首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have used chimeras and point mutations of recombinant coagulation factor IX to examine factor IX's specific interaction with bovine endothelial cells. Previously (Toomey, J. R., Smith, K. J., Roberts, H. R., and Stafford, D. W. (1992) Biochemistry 31, 1806-1808), we restricted the region of factor IX responsible for binding to endothelial cells to its Gla domain. Molecular modeling of the Gla domain of factor IX using the coordinates of the Gla domain of bovine prothrombin-(1-145) (Soriano-Garcia, M., Padmanabhan, K., deVos, A. M., and Tulinsky, A. (1992) Biochemistry 31, 2554-2566) reveals two major surface determinants whose sequences differ among factors IX, X, and VII. A chimeric protein comprised of the Gla domain of factor VII with the remainder of the molecule of factor IX did not bind to the endothelial cell binding site. We changed residues 33, 34, 35, 39, and 40 to those of factor IX without restoring endothelial cell binding. Replacement of amino acid residues 3-10 with those of factor IX restored normal binding. With the knowledge that specific binding was localized to the first 11 amino acids, point mutations were made at residues predicted to be on the surface in this region of the factor IX molecule. Changing lysine 5 to alanine (K5A) or valine 10 to lysine (V10K) resulted in loss of binding with total retention of in vitro clotting activity. The lysine 5 to arginine (K5R) mutation also was fully active in vitro but displayed 3-fold tighter binding. In addition to defining the sequence of factor IX necessary for binding to endothelial cells, these results suggest that the binding site is not phospholipid but instead is specific, and in all likelihood, protein.  相似文献   

2.
The intrinsic pathway of coagulation is initiated when zymogen factor VII binds to its cell surface receptor tissue factor to form a catalytic binary complex. Both the activation of factor VIIa and the expression of serine protease activity of factor VIIa are dependent on factor VII binding to tissue factor lipoprotein. To better understand the molecular basis of these rate-limiting events, the interaction of zymogen factor VII and tissue factor was investigated using as probes both a murine monoclonal antibody and a monospecific rabbit antiserum to human factor VII. To measure factor VIIa functional activity, a two-stage chromogenic assay was used; an assay which measures the factor Xa generated by the activation of factor VII to factor VIIa. Purified immunoglobulin from murine monoclonal antibody 231-7, which was shown to be reactive with amino acid residues 51-88 of the first epidermal growth factor-like (EGF) domain of human factor VII, inhibited the activation of factor VII to factor VIIa in a dose-dependent manner. The mechanism of this inhibition was demonstrated using a novel solid-phase ELISA which quantitatively measured the binding of purified factor VII zymogen to tissue factor adsorbed onto microtiter wells. Thus, the binding of factor VII zymogen to immobilized tissue factor was inhibited by antibody 231-7, again in a dose-dependent manner. Similar results were obtained using a monospecific rabbit antiserum to human factor VII which also reacted with the beta-galactosidase fusion proteins containing amino acid residues 51-88 (exon 4) of human factor VII. We conclude therefore that the exon 4-encoded amino acids of the first EGF domain of human factor VII constitute an essential domain participating in the binding of factor VII to tissue factor.  相似文献   

3.
Waters EK  Morrissey JH 《Biochemistry》2006,45(11):3769-3774
Integral membrane proteins, which include many cellular effector proteins and drug targets, can be difficult to produce, purify, and manipulate. Although the isolated ectodomains of many membrane proteins can be expressed as water soluble proteins, biological activity is frequently lost when these proteins are released from the membrane surface. An example is tissue factor, the integral membrane protein that triggers the blood clotting cascade and for which membrane anchoring is essential. Its isolated ectodomain (soluble tissue factor) can be expressed with high yield in bacteria but is orders of magnitude less active than the intact, membrane-anchored protein. We now report full restoration of biological activity to the isolated tissue factor ectodomain via the engineering of a hexahistidine tag onto its C-terminus and its use in combination with membrane bilayers containing nickel-chelating lipids. When soluble tissue factor was tethered to the membrane surface via such metal-chelating lipids, it bound factor VIIa with the same high affinity as wild-type tissue factor, and the resulting factor VIIa-tissue factor complexes supported factor X activation and factor VII autoactivation with essentially wild-type enzyme kinetic constants. Furthermore, when such bilayers were immobilized onto solid supports, they efficiently captured histidine-tagged soluble tissue factor directly from crude culture supernatants, with full biological activity, obviating the need for purification or laborious membrane reconstitution procedures. This strategy is rapid, efficient, scalable, and automatable and should be applicable to other integral membrane proteins, especially those with a single transmembrane domain. Applications include high-throughput screening of mutants or drugs, flow reactors, clinical assays, and point-of-care instrumentation.  相似文献   

4.
Tissue factor, the physiologic trigger of blood clotting, is the membrane-anchored protein cofactor for the plasma serine protease, factor VIIa. Tissue factor is hypothesized to position and align the active site of factor VIIa relative to the membrane surface for optimum proteolytic attack on the scissile bonds of membrane-bound protein substrates such as factor X. We tested this hypothesis by raising the factor VIIa binding site above the membrane surface by creating chimeras containing the tissue factor ectodomain linked to varying portions of the membrane-anchored protein, P-selectin. The tissue factor/P-selectin chimeras bound factor VIIa with high affinity and supported full allosteric activation of factor VIIa toward tripeptidyl-amide substrates. That the active site of factor VIIa was raised above the membrane surface when bound to tissue factor/P-selectin chimeras was confirmed using resonance energy transfer techniques in which appropriate fluorescent dyes were placed in the active site of factor VIIa and at the membrane surface. The chimeras were deficient in supporting factor X activation by factor VIIa due to decreased k(cat). The chimeras were also markedly deficient in clotting plasma, although incubating factor VII or VIIa with the chimeras prior to the addition of plasma restored much of their procoagulant activity. Interestingly, all chimeras fully supported tissue factor-dependent factor VII autoactivation. These studies indicate that proper positioning of the factor VII/VIIa binding site on tissue factor above the membrane surface is important for efficient rates of activation of factor X by this membrane-bound enzyme/cofactor complex.  相似文献   

5.
6.
Type VII procollagen has been characterized as a product of epithelial cell lines. As secreted, it contains a large triple-helical domain terminated by a multi-globular-domained carboxyl terminus (NC-1), and a smaller amino-terminal globule (NC-2). The triple helix and the NC-1 domain have previously been identified in anchoring fibril-containing tissues by biochemical and immunochemical means, leading to the conclusion that type VII collagen is a major component of anchoring fibrils. In order to better characterize the tissue form of type VII collagen, we have produced a panel of monoclonal antibodies which recognize the NC-1 domain. Peptide mapping of these epitopes indicate that they are independent and span approximately 125,000 kDa of the total 150,000 kDa of each alpha chain contained in NC-1. All these antibodies elicit immunofluorescent staining of the basement membrane zone in tissues. Type VII collagen has been extracted from tissues. As previously reported, it is smaller than type VII procollagen, (Woodley, D. T., Burgeson, R. E., Lunstrum, G. P., Bruckner-Tuderman, L., and Briggaman, R. A., submitted for publication), and we now find that it predominantly occurs as a dimer. Following clostridial collagenase digestion, intact NC-1 has been recognized, indicating that the difference in apparent Mr between the tissue form of the molecule and type VII procollagen results from modification of the amino terminus. The size of the amino-terminal globule has been determined to be between approximately 96 and 102 kDa. Rotary shadowing analyses of extracted molecules indicate that dimeric molecules contain the NC-1 domain, but are missing intact NC-2. We propose that the tissue form monomer, Mr = 960,000, be referred to as "type VII collagen." These studies strongly suggest that anchoring fibrils contain dimeric molecules with intact NC-1 domains. The data also support the previous suggestion that the NC-2 domain is involved in the formation of disulfide bond-stabilized type VII collagen dimers, and is subsequently removed by physiological proteolytic processing.  相似文献   

7.
The activation of human blood coagulation factor VII can occur by the feedback activity of either factor VIIa (autoactivation) or factor Xa. Both of these reactions are known to be enhanced by the presence of tissue factor, an integral membrane protein and the cofactor for factor VIIa. We examine here the activation of 125I-factor VII by both factor VIIa and factor Xa employing a mutant soluble form of tissue factor which has had its transmembrane and cytoplasmic domains deleted (sTF1-219). This mutant soluble tissue factor retains cofactor activity toward factor VIIa in a single-stage clotting assay but shows a strong dependence on initial plasma levels of factor VIIa (from 1 to 10,000 ng/ml) when compared to wild-type tissue factor. We show that this dependence is due to a deficiency of sTF1-219 in ability to both promote autoactivation and enhance the factor Xa-catalyzed activation of 125I-factor VII. sTF1-219 does not, however, inhibit the tissue factor-independent activation of 125I-factor VII by factor Xa. The results strongly suggest that the phospholipid anchoring region of tissue factor is essential for autoactivation and beneficial for factor Xa-catalyzed activation of 125I-factor VII. In addition, when taken together with the dependence of clotting times on initial factor VIIa levels observed with sTF1-219, these results indicate that factor VII autoactivation may be of greater importance in the initiation of blood coagulation via tissue factor than has been previously realized.  相似文献   

8.
We recently showed that single-chain zymogen factor VII is converted to two-chain factor VIIa in an autocatalytic manner following complex formation with either cell-surface or solution-phase relipidated tissue factor apoprotein (Nakagaki, T., Foster, D. C., Berkner, K. L., and Kisiel, W. (1991) Biochemistry 30, 10819-10824). We have now performed a detailed kinetic analysis of the autoactivation of human plasma factor VII in the presence of relipidated recombinant tissue factor apoprotein and calcium. Incubation of factor VII with equimolar amounts of relipidated tissue factor apoprotein resulted in the formation of factor VIIa amidolytic activity coincident with the conversion of factor VII to factor VIIa. The time course for the generation of factor VIIa amidolytic activity in this system was sigmoidal, characterized by an initial lag phase followed by a rapid linear phase until activation was complete. The duration of the lag phase was decreased by the addition of exogenous recombinant factor VIIa. Relipidated tissue factor apoprotein was essential for factor VII autoactivation. No factor VII activation was observed following complex formation between factor VII and a recombinant soluble tissue factor apoprotein construct consisting of the aminoterminal extracellular domain in the presence or absence of phospholipids. Kinetic analyses revealed that factor VII activation in the presence of relipidated tissue factor apoprotein can be defined by a second-order reaction mechanism in which factor VII is activated by factor VIIa with an apparent second-order rate constant of 7.2 x 10(3) M-1 S-1. Benzamidine inhibited factor VII autoactivation with an apparent Ki of 1.8 mM, which is identical to the apparent Ki for the inhibition of factor VIIa amidolytic activity by this active site competitive inhibitor. Our data are consistent with a factor VII autoactivation mechanism in which trace amounts of factor VIIa rapidly activate tissue factor-bound factor VII by limited proteolysis.  相似文献   

9.
Tissue factor is a lipoprotein, expressed on the surface of cells, which binds coagulation Factor VII or VIIa, leading to activation of Factors X and IX with subsequent fibrin generation. Cellular tissue factor activity is important in pathophysiologic processes such as inflammation and disseminated intravascular coagulation. In this study, the long-chain base sphingosine inhibited coagulation initiated by lipopolysaccharide-stimulated intact human monocytes. Sphingosine (5-100 microM) also profoundly inhibited thromboplastin-initiated coagulation (greater than 90% decrease in thromboplastin activity). This inhibition was dose- and time-dependent. Sphingosine inhibited neither the intrinsic pathway of coagulation nor thrombin generation of fibrin. The sphingosine analogues sphingomyelin, ceramide, or N-acetylsphingosine did not affect thromboplastin activity, suggesting that the polar head of sphingosine was necessary for interaction of the molecule with the coagulation system. Investigation of the biochemical mechanism revealed that sphingosine (5-50 microM), but neither sphingomyelin nor ceramide, inhibited specific binding of radiolabeled Factor VII to lipopolysaccharide-stimulated intact monocytes. The results suggest that sphingosine may regulate monocyte tissue factor-initiated coagulation by modulating Factor VII binding to tissue factor. Sphingosine may represent a new class of inhibitors of hemostasis.  相似文献   

10.
Tissue factor is the cell membrane-anchored cofactor for factor VIIa and triggers the coagulation reactions. The initial step is the conversion of factor VII to factor VIIa which, in vitro, is efficiently catalyzed by low concentrations of factor Xa. To identify the tissue factor region that interacts with the activator factor Xa during this process, we evaluated a panel of soluble tissue factor (1-219) mutants for their ability to support factor Xa-mediated activation of factor VII. The tissue factor residues identified as most important for this interaction (Tyr157, Lys159, Ser163, Gly164, Lys165, Lys166, and Tyr185) were identical to those found to be important for the interaction of substrate factor X with the tissue factor.factor VIIa complex. The residues form a continuous surface-exposed patch with an area of about 500 A(2), which appears to be located outside the tissue factor-factor VII contact zone. In agreement, the two monoclonal antibodies 5G6 and D3H44-F(ab')(2), whose epitopes overlap with this identified region, inhibited the rates of factor VII activation by 86% and 95%, respectively. These antibodies also strongly inhibited the conversion of (125)I-labeled factor VII when cell membrane-expressed, full-length tissue factor (1-263) was employed. Together the results suggest the usage of a common surface region of tissue factor in its dual role-as a cofactor for factor Xa-mediated factor VII activation and as a cofactor for factor VIIa-mediated factor X activation. The finding that factor Xa and factor X may engage in similar, if not identical, molecular interactions with tissue factor further indicates that factor Xa and factor X are similarly oriented toward their respective interaction partners in the ternary catalytic complexes.  相似文献   

11.
T Nakagaki  D C Foster  K L Berkner  W Kisiel 《Biochemistry》1991,30(45):10819-10824
Previous studies demonstrated proteolytic activation of human blood coagulation factor VII by an unidentified protease following complex formation with tissue factor expressed on the surface of a human bladder carcinoma cell line (J82). In the present study, an active-site mutant human factor VII cDNA (Ser344----Ala) has been constructed, subcloned, and expressed in baby hamster kidney cells. Mutant factor VII was purified to homogeneity in a single step from serum-free culture supernatants by immunoaffinity column chromatography. Mutant factor VII was fully carboxylated, possessed no apparent clotting activity, and was indistinguishable from plasma factor VII by SDS-PAGE. Cell binding studies indicated that mutant factor VII bound to J82 tissue factor with essentially the same affinity as plasma factor VII and was cleaved by factor Xa at the same rate as plasma factor VII. In contrast to radiolabeled single-chain plasma factor VII that was progressively converted to two-chain factor VIIa on J82 monolayers, mutant factor VII was not cleaved following complex formation with J82 tissue factor. Incubation of radiolabeled mutant factor VII with J82 cells in the presence of recombinant factor VIIa resulted in the time-dependent and tissue factor dependent conversion of single-chain mutant factor VII to two-chain mutant factor VIIa. Plasma levels of antithrombin III had no discernible effect on the factor VIIa catalyzed activation of factor VII on J82 cell-surface tissue factor but completely blocked this reaction catalyzed by factor Xa. These results are consistent with an autocatalytic mechanism of factor VII activation following complex formation with cell-surface tissue factor, which may play an important role in the initiation of extrinsic coagulation in normal hemostasis.  相似文献   

12.
Procollagen VII is a homotrimer of 350-kDa proalpha1(VII) chains. Each chain has a central collagenous domain flanked by a noncollagenous amino-terminal NC1 domain and a carboxy-terminal NC2 domain. After secretion from cells, procollagen VII molecules form antiparallel dimers with a 60 nm overlap. These dimers are stabilized by disulfide bonds formed between cysteines present in the NC2 domain and cysteines present in the triple-helical domain. Electron microscopy has provided direct evidence for the existence of collagen VII dimers, but the dynamic process of dimer formation is not well understood. In the present study, we tested the hypothesis that, during dimer formation, the NC2 domain of one procollagen VII molecule specifically recognizes and binds to the triple-helical region adjacent to Cys-2625 of another procollagen VII molecule. We also investigated the role of processing of the NC2 domain by the procollagen C-proteinase/BMP-1 in dimer assembly. We engineered mini mouse procollagen VII variants consisting of intact NC1 and NC2 domains and a shortened triple helix in which the C-terminal region encompassing Cys-2625 was either preserved or substituted with the region encompassing Cys-1448 derived from the N-terminal part of the triple-helical domain. The results indicate that procollagen VII self-assembly depends on site-specific interactions between the NC2 domain and the triple-helical region adjacent to Cys-2625 and that this process is promoted by the cleavage of the NC2 by procollagen C-proteinase/BMP1.  相似文献   

13.
Type VII collagen, located in human epidermal basement membrane, is the primary pathogenic target molecule in epidermolysis bullosa acquisita and epidermolysis bullosa dystrophica. Using a monoclonal antibody against the non-collagenous domain of type VII collagen, approximately 1 Kb cDNA was isolated from human keratinocyte library. The deduced primary structure of this clone thus reflects the non-collagenous domain of type VII collagen that may be involved in cell attachment. This region shows a weak homology (approximately 23%) to the cell attachment domain of fibronectin. Northern blot revealed approximately 9.5 Kb single band.  相似文献   

14.
Structure and function of the receptor-like protein kinases of higher plants   总被引:25,自引:0,他引:25  
Cell surface receptors located in the plasma membrane have a prominent role in the initiation of cellular signalling. Recent evidence strongly suggests that plant cells carry cell surface receptors with intrinsic protein kinase activity. The plant receptor-like protein kinases (RLKs) are structurally related to the polypeptide growth factor receptors of animals which consist of a large extracytoplasmic domain, a single membrane spanning segment and a cytoplasmic domain of the protein kinase gene family. Most of the animal growth factor receptor protein kinases are tyrosine kinases; however, the plant RLKs all appear to be serine/threonine protein kinases. Based on structural similarities in their extracellular domains the RLKs fall into three categories: the S-domain class, related to the self-incompatibility locus glycoproteins of Brassica; the leucine-rich repeat class, containing a tandemly repeated motif that has been found in numerous proteins from a variety of eukaryotes; and a third class that has epidermal growth factor-like repeats. Distinct members of these putative receptors have been found in both monocytyledonous plants such as maize and in members of the dicotyledonous Brassicaceae. The diversity among plant RLKs, reflected in their structural and functional properties, has opened up a broad new area of investigation into cellular signalling in plants with far-reaching implications for the mechanisms by which plant cells perceive and respond to extracellular signals.  相似文献   

15.
Human tissue factor (TF), the membrane-bound glycoprotein receptor for the blood-clotting factor VII/VIIa, contains in its extracellular domain three repeats of the rare motif, tryptophan-lysine-serine (WKS). Murine tissue factor, which binds human factor VII/VIIa poorly, contains only one WKS motif suggesting that the WKS motif may be involved in the binding of human factor VII/VIIa to human TF. Sequence analysis has revealed a WKS motif in 23 human proteins, seven of which are involved in the coagulation process. Another five WKS-containing proteins share some functional properties with the coagulation proteins. Analysis of the properties of these proteins provides some insight into the possible functional role of the WKS motif.  相似文献   

16.
Factor VII is a multidomain, vitamin K-dependent plasma glycoprotein that participates in the extrinsic pathway of blood coagulation. Earlier studies demonstrated a novel disaccharide (Xyl-Glc) or trisaccharide (Xyl2-Glc) O-glycosidically linked to serine 52 in human plasma factor VII (Nishimura, H., Kawabata, S., Kisiel, W., Hase, S., Ikenaka, T., Shimonishi, Y., and Iwanaga, S. (1989) J. Biol. Chem. 264, 20320-20325). In the present study, human plasma and recombinant factor VII were isolated and subjected to enzymatic fragmentation. Peptides comprising residues 48-62 of the first epidermal growth factor-like domain of each factor VII preparation were isolated for comparative analysis. Using a combined strategy of amino acid sequencing, carbohydrate and amino acid composition analysis, and mass spectrometry, three different glycan structures consisting of either glucose, glucose-xylose, or glucose-(xylose)2 were detected O-glycosidically linked to serine 52 in plasma and recombinant factor VII. Approximately equal amounts of the three glycan structures were observed in plasma factor VII, whereas in recombinant factor VII the glucose and the glucose-(xylose)2 structures predominated. In addition to the O-linked glycan structures observed at serine 52, a single fucose was found to be covalently linked at serine 60 in both human plasma and recombinant factor VII. Carbohydrate and mass spectrometry analyses indicated that the fucosylation of serine 60 was virtually quantitative. Metabolic labeling studies using [14C]fucose confirmed the presence of O-linked fucose at serine 60. In order to assess whether the carbohydrate moiety at serine 52 contributes to the biological activity of factor VII, we have constructed a site-specific mutant of recombinant factor VII in which serine 52 has been replaced with an alanine residue. Mutant factor VIIa exhibited approximately 60% of the coagulant activity of wild-type factor VIIa in a clotting assay. The amidolytic activity of mutant factor VIIa was indistinguishable from that observed for recombinant wild-type factor VIIa. In addition, the ability of mutant factor VIIa in complex with either purified relipidated tissue factor apoprotein or tissue factor on the surface of a human bladder carcinoma cell line (J82) to activate either factor X or factor IX was virtually identical to that observed for wild-type factor VIIa. These results indicate that the carbohydrate moiety O-glycosidically linked to serine 52 does not appear to be involved either in the interaction of factor VIIa with tissue factor, or the expression of its proteolytic activity toward factor X or factor IX following complex formation with tissue factor.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Gram-negative bacteria possess outer membrane receptors that utilize energy provided by the TonB system to take up iron. Several of these receptors participate in extracytoplasmic factor (ECF) signalling through an N-terminal signalling domain that interacts with a periplasmic transmembrane anti-sigma factor protein and a cytoplasmic sigma factor protein. The structures of the intact TonB-dependent outer membrane receptor FecA from Escherichia coli and FpvA from Pseudomonas aeruginosa have recently been solved by protein crystallography; however, no electron density was detected for their periplasmic signalling domains, suggesting that it was either unfolded or flexible with respect to the remainder of the protein. Here we describe the well-defined solution structure of this domain solved by multidimensional nuclear magnetic resonance (NMR) spectroscopy. The monomeric protein construct contains the 79-residue N-terminal domain as well as the next 17 residues that are part of the receptor's plug domain. These form two clearly distinct regions: a highly structured domain at the N-terminal end followed by an extended flexible tail at the C-terminal end, which includes the 'TonB-box' region, and connects it to the plug domain of the receptor. The structured region consists of two alpha-helices that are positioned side by side and are sandwiched in between two small beta-sheets. This is a novel protein fold which appears to be preserved in all the periplasmic signalling domains of bacterial TonB-dependent outer membrane receptors that are involved in ECF signalling, because the hydrophobic residues that make up the core of the protein domain are highly conserved.  相似文献   

18.
P-selectin (CD62), formerly called GMP-140 or PADGEM, is a membrane protein located in secretory storage granules of platelets and endothelial cells. To study the mechanisms responsible for the targeting of P-selectin to storage granules, we transfected its cDNA into COS-7 and CHO-K1 cells, which lack a regulated exocytic pathway, or into AtT20 cells, which are capable of regulated secretion. P-selectin was expressed on the plasma membrane of COS-7 and CHO-K1 cells but was concentrated in storage granules of AtT20 cells. Immunogold electron microscopy indicated that the electron-dense granules containing P-selectin in AtT20 cells also stored the endogenous soluble hormone ACTH. Activation of AtT20 cells with 8-Br-cAMP increased the surface expression of P-selectin, consistent with agonist-induced fusion of granule membranes with the plasma membrane. Deletion of the last 23 amino acids of the 35-residue cytoplasmic domain resulted in delivery of P-selectin to the plasma membrane of AtT20 cells. Replacement of the cytoplasmic tail of tissue factor, a plasma membrane protein, with the cytoplasmic domain of P-selectin redirected the chimeric molecule to granules. We conclude that the cytoplasmic domain of P-selectin is both necessary and sufficient for sorting of membrane proteins into the regulated pathway of secretion.  相似文献   

19.
The Bordetella pertussis adenylate cyclase toxin-hemolysin (ACT or CyaA) is a multifunctional protein. It forms small cation-selective channels in target cell and lipid bilayer membranes and it delivers into cell cytosol the amino-terminal adenylate cyclase (AC) domain, which catalyzes uncontrolled conversion of ATP to cAMP and causes cell intoxication. Here, we demonstrate that membrane translocation of the AC domain into cells is selectively dissociated from ACT membrane insertion and channel formation when a helix-breaking proline residue is substituted for glutamate 509 (Glu-509) within a predicted transmembrane amphipathic alpha-helix. Neutral substitutions of Glu-509 had little effect on toxin activities. In contrast, charge reversal by lysine substitutions of the Glu-509 or of the adjacent Glu-516 residue reduced the capacity of the toxin to translocate the AC domain across membrane and enhanced significantly its specific hemolytic activity and channel forming capacity in lipid bilayer membranes. Combination of the E509K and E516K mutations in a single molecule further exacerbated hemolytic and channel forming activity and ablated translocation of the AC domain into cells. The lysine substitutions strongly decreased the cation selectivity of the channels, indicating that Glu-509 and Glu-516 are located within or close to the membrane channel. These results suggest that the structure including glutamate residues 509 and 516 is critical for AC membrane translocation and channel forming activity of ACT.  相似文献   

20.
The tissue form of type VII collagen is an antiparallel dimer   总被引:20,自引:0,他引:20  
We recently reported the partial characterization of a new human collagen termed Type VII. This molecule is distinctive among the collagen family in that it contains three identical subunit alpha chains within a triple helical domain 424 nm in length. The molecule contains three identical alpha chains which are genetically distinct from other known collagens. Previous studies indicate that a portion of the limited pepsin-solubilized molecules appears to exist as antiparallel dimers associated by disulfide bonds. In this report, we demonstrate that the major tissue form of Type VII collagen is a dimer, associated by disulfide bonds through a 60-nm overlap of the aminoterminal triple helical ends. Intermolecular disulfide bonds occur only within this overlap region. Interchain disulfide bonds exist in the carboxyl terminal 7% of the molecule and may exist within the overlap region as well. Disulfide bond-stabilized aggregates larger than dimers are not seen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号