首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hepatitis B virus (HBV) causes both acute and chronic infection of the human liver and is associated with the development of liver cirrhosis and hepatocellular carcinoma. UBP43 (USP18) is known as an ISG15-deconjugating enzyme and an inhibitor of type I IFN signaling independent of its enzyme activity. In this study, we examined the role of these two previously identified functions of UBP43 in the innate immune response to HBV viral infection. As an in vivo HBV replication model system, a replication-competent DNA construct was injected hydrodynamically into the tail veins of mice. Although the lack of ISG15 conjugation in the absence of ISG15-activating enzyme UBE1L (UBA7) did not affect the level of HBV replication, the steady-state level of HBV DNA was substantially reduced in the UBP43-deficient mice in comparison to the wild-type controls. In addition, introduction of short hairpin RNA against UBP43 resulted in substantially lower levels of HBV DNA at day 4 postinjection and higher levels of ISG mRNAs. These results suggest that HBV infection is more rapidly cleared if UBP43 expression is reduced. Furthermore, these results illustrate the therapeutic potential of modulating UBP43 levels in treating viral infection, especially for viruses sensitive to IFN signaling.  相似文献   

2.
为了研究短发夹RNA(shRNA)介导的RNA干扰对麻疹病毒体外复制的抑制作用,构建靶向与麻疹病毒复制密切相关的宿主细胞基因Rab9 GTPase基因特异性shRNA表达载体,分别转染Vero-E6和B95a细胞后感染麻疹病毒Edmonston株和野生株。逆转录聚合酶链反应(RT-PCR)和免疫印迹技术(Western-blot)检测转染细胞内Rab9 GTPase基因表达水平;标准蚀斑试验测定麻疹病毒滴度。结果显示转染细胞内Rab9 GTPase mRNA和蛋白质的表达水平同对照组相比明显降低,标准蚀斑试验显示麻疹病毒的复制受到显著抑制,抑制率达到90%以上。结果表明载体介导的shRNAs能通过特异性下调Rab9 GTPase基因表达抑制麻疹病毒体外复制,Rab9 GTPase可能成为治疗麻疹病毒感染的RNA干扰靶。  相似文献   

3.
4.
Hepatitis B virus (HBV) infection is a major health concern with more than two billion individuals currently infected worldwide. Because of the limited effectiveness of existing vaccines and drugs, development of novel antiviral strategies is urgently needed. Heat stress cognate 70 (Hsc70) is an ATP-binding protein of the heat stress protein 70 family. Hsc70 has been found to be required for HBV DNA replication. Here we report, for the first time, that combined siRNAs targeting viral gene and siHsc70 are highly effective in suppressing ongoing HBV expression and replication. We constructed two plasmids (S1 and S2) expressing short hairpin RNAs (shRNAs) targeting surface open reading frame of HBV(HBVS) and one plasmid expressing shRNA targeting Hsc70 (siHsc70), and we used the EGFP-specific siRNA plasmid (siEGFP) as we had previously described. First, we evaluated the gene-silencing efficacy of both shRNAs using an enhanced green fluorescent protein (EGFP) reporter system and flow cytometry in HEK293 and T98G cells. Then, the antiviral potencies of HBV-specific siRNA (siHBV) in combination with siHsc70 in HepG2.2.15 cells were investigated. Moreover, type I IFN and TNF-α induction were measured by quantitative real-time PCR and ELISA. Cotransfection of either S1 or S2 with an EGFP plasmid produced an 80%–90% reduction in EGFP signal relative to the control. This combinational RNAi effectively and specifically inhibited HBV protein, mRNA and HBV DNA, resulting in up to a 3.36 log10 reduction in HBV load in the HepG2.2.15 cell culture supernatants. The combined siRNAs were more potent than siHBV or siHsc70 used separately, and this approach can enhance potency in suppressing ongoing viral gene expression and replication in HepG2.2.15 cells while forestalling escape by mutant HBV. The antiviral synergy of siHBV used in combination with siHsc70 produced no cytotoxicity and induced no production of IFN-α, IFN-β and TNF-α in transfected cells. Our combinational RNAi was sequence-specific, effective against wild-type and mutant drug-resistant HBV strains, without triggering interferon response or producing any side effects. These findings indicate that combinational RNAi has tremendous promise for developing innovative therapy against viral infection.  相似文献   

5.
Two approaches have been developed to construct plasmids that mediate RNA interference to inhibit the replication and expression of HBV in 2.2.15 cell. The overlapping PCR extension and restriction enzyme-digestion were used to generate DNA fragments encoding designed shRNA based on sequences of ORF C of HBV genome. The pU6 derived vectors were constructed to develop plasmid based shRNA delivery systems termed pU6/HBVi. There were significant reductions in the expression of HBsAg and HBeAg between cells transfected with pU6/HBVi and control groups (as to HBsAg: P < 0. 01; and HBeAg: P < 0. 01). Consistently, the HBV DNA copies were reduced from 2.71 x 10(7) to <5 x 10(2) copies with or without pU6/HBVi. These results suggested that shRNA delivery by recombinant plasmids harboring shRNA encoding DNA fragment of interest generated either by overlapping PCR extension or restriction enzyme-digestion, could inhibit expressions of viral proteins and reduce viral replications. The pU6 derived plasmids might be a useful shRNA delivery system in mammalian cells. In addition, we found siRNA based on stealth 2311 was a potent RNAi target of HBV genome.  相似文献   

6.
The Skp2 oncoprotein belongs to the family of F-box proteins that function as substrate recognition factors for SCF (Skp1, cullin, F-box protein) E3 ubiquitin-ligase complexes. Binding of the substrate to the SCFSkp2 complex catalyzes the conjugation of ubiquitin molecules to the bound substrate, resulting in multi-ubiquitination and rapid degradation by the 26 S proteasome. Using Skp2 as bait in a yeast two-hybrid screen, we have identified UBP43 as a novel substrate for Skp2. UBP43 belongs to the family of ubiquitin isopeptidases and specifically cleaves ISG15, a ubiquitin-like molecule that is induced by cellular stresses, such as type 1 interferons (IFN), nephrotoxic damage, and bacterial infection. UBP43 was originally identified as an up-regulated gene in knock-in mice expressing an acute myelogenous leukemia fusion protein, AML1-ETO, as well as in melanoma cell lines treated with IFN-beta. The phenotype of UBP43 knockout mice includes shortened life span, hypersensitivity to IFN, and neuronal damage, suggesting that tight regulation of ISG15 conjugation is critical for normal cellular function. In this study, we demonstrate that UBP43 is ubiquitinated in vivo and accumulates in cells treated with proteasome inhibitors. We also show that Skp2 promotes UBP43 ubiquitination and degradation, resulting in higher levels of ISG15 conjugates. In Skp2-/- mouse cells, levels of UBP43 are consistently up-regulated, whereas levels of ISG15 conjugates are reduced. Our results demonstrate that the SCFSkp2 is involved in controlling UBP43 protein levels and may therefore play an important role in modulating type 1 IFN signaling.  相似文献   

7.
Hepatitis B virus (HBV) infection is a worldwide liver disease and nearly 25% of chronic HBV infections terminate in hepatocellular carcinoma (HCC). Currently, there is no effective therapy to inhibit HBV replication and to eliminate hepatoma cells, making it highly desired to develop novel therapies for these two stages of the HBV-caused detrimental disease. Recently, short hairpin RNA (shRNA) has emerged as a potential therapy for virus-infected disease and cancer. Here, we have generated a shRNA, pGenesil-siHBV4, which effectively inhibits HBV replication in the human hepatoma cell line HepG2.2.15. The inhibitory effects of pGenesil-siHBV4 are manifested by the decrease of both the HBV mRNA level and the protein levels of the secreted HBV surface antigen (HBsAg) and HBV e antigen (HBeAg), and by the reduction of secreted HBV DNA. Using mouse hydrodynamic tail vein injection, we demonstrate that pGenesil-siHBV4 is effective in inhibiting HBV replication in vivo. Because survivin plays a key role in cancer cell escape from apoptosis, we further generated pGenesil-siSurvivin, a survivin-silencing shRNA, and showed its effect of triggering apoptosis of HBV-containing hepatoma cells. To develop targeted shRNA therapy, we have identified that as a specific binder of the asialoglycoprotein receptor (ASGPR), jetPEI-Hepatocyte delivers pGenesil-siHBV4 and pGenesil-siSurvivin specifically to hepatocytes, not other types of cells. Finally, co-transfection of pGenesil-siHBV4 and pGenesil-siSurvivin exerts synergistic effects in inducing hepatoma cell apoptosis, a novel approach to eliminate hepatoma by downregulating survivin via multiple mechanisms. The application of these novel shRNAs with the jetPEI-Hepatocyte targeting strategy demonstrates the proof-of-principle for a promising approach to inhibit HBV replication and eliminate hepatoma cells with high specificity.  相似文献   

8.
ISG15 is an IFN-inducible ubiquitin-like protein and its expression and conjugation to target proteins are dramatically induced upon viral or bacterial infection. We have generated a UBP43 knockout mouse model that is lacking an ISG15-specific isopeptidase to study the biological role of the protein ISGylation system. We report that UBP43-deficient mice are hypersensitive to LPS-induced lethality and that TIR domain-containing adapter inducing IFN-beta --> IFN regulatory factor 3 --> type I IFN is the major axis to induce protein ISGylation and UBP43 expression in macrophages upon LPS treatment. In ubp43(-/-) macrophages, upon LPS treatment we detected increased expression of IFN-stimulated genes, including genes for several cytokines and chemokines involved in the innate immune response. The ubp43(-/-) mice were able to restrict the growth of Salmonella typhimurium more efficiently than wild-type mice. These results clearly demonstrate two aspects of IFN-signaling, a beneficial effect against pathogens but a detriment to the body without strict control.  相似文献   

9.
多种小分子干扰RNA联合抑制乙型肝炎病毒的体外研究   总被引:1,自引:0,他引:1  
小分子干扰RNA(siRNA)能够在哺乳动物细胞中引起包括病毒基因在内的基因沉默。为了研究多种siRNA联合应用在体外抑制乙型肝炎病毒(HBV)复制中的效果,本研究设计了12种针对不同HBV靶点的siRNA,转染可稳定分泌HBV颗粒的HepG22.2.15细胞,并采用了酶联免疫法检测上清液中HBsAg和HBeAg的含量,实时定量PCR法检测细胞中HBV的DNA含量。结果发现这12种分子均能在不同程度上抑制病毒复制。进一步研究表明它们对HBV的抑制作用在一定程度上存在剂量效应和协同作用,单分子siRNA在80nmol/L处对HBsAg和HBeAg的抑制率分别可达到约80%和60%,而多分子siRNA组合在20nmol/L处对HBsAg就能达到90%的抑制率,但对HBeAg表达的抑制率提高不明显。单分子siRNA在80nmol/L处对HBVDNA复制的抑制率可达到90%以上,而多分子siRNA组合在20nmol/L处对DNA含量就能达到约90%的抑制率。本研究的结果为进一步开发新的联合应用多种siRNA治疗HBV的途径打下了基础。  相似文献   

10.
RNA interference might be an efficient antiviral therapy for some obstinate illness. Here, we studied the effects of hepatitis B virus (HBV)-specific 21-nt small interfering RNAs (siRNA) on HBV gene expression and replication in 2.2.15 cells. Seven vectors expressing specific hairpin siRNA driven by the RNA polymerase II-promoter were constructed and transfected into 2.2.15 cells. In the cell strain that can stably express functional siRNA, the HBV surface antigen (HBsAg) and the HBV e antigen (HBeAg) secretion into culture media was inhibited by 86% and 91%, respectively, as shown by an enzyme-linked immunosorbent assay. Immunofluorescence and Western blot indicated similar results. HBV DNA was markedly restrained by 3.28-fold, as assessed by the fluorescent quantitation PCR. Moreover, the HBV mRNA was significantly reduced by 80% based on semiquantitative RT-PCR. In conclusion, the specific siRNA can knock down the HBV gene expression and replication in vitro, and the silence effects have no relationship with interferon response.  相似文献   

11.
The presence of hepatitis B virus (HBV) proteins leads to changes in the cellular gene expression. As a consequence, the cellular signaling processes are influenced by the actions of HBV proteins. It has been shown that HBV nucleocapsid protein and the amino-terminal part of polymerase termed as terminal protein (TP) could inhibit interferon signaling. Further, the global gene expression profiles differ in hepatoma cells with and without HBV gene expression and replication. The expression of interferon (IFN) stimulated genes (ISGs) was differently regulated in cells with HBV replication and could be modulated by antiviral treatments. The HBV TP has been found to modulate the ISG expression and enhance the HBV replication. The modulation of the cellular signaling processes by HBV may have significant implications for pathogenesis.  相似文献   

12.
Activation of the type I interferon (IFN) pathway by small interfering RNA (siRNA) is a major contributor to the off-target effects of RNA interference in mammalian cells. While IFN induction complicates gene function studies, immunostimulation by siRNAs may be beneficial in certain therapeutic settings. Various forms of siRNA, meeting different compositional and structural requirements, have been reported to trigger IFN activation. The consensus is that intracellularly expressed short-hairpin RNAs (shRNAs) are less prone to IFN activation because they are not detected by the cell-surface receptors. In particular, lentiviral vector-mediated transduction of shRNAs has been reported to avoid IFN response. Here we identify a shRNA that potently activates the IFN pathway in human cells in a sequence- and 5′-triphosphate-dependent manner. In addition to suppressing its intended mRNA target, expression of the shRNA results in dimerization of interferon regulatory factor-3, activation of IFN promoters and secretion of biologically active IFNs into the extracellular medium. Delivery by lentiviral vector transduction did not avoid IFN activation by this and another, unrelated shRNA. We also demonstrated that retinoic-acid-inducible gene I, and not melanoma differentiation associated gene 5 or toll-like receptor 3, is the cytoplasmic sensor for intracellularly expressed shRNAs that trigger IFN activation.  相似文献   

13.
The presence of hepatitis B virus (HBV) proteins leads to changes in the cellular gene expression. As a consequence, the cellular signaling processes are influenced by the actions of HBV proteins. It has been shown that HBV nucleocapsid protein and the amino-terminal part of polymerase termed as terminal protein (TP) could inhibit interferon signaling. Further, the global gene expression profiles differ in hepatoma cells with and without HBV gene expression and replication. The expression of interferon (IFN) stimulated genes (ISGs) was differently regulated in cells with HBV replication and could be modulated by antiviral treatments. The HBV TP has been found to modulate the ISG expression and enhance the HBV replication. The modulation of the cellular signaling processes by HBV may have significant implications for pathogenesis.  相似文献   

14.
小分子干扰RNA(siRNA)能够在哺乳动物细胞中引起包括病毒基因在内的基因沉默。为了研究多种siRNA联合应用在体外抑制乙型肝炎病毒(HBV)复制中的效果,本研究设计了12种针对不同HBV靶点的siRNA,转染可稳定分泌HBV颗粒的HepG22.2.15细胞,并采用了酶联免疫法检测上清液中HBsAg和HBeAg的含量,实时定量PCR法检测细胞中HBV的DNA含量。结果发现这12种分子均能在不同程度上抑制病毒复制。进一步研究表明它们对HBV的抑制作用在一定程度上存在剂量效应和协同作用,单分子siRNA在80nmol/L处对HBsAg和HBeAg的抑制率分别可达到约80%和60%,而多分子siRNA组合在20nmol/L处对HBsAg就能达到90%的抑制率,但对HBeAg表达的抑制率提高不明显。单分子siRNA在80nmol/L处对HBVDNA复制的抑制率可达到90%以上,而多分子siRNA组合在20nmol/L处对DNA含量就能达到约90%的抑制率。本研究的结果为进一步开发新的联合应用多种siRNA治疗HBV的途径打下了基础。  相似文献   

15.
目的:探讨体外针对乙型肝炎病毒(HBV)X基因的小干扰RNA(siRNA)对HBV复制和抗原表达的抵制作用。方法:利用siRNA表达框架法设计针对HBVX基因的siRNA,转染HepG2.2.15细胞,RT-PCR半定量检测转染前后X基因的表达;ELISA法测定各组24、48、72hHBsAg和HBeAg的含量;荧光定量PCR检测48h时HBVDNA的变化。结果:制备了HBVX基因的siRNA,转染后24、48和72h,HBVX基因mRNA的量分别减少了57%、78%和40%;siRNA能抑制HBsAg和HbeAg的分泌,抑制高峰在48h,抑制率分别为42%和43%;荧光定量PCR证实HBVDNA的复制亦受到抑制。结论:针对HBVX基因的siRNA在体外具有抑制HBV复制和抗原表达的作用。  相似文献   

16.
观察联合应用小干扰RNA和拉米夫定对HepG2.2.15细胞中HBV抗原表达和复制的抑制作用。构建并转染重组质粒psil-HBV到HepG2.2.15细胞中。转染后的细胞培养基中加入拉米夫定(0.05μm),分别于48、72、96 h收获细胞。用ELISA方法检测HBeAg和HBsAg;HBV DNA水平用实时定量PCR测定;用逆转录PCR检测HBV mRNA水平。96 h后联合应用小干扰RNA和拉米夫定组细胞培养上清中HBeAg和HBsAg抑制率分别为91.8%和82.4%(P<0.05);HBV mRNA表达水平明显降低。HepG2.2.15细胞中联合应用小干扰RNA和拉米夫定对HBV复制的抑制作用比单独应用siRNA或拉米夫定更有效。  相似文献   

17.
本文探讨依靠RNAi技术对猪繁殖与呼吸综合征病毒(PRRSV)增殖的干扰作用。筛选到针对编码PRRS病毒核衣壳蛋白的N基因的两处靶序列作为候选片段,在MARC-145细胞上进行基因干扰实验研究。成功观测到由载体表达的小干扰RNA(siRNA)在MARC-145细胞中对PRRS病毒增殖的抑制现象。通过选取不同时间段对病毒进行TCID50检测,以及对CPE出现时间进行观察和免疫荧光技术,得到RNA干扰对PRRS病毒增殖抑制作用的动态数据。证实在真核细胞水平上,RNA干扰机制可以抑制PRRS病毒的增殖。实验结果表明,依靠载体表达的RNA干扰技术将会对今后针对PRRS病毒的新型疫苗开发提供一个新思路。  相似文献   

18.
19.
The effect of interferon (IFN) on hepatitis B virus (HBV) replication was investigated in a stable expression system, using HepG2 cells transfected with recombinant HBV DNA. IFN was found to cause a marked reduction in the levels of both minus and plus strands of HBV DNA from core particles in the cytoplasm. Neither HBV DNA from virus particles nor the HBV surface antigen in the culture medium primarily underwent change in quantity by treatment with IFN, as was also found for HBV mRNAs and the HBV core antigen/HBV e antigen in the cytoplasm. IFN exerted no influence on HBV DNA synthesis by endogenous DNA polymerase in the core particle fraction. From these findings, it would appear that IFN inhibits HBV replication by blocking some step in the pregenome RNA-primed assembly of core particles.  相似文献   

20.
发夹RNA(shRNA)在哺乳动物RNAi研究中的应用   总被引:1,自引:0,他引:1  
胡燕宾  聂奎 《生物技术》2006,16(2):79-82
在哺乳动物的RNAi研究中,载体表达的shRNA分子比细胞同时表达的siRNA分子的正义链与反义链对靶基因的抑制效率要高。shRNA可由PolⅢ的启动子在体内表达产生,酶切cDNA和shRNA芯片是产生shRNA的最新方法。对shRNA的设计应注意靶基因序列、环序列以及载体酶切位点的选择。诱导表达shRNA的载体系统的表达效率有所差异,质粒载体转染效率尚不稳定,且持续时间短,通过病毒载体介导是目前进行基因敲除最有效的工具。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号