and reflect long-term isolation in two disjunct forest refugia during the Pleistocene. The montane lineage, which includes endangered populations, may be ecologically and evolutionarily distinct.  相似文献   

12.
The migration routes of red‐necked phalaropes breeding around the Bering Sea are poorly known, despite the fact that the Bering Sea could mark the boundary between the East Palearctic populations that winter in the Pacific Ocean around the East Indies and the West Nearctic populations that winter in the Pacific Ocean off the coast of South America. Geolocator data retrieved from two male phalaropes tagged in southern Chukotka, Far Eastern Russia, confirm that birds breeding in this region belong to the East Palearctic population and winter in the East Indies, suggesting that the division line with the West Nearctic population is farther to the east. The routes taken by the two phalaropes were almost entirely pelagic, totaling around 18 000–20 000 km round‐trip, with the birds continuously on the move during migration, rather than resident in any particular stopover site, contrary to most other migratory shorebirds.  相似文献   

13.
Phylogeographic studies of Holarctic birds are challenging because they involve vast geographic scale, complex glacial history, extensive phenotypic variation, and heterogeneous taxonomic treatment across countries, all of which require large sample sizes. Knowledge about the quality of phylogeographic information provided by different loci is crucial for study design. We use sequences of one mtDNA gene, one sex-linked intron, and one autosomal intron to elucidate large scale phylogeographic patterns in the Holarctic lark genus Eremophila. The mtDNA ND2 gene identified six geographically, ecologically, and phenotypically concordant clades in the Palearctic that diverged in the Early - Middle Pleistocene and suggested paraphyly of the horned lark (E. alpestris) with respect to the Temminck''s lark (E. bilopha). In the Nearctic, ND2 identified five subclades which diverged in the Late Pleistocene. They overlapped geographically and were not concordant phenotypically or ecologically. Nuclear alleles provided little information on geographic structuring of genetic variation in horned larks beyond supporting the monophyly of Eremophila and paraphyly of the horned lark. Multilocus species trees based on two nuclear or all three loci provided poor support for haplogroups identified by mtDNA. The node ages calculated using mtDNA were consistent with the available paleontological data, whereas individual nuclear loci and multilocus species trees appeared to underestimate node ages. We argue that mtDNA is capable of discovering independent evolutionary units within avian taxa and can provide a reasonable phylogeographic hypothesis when geographic scale, geologic history, and phenotypic variation in the study system are too complex for proposing reasonable a priori hypotheses required for multilocus methods. Finally, we suggest splitting the currently recognized horned lark into five Palearctic and one Nearctic species.  相似文献   

14.
Microevolutionary trends in the dentition of the Red fox (Vulpes vulpes)   总被引:1,自引:1,他引:0  
Microevolutionary trends in dental traits were studied in a Polish population of the Red fox, Vulpes vulpes (Linnaeus, 1758). Changes in qualitative and quantitative traits over a 70‐year interval were analysed in 1453 museum specimens collected between 1927 and 1996. Over that period, there were qualitative trends towards increasing complication of occlusal crown surface in posterior premolars (i.e. P4, P3, P4) and I3. Other cheek teeth did not undergo directional change. Changes in trait correlations were assessed using samples from the 1960s and 1990s. The correlations between C1–C1 and M1–M2 increased, while correlation values in the incisor region (I1–I2, I1–I1, I1–I2, I3–I2), carnassial region (P4–M1, P4–M1 and M1–M1) and in P2–P1 decreased. These changes may be related to increasing dietary opportunism of the Red fox during the 20th century.  相似文献   

15.
The Palearctic species of the ant genus Myrmica are well studied. In contrast, the taxonomy of the Nearctic species is outdated, making identification impossible. We collected Myrmica samples in the Holarctic and investigated their diversity using mtDNA data. We analysed a barcode sequence of the Cytochrome Oxidase I gene for 57 Palearctic and 293 Nearctic Myrmica samples. We used sequences of known Palearctic species to search for Myrmica barcode patterns. All but one Palearctic species groups were recovered. The Nearctic diversity was much higher than known. We retrieved the punctiventris, crassirugis and incompleta groups, and established nine additional tentative species groups. Genetic distance analysis revealed a large overlap of intra- and inter-specific distances in Palearctic species and species groups. We could not find a variation gap to separate Nearctic sequences into species with COI data only. Variation in scape morphology divided two genetic groups further. Scape morphology correlated with most molecular groups, except three specimens. Our results illustrate that barcoding, using only a limited amount of genetic information, cannot serve as a universal proxy for taxonomy and species demarcation. It should be considered a first step in understanding the taxonomic diversity of an unknown group of organisms.  相似文献   

16.
The taxonomic rank of subspecies remains highly contentious, largely because traditional subspecies boundaries have sometimes been contradicted by molecular phylogenetic data. The most complete meta-analysis to date, for instance, found that only 3% of traditional avian subspecies represented distinct phylogenetic lineages. However, the global generality of this phenomenon remains unclear due to this previous study's narrow geographic focus on continental Nearctic and Palearctic subspecies. Here, we present a new global analysis of avian subspecies and show that 36% of avian subspecies are, in fact, phylogenetically distinct. Among biogeographic realms we find significant differences in the proportion of subspecies that are phylogenetically distinct, with Nearctic/Palearctic subspecies showing significantly reduced levels of differentiation. Additionally, there are differences between island and continental subspecies, with continental subspecies significantly less likely to be genetically distinct. These results indicate that the overall level of congruence between taxonomic subspecies and molecular phylogenetic data is greater than previously thought. We suggest that the widespread impression that avian subspecies are not real arises from a predominance of studies focusing on continental subspecies in North America and Eurasia, regions which show unusually low levels of genetic differentiation. The broader picture is that avian subspecies often provide an effective short-cut for estimating patterns of intraspecific genetic diversity, thereby providing a useful tool for the study of evolutionary divergence and conservation.  相似文献   

17.
Gene flow over very large geographic scales has been investigated in few species. Examples include Drosophila melanogaster, Drosophila subobscura, Drosophila simulans, and the Mediterranean fruit fly (Ceratitis capitata). The cosmopolitan house fly, a highly vagile, fecund, colonizing species offers an additional exemplar. Genotypes at seven microsatellite loci were scored in 14 widely separated natural house fly populations from the Nearctic, neotropics, Afrotropics, Palearctic, and Asia. Allelic diversities and heterozygosities differed significantly among populations. Averaged over all populations, Weir and Cockerham's theta = 0.13 and RST = 0.20. Pairwise genetic distance measures were uncorrelated with geographic distance. Microsatellite frequencies were compared with mitochondrial data from 13 of the same populations in which theta = 0.35 and Nei's GST = 0.72. Mitochondrial variation indicated up to threefold greater indices of genetic differentiation than the microsatellites. We were unable to draw any biogeographical inferences from these results or from tree or network topologies constructed from the genetic data. It is likely that high microsatellite diversities, mutation rates, and homoplasy greatly compromised their usefulness in estimating gene flow. House fly colonization dynamics include a large number of primary and secondary colonizations coupled with substantial genetic drift, but no detectable bottlenecks.  相似文献   

18.
California is home to both the native state-threatened Sierra Nevada red fox (Vulpes vulpes necator), which historically inhabited high elevations of the Sierra Nevada and Cascade mountains, and to multiple low-elevation red fox populations thought to be of exotic origin. During the past few decades the lowland populations have dramatically expanded their distribution, and possibly moved into the historic range of the native high-elevation fox. To determine whether the native red fox persists in its historic range in California, we compared mitochondrial cytochrome-b haplotypes of the only currently-known high-elevation population (n = 9 individuals) to samples from 3 modern lowland populations (n = 35) and historic (1911–1941) high-elevation (n = 22) and lowland (n = 7) populations. We found no significant population differentiation among the modern and historic high-elevation populations (average pairwise F ST = 0.06), but these populations differed substantially from all modern and historic lowland populations (average pairwise F ST = 0.52). Among lowland populations, the historic and modern Sacramento Valley populations were not significantly differentiated from one another (F ST = −0.06), but differed significantly from recently founded populations in the San Francisco Bay region and in southern California (average pairwise F ST = 0.42). Analysis of molecular variance indicated that 3 population groupings (mountain, Sacramento Valley, and other lowland regions) explained 45% of molecular variance (F CT = 0.45) whereas only 4.5% of the variance was partitioned among populations within these groupings (F SC = 0.08). These findings provide strong evidence that the native Sierra Nevada red fox has persisted in northern California. However, all nine samples from this population had the same haplotype, suggesting that several historic haplotypes may have become lost. Unidentified barriers have apparently prevented gene flow from the Sacramento Valley population to other eastern or southern populations in California. Future studies involving nuclear markers are needed to assess the origin of the Sierra Nevada red fox and to quantify levels of nuclear gene flow.  相似文献   

19.
Capsule Greater White-fronted Geese show significant variation in body size from sampling locations throughout their circumpolar breeding range.

Aims To determine the degree of geographical variation in body size of Greater White-fronted Geese and identify factors contributing to any apparent patterns in variation.

Methods Structural measures of >3000 geese from 16 breeding areas throughout the Holarctic breeding range of the species were compared statistically.

Results Palearctic forms varied clinally, and increased in size from the smallest forms on the Kanin and Taimyr peninsulas in western Eurasia to the largest forms breeding in the Anadyr Lowlands of eastern Chukotka. Clinal variation was less apparent in the Nearctic, as both the smallest form in the Nearctic and the largest form overall (the Tule Goose) were from different breeding areas in Alaska. The Tule Goose was 25% larger than the smallest form. Birds from Greenland (A. a. flavirostris) were the second largest, although only slightly larger than geese from several North American populations. Body size was not correlated with breeding latitude but was positively correlated with temperature on the breeding grounds, breeding habitat, and migration distance. Body mass of Greater White-fronted Geese from all populations remained relatively constant during the period of wing moult. Morphological distinctness of eastern and western Palearctic forms concurs with earlier findings of complete range disjunction.

Conclusions Patterns of morphological variation in Greater White-fronted Geese across the Holarctic can be generally attributed to adaptation to variable breeding environments, migration requirements, and phylo-geographical histories.  相似文献   

20.
The occlusal surface pattern of the lower molars and the second deciduous molar among the Polynesians living in Western Samoa was studied on plaster casts. The following are the characteristic traits of this race. The occlusal surface pattern of the first and second lower molars falls within the range of variation of the Mongoloid racial group. In general, the variation of the furrow pattern is remarkable, but the tendency of reduction of number of cusps is not conspicuous. The frequency of C6 in the lower molars and C7 in m2 is far higher than in any other population, but the frequency of C7 in M1 or M2 is not noticeably different.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号