首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Leucine-rich repeat containing proteins are involved in protein-protein interactions and they regulate numerous cellular events during nervous system development and disease. Here we have isolated and characterized a new four-membered family of genes from human and mouse, named LRRTMs, that encode putative leucine-rich repeat transmembrane proteins. Human and mouse LRRTMs are highly conserved, and orthologous genes exist in other vertebrates but not in invertebrates. All LRRTMs, except LRRTM4, are located in the introns of different alpha-catenin genes, suggesting coevolution of these two gene families. We show by in situ hybridization and RT-PCR that LRRTM mRNAs are predominantly expressed in the nervous system and that each LRRTM possesses a specific, partially nonoverlapping expression pattern. The structure and expression profile of LRRTM mRNAs suggest that they may have a role in the development and maintenance of the vertebrate nervous system.  相似文献   

2.
Leucine-rich repeat (LRR) proteins feature tandem leucine-rich motifs that form a protein-protein interaction domain. Plants contain diverse classes of LRR proteins, many of which take part in signal transduction. We have identified a novel family of nine Arabidopsis LRR proteins that, based on predicted intracellular location and LRR motif consensus sequence, are related to Ras-binding LRR proteins found in signaling complexes in animals and yeast. This new class has been named plant intracellular Ras group-related LRR proteins (PIRLs). We have characterized PIRL cDNAs, rigorously defined gene and protein annotations, investigated gene family evolution and surveyed mRNA expression. While LRR regions suggested a relationship to Ras group LRR proteins, outside of their LRR domains PIRLs differed from Ras group proteins, exhibiting N- and C-terminal regions containing low complexity stretches and clusters of charged amino acids. PIRL genes grouped into three subfamilies based on sequence relationships and gene structures. Related gene pairs and dispersed chromosomal locations suggested family expansion by ancestral genomic or segmental duplications. Expression surveys revealed that all PIRL mRNAs are actively transcribed, with three expressed differentially in leaves, roots or flowers. These results define PIRLs as a distinct, plant-specific class of intracellular LRR proteins that probably mediate protein interactions, possibly in the context of signal transduction. T-DNA knock-out mutants have been isolated as a starting point for systematic functional analysis of this intriguing family.  相似文献   

3.

Background  

In mouse the cytokine interleukin-7 (IL-7) is required for generation of B lymphocytes, but human IL-7 does not appear to have this function. A bioinformatics approach was therefore used to identify IL-7 receptor related genes in the hope of identifying the elusive human cytokine.  相似文献   

4.
5.
In a previous study, we isolated a novel gene, LRRC8 (leucine-rich repeat-containing 8), in a girl with congenital agammaglobulinemia. We have now identified four unknown LRRC8-like genes, named TA-LRRP, AD158, LRRC5, and FLJ23420. Their predicted structures are very similar to each other, and highly conserved between humans and the mouse. All five genes encode proteins consisting of 16 extracellular leucine-rich repeats (LRRs), all of which have four transmembrane regions except for FLJ23420. These genes belong to a novel family, designated the LRRC8 family, within the superfamily of LRR proteins. TA-LRRP, AD158, and LRRC5 might be implicated in proliferation and activation of lymphocytes and monocytes.  相似文献   

6.
Adipocyte differentiation is known to be regulated by a complex array of genes known as master regulators. Using a subtraction method, we previously isolated 102 genes that are expressed in the early stage of adipocyte differentiation. One of these genes named fad158 (factor for adipocyte differentiation 158) seems to be a novel gene, since there is no significantly similar gene listed in databases. Both mouse and human fad158 encode 803 amino acids and contain 4 transmembrane regions and 8 leucine-rich repeat motifs. Expression of fad158 was induced at an early stage in differentiating 3T3-L1 cells and was observed in the skeletal muscle. When the expression was knocked down with an antisense method in 3T3-L1 cells, the accumulation of oil droplets was reduced. Moreover, on overexpression of fad158 in NIH-3T3 cells, which are fibroblasts and do not usually differentiate into adipocytes, stable transformants accumulated oil droplets and showed an elevated expression of adipocyte marker genes, indicating that these cells had differentiated into mature adipocytes. fad158 has the ability to regulate adipocyte differentiation positively, especially at an early stage.  相似文献   

7.
Growth, patterning, and apoptosis are mutually interactive during development. For example, cells that select an abnormal fate in a developing field are frequently removed by apoptosis. An important issue in this process that needs to be resolved is the mechanism used by cells to discern their correct fate from an abnormal fate. In order to examine this issue, we developed an animal model that expresses the dioxin receptor homolog Spineless (Ss) ectopically in the Drosophila wing. The presence of mosaic clones ectopically expressing ss results in a local transformation of organ identity, homeosis, from wing into a leg or antenna. The cells with misspecified fates subsequently activate c-Jun N-terminal kinase to undergo apoptosis in an autonomous or nonautonomous manner depending on their position within the wing, suggesting that a cell-cell interaction is, at least in some cases, involved in the detection of misspecified cells. Similar position dependence is commonly observed when various homeotic genes controlling the body segments are ectopically expressed. The autonomous and nonautonomous apoptosis caused by ss is regulated by a novel leucine-rich repeat family transmembrane protein, Fish-lips (Fili) that interacts with surrounding normal cells. These data support a mechanism in which the lack of some membrane proteins helps to recognize the presence of different cell types and direct these cells to an apoptotic fate in order to exclude them from the normal developing field.  相似文献   

8.
Plant intracellular Ras-group-related leucine-rich repeat proteins (PIRLs) are a plant-specific class of leucine-rich repeat (LRR) proteins related to animal and fungal LRRs that take part in developmental signaling and gene regulation. As part of a systematic functional study of the Arabidopsis thaliana PIRL gene family, T-DNA knockout mutants defective in the closely related PIRL1 and PIRL9 genes were identified and characterized. Pirl1 and pirl9 single mutants displayed normal transmission and did not exhibit an obvious developmental phenotype. To investigate the possibility of functional redundancy, crosses to generate double mutants were carried out; however, pirl1;pirl9 plants were not recovered. Reciprocal crosses between wild type and pirl1/PIRL1;pirl9 plants, which produce 50% pirl1;pirl9 gametophytes, indicated male-specific transmission failure of the double-mutant allele combination. Scanning electron microscopy and viability staining showed that approximately half of the pollen produced by pirl1/PIRL1;pirl9 plants was inviable and severely malformed. Tetrad analyses with qrt1 indicated that pollen defects segregated with the double-mutant allele combination, thus demonstrating that PIRL1 and PIRL9 function after meiosis. Pollen development was characterized with bright field, fluorescence, and transmission electron microscopy. Pirl1;pirl9 mutants stopped growing as microspores, failed to initiate vacuolar fission, aborted, and underwent cytoplasmic degeneration. Development consistently arrested at the late microspore stage, just prior to pollen mitosis I. Thus, PIRL1 and PIRL9 have redundant roles essential at a key transition point early in pollen development. Together, these results define a functional context for these two members of this distinct class of plant LRR genes.  相似文献   

9.
The three fibronectin leucine-rich repeat transmembrane (FLRT) proteins contain 10 leucine-rich repeats (LRR), a type III fibronectin (FN) domain, followed by the transmembrane region, and a short cytoplasmic tail. XFLRT3, a Nodal/TGFβ target, regulates cell adhesion and modulates FGF signalling during Xenopus gastrulation. The present study describes the onset and pattern of FLRT1-3 expression in the early mouse embryo. FLRT3 expression is activated in the anterior visceral endoderm (AVE), and during gastrulation appears in anterior streak derivatives namely the node, notochord and the emerging definitive endoderm. To explore FLRT3 function we generated a null allele via gene targeting. Early Nodal activities required for anterior-posterior (A-P) patterning, primitive streak formation and left-right (L-R) axis determination were unperturbed. However, FLRT3 mutant embryos display defects in headfold fusion, definitive endoderm migration and a failure of the lateral edges of the ventral body wall to fuse, leading to cardia bifida. Surprisingly, the mutation has no effect on FGF signalling. Collectively these experiments demonstrate that FLRT3 plays a key role in controlling cell adhesion and tissue morphogenesis in the developing mouse embryo.  相似文献   

10.
The family of small leucine-rich repeat proteins and proteoglycans (SLRPs) contains several extracellular matrix molecules that are structurally related by a protein core composed of leucine-rich repeats (LRRs) flanked by two conserved cysteine-rich regions. The small proteoglycan decorin is the archetypal SLRP. Decorin is present in a variety of connective tissues, typically "decorating" collagen fibrils, and is involved in important biological functions, including the regulation of the assembly of fibrillar collagens and modulation of cell adhesion. Several SLRPs are known to regulate collagen fibrillogenesis and there is evidence that they may share other biological functions. We have recently determined the crystal structure of the protein core of decorin, the first such determination of a member of the SLRP family. This structure has highlighted several correlations: (1) SLRPs have similar internal repeat structures; (2) SLRP molecules are far less curved than an early model of decorin based on the three-dimensional structure of ribonuclease inhibitor; (3) the N-terminal and C-terminal cysteine-rich regions are conserved capping motifs. Furthermore, the structure shows that decorin dimerizes through the concave surface of its LRR domain, which has been implicated previously in its interaction with collagen. We have established that both decorin and opticin, another SLRP, form stable dimers in solution. Conservation of residues involved in decorin dimerization suggests that the mode of dimerization for other SLRPs will be similar. Taken together these results suggest the need for reevaluation of currently accepted models of SLRP interaction with their ligands.  相似文献   

11.
We present a novel approach to design repeat proteins of the leucine-rich repeat (LRR) family for the generation of libraries of intracellular binding molecules. From an analysis of naturally occurring LRR proteins, we derived the concept to assemble repeat proteins with randomized surface positions from libraries of consensus repeat modules. As a guiding principle, we used the mammalian ribonuclease inhibitor (RI) family, which comprises cytosolic LRR proteins known for their extraordinary affinities to many RNases. By aligning the amino acid sequences of the internal repeats of human, pig, rat, and mouse RI, we derived a first consensus sequence for the characteristic alternating 28 and 29 amino acid residue A-type and B-type repeats. Structural considerations were used to replace all conserved cysteine residues, to define less conserved positions, and to decide where to introduce randomized amino acid residues. The so devised consensus RI repeat library was generated at the DNA level and assembled by stepwise ligation to give libraries of 2-12 repeats. Terminal capping repeats, known to shield the continuous hydrophobic core of the LRR domain from the surrounding solvent, were adapted from human RI. In this way, designed LRR protein libraries of 4-14 LRRs (equivalent to 130-415 amino acid residues) were obtained. The biophysical analysis of randomly chosen library members showed high levels of soluble expression in the Escherichia coli cytosol, monomeric behavior as characterized by gel-filtration, and alpha-helical CD spectra, confirming the success of our design approach.  相似文献   

12.
The centrosome functions as the microtubule-organizing center and plays a vital role in organizing spindle poles during mitosis. Recently, we identified a centrosomal protein called CLERC (Centrosomal leucine-rich repeat and coiled-coil containing protein) which is a human ortholog of Chlamydomonas Vfl1 protein. The bibliography as well as database searches provided evidence that the human proteome contains at least seven centrosomal leucine-rich repeat proteins including CLERC. CLERC and four other centrosomal leucine-rich repeat proteins contain the SDS22-like leucine-rich repeat motifs, whereas the remaining two proteins contain the RI-like and the cysteine-containing leucine-rich repeat motifs. Individual leucine-rich repeat motifs are highly conserved and present in evolutionarily diverse organisms. Here, we provide an overview of CLERC and other centrosomal leucine-rich repeat proteins, their structures, their evolutionary relationships, and their functional properties.  相似文献   

13.
Asporin, a novel member of the leucine-rich repeat family of proteins, was partially purified from human articular cartilage and meniscus. Cloning of human and mouse asporin cDNAs revealed that the protein is closely related to decorin and biglycan. It contains a putative propeptide, 4 amino-terminal cysteines, 10 leucine-rich repeats, and 2 C-terminal cysteines. In contrast to decorin and biglycan, asporin is not a proteoglycan. Instead, asporin contains a unique stretch of aspartic acid residues in its amino-terminal region. A polymorphism was identified in that the number of consecutive aspartate residues varied from 11 to 15. The 8 exons of the human asporin gene span 26 kilobases on chromosome 9q31.1-32, and the putative promoter region lacks TATA consensus sequences. The asporin mRNA is expressed in a variety of human tissues with higher levels in osteoarthritic articular cartilage, aorta, uterus, heart, and liver. The deduced amino acid sequence of asporin was confirmed by mass spectrometry of the isolated protein resulting in 84% sequence coverage. The protein contains an N-glycosylation site at Asn(281) with a heterogeneous oligosaccharide structure and a potential O-glycosylation site at Ser(54). The name asporin reflects the aspartate-rich amino terminus and the overall similarity to decorin.  相似文献   

14.
Multiple and variable tyrosine sulfation in extracellular class II leucine-rich repeat proteins/proteoglycans were characterized by mass spectrometry. The sulfogroup on tyrosine is labile and is released from peptides under normal mass spectrometric conditions. Thus, special approaches must be considered in order to identify this modification. By using a combination of mass spectrometry studies operating in negative and positive ion mode, tyrosine sulfation could be identified. In positive mode, the peptides normally appeared non-sulfated, whereas in negative mode a mixture of sulfated and non-sulfated species was observed. A combination of peptides released by different proteinases was used to obtain details on the locations of sulfate groups. Multiple tyrosine sulfates were observed in the N-terminal region of fibromodulin (up to 9 sites), osteoadherin (up to 6 sites), and lumican (2 sites). Osteoadherin contains two additional sulfated tyrosine residues close to its C terminus. We also identified an error in the published sequence of bovine fibromodulin, resulting in the replacement of Thr37 by Tyr37-Gly38, thus increasing its homology with its human counterpart.  相似文献   

15.
Ordered differential display identified a novel sequence induced in neurons by the neurite-promoting protein amphoterin. We named this gene amphoterin-induced gene and ORF (AMIGO), and also cloned two other novel genes homologous to AMIGO (AMIGO2 and AMIGO3). Together, these three AMIGOs form a novel family of genes coding for type I transmembrane proteins which contain a signal sequence for secretion and a transmembrane domain. The deduced extracellular parts of the AMIGOs contain six leucine-rich repeats (LRRs) flanked by cysteine-rich LRR NH2- and COOH-terminal domains and by one immunoglobulin domain close to the transmembrane region. A substrate-bound form of the recombinant AMIGO ectodomain promoted prominent neurite extension in hippocampal neurons, and in solution, the same AMIGO ectodomain inhibited fasciculation of neurites. A homophilic and heterophilic binding mechanism is shown between the members of the AMIGO family. Our results suggest that the members of the AMIGO protein family are novel cell adhesion molecules among which AMIGO is specifically expressed on fiber tracts of neuronal tissues and participates in their formation.  相似文献   

16.
In a recent proteomic study of lysosomal proteins [10], we identified SID1 transmembrane family, member 2 (Sidt2) as a novel lysosomal membrane protein candidate. The Sidt2 gene encodes an 832-amino acid residues protein with a calculated molecular mass of 94.5 kDa. Bioinformatic analysis showed that Sidt2 is a multipass transmembrane protein that contains 10 putative N-glycosylation sites (NxS/T) and two potential tyrosine-based sorting signals (YGSF and YDTL). Using specific anti-Sidt2 antibody and lysosomal markers, the lysosomal localization of Sidt2 was determined by immunofluorescence. Furthermore, using subcellular fractionation techniques, we demonstrated that Sidt2 is a lysosomal integral membrane protein. Endogenous Sidt2 was detected in multiple tissues of mouse and rat with approximately 120-130 kDa molecular weights due to extensive glycosylation. After digestion with PNGase F, the apparent molecular mass of Sidt2 decreased to the predicted value of 95 kDa. In rats, Sidt2 was highly expressed in the liver, brain, and kidney, whereas no or little expression was found in the skeletal muscles, heart, and other tissues. In summary, Sidt2 is a highly glycosylated lysosomal integral membrane protein that shows tissue-specific expression.  相似文献   

17.
Synaptotagmins (Syt), rabphilin-3A, and Doc2 belong to a family of carboxyl terminal type (C-type) tandem C2 proteins and are thought to be involved in vesicular trafficking. We have cloned and characterized a novel family of C-type tandem C2 proteins, designated Slp1-3 (synaptotagmin-like protein 1-3). The Slp1-3 C2 domains show high homology to granuphilin-a C2 domains, but the amino-terminal domain of Slp1-3 does not contain any known protein motifs or a transmembrane domain. A subcellular fractionation study indicated that Slp1-3 proteins are peripheral membrane proteins. Phospholipid binding experiments indicated that Slp3 is a Ca(2+)-dependent isoform, but Slp1 and Slp2 are Ca(2+)-independent isoforms, because only the Slp3 C2A domain showed Ca(2+)-dependent phospholipid binding activity. The C-terminus of Slp1-3 also bound neurexin Ialpha in vitro, in the same manner as Syt family proteins, which may be important for the membrane association of Slp1-3. In addition, Slp family proteins are differentially distributed in different mouse tissues and at different developmental stages.  相似文献   

18.
19.
Mutations in LRRK2 (leucine-rich repeat kinase 2) have been identified as major genetic determinants of Parkinson's disease (PD). The most prevalent mutation, G2019S, increases LRRK2's kinase activity, therefore understanding the sites and substrates that LRRK2 phosphorylates is critical to understanding its role in disease aetiology. Since the physiological substrates of this kinase are unknown, we set out to reveal potential targets of LRRK2 G2019S by identifying its favored phosphorylation motif. A non-biased screen of an oriented peptide library elucidated F/Y-x-T-x-R/K as the core dependent substrate sequence. Bioinformatic analysis of the consensus phosphorylation motif identified several novel candidate substrates that potentially function in neuronal pathophysiology. Peptides corresponding to the most PD relevant proteins were efficiently phosphorylated by LRRK2 in vitro. Interestingly, the phosphomotif was also identified within LRRK2 itself. Autophosphorylation was detected by mass spectrometry and biochemical means at the only F-x-T-x-R site (Thr 1410) within LRRK2. The relevance of this site was assessed by measuring effects of mutations on autophosphorylation, kinase activity, GTP binding, GTP hydrolysis, and LRRK2 multimerization. These studies indicate that modification of Thr1410 subtly regulates GTP hydrolysis by LRRK2, but with minimal effects on other parameters measured. Together the identification of LRRK2's phosphorylation consensus motif, and the functional consequences of its phosphorylation, provide insights into downstream LRRK2-signaling pathways.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号