首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The goal of this study was to determine whether acetylcholine evokes endothelium-dependent contraction in mouse arteries and to define the mechanisms involved in regulating this response. Arterial rings isolated from wild-type (WT) and endothelial nitric oxide (NO) synthase knockout (eNOS(-/-)) mice were suspended for isometric tension recording. In abdominal aorta from WT mice contracted with phenylephrine, acetylcholine caused a relaxation that reversed at the concentration of 0.3-3 microM. After inhibition of NO synthase [with N(omega)-nitro-l-arginine methyl ester (l-NAME), 1 mM], acetylcholine (0.1-10 microM) caused contraction under basal conditions or during constriction to phenylephrine, which was abolished by endothelial denudation. This contraction was inhibited by the cyclooxygenase inhibitor indomethacin (1 muM) or by a thromboxane A(2) (TxA(2)) and/or prostaglandin H(2) receptor antagonist SQ-29548 (1 microM) and was associated with endothelium-dependent generation of the TxA(2) metabolite TxB(2.) Also, SQ-29548 (1 microM) abolished the reversal in relaxation evoked by 0.3-3 microM acetylcholine and subsequently enhanced the relaxation to the agonist. The magnitude of the endothelium-dependent contraction to acetylcholine (0.1-10 microM) was similar in aortas from WT mice treated in vitro with l-NAME and from eNOS(-/-) mice. In addition, we found that acetylcholine (10 microM) also caused endothelium-dependent contraction in carotid and femoral arteries of eNOS(-/-) mice. These results suggest that acetylcholine initiates two competing responses in mouse arteries: endothelium-dependent relaxation mediated predominantly by NO and endothelium-dependent contraction mediated most likely by TxA(2).  相似文献   

2.
Majithiya JB  Balaraman R 《Life sciences》2006,78(22):2615-2624
Effect of metformin treatment on blood pressure, endothelial function and oxidative stress in streptozotocin (STZ)-induced diabetes in rats was studied. In vitro effect of metformin on vascular reactivity to various agonist in the presence of metformin in untreated nondiabetic and STZ-diabetic rats were also studied. Sprague-Dawley rats were randomized into nondiabetic and STZ-diabetic groups. Rats were further randomized to receive metformin (150 mg/kg) or vehicle for 4 weeks.Metformin treatment reduced blood pressure without having any significant effect on blood glucose level in STZ-diabetic rats. Enhanced phenylephrine (PE)-induced contraction and impaired acetylcholine (Ach)-induced relaxation in STZ-diabetic rats were restored to normal by metformin treatment. Enhanced Ach-induced relaxation in metformin-treated STZ-diabetic rats was blocked due to pretreatment with 100 μM of -nitro-l-arginine-methyl ester (l-NAME) or 10 μM of methylene blue but not 10 μM of indomethacin. Metformin treatment significantly increased antioxidant enzymes and reduced lipid peroxidation in STZ-diabetic rats. In vitro studies in aortic rings of untreated nondiabetic and STZ-diabetic rats showed that the presence of higher concentration of metformin (1 mM and 10 mM) significantly reduced PE-induced contraction and increased Ach-induced relaxation. Metformin per se relaxed precontracted aortic rings of untreated nondiabetic and STZ-diabetic rats in a dose-dependent manner. Pretreatment with l-NAME or removal of endothelium blocked metformin-induced relaxation at lower concentration (up to 30 μM) but not at higher concentration (above 30 μM). Metformin-induced relaxation was blocked in the presence of 1 mM of 4-aminopyridine, or 1 mM of tetraethylammonium but not in the presence of 100 μM of barium ion or 10 μM of glybenclamide. The restored endothelial function along with direct effect of metformin on aortic rings and reduced oxidative stress contributes to reduced blood pressure in STZ-diabetic rats. From the present study, it can be concluded that metformin administration to STZ-diabetic rats lowers blood pressure, and restores endothelial function.  相似文献   

3.
The effect of vascular stretch on the release of EDRF was studied by measuring tissue cGMP levels of rabbit. Aortic rings of rabbit were quick-frozen in liquid nitrogen during varying resting tensions, and cGMP contents were determined by radio-immunoassay. The tissue cGMP levels significantly elevated with the increase in resting tension in endothelium-intact rings, but not in endothelium-denuded rings. Deprivation of extracellular calcium abolished the stretch-induced elevation of tissue cGMP levels in endothelium-intact segments. These stretch-induced endothelium dependent tissue cGMP elevations were unaffected by Ca2+ channel blockers, nicardipine and diltiazem. Data suggest that vascular stretch may release EDRF via mechanism dependent on extracellular calcium, but probably not through voltage-dependent calcium channel.  相似文献   

4.
Secretoneurin enhances the adhesion and transendothelial migration properties of monocytes and is a part of the peptide family encoded by the secretogranin II gene. The expression of the secretogranin II gene is upregulated in senescent endothelium. The present study was designed to examine the effects of secretoneurin on endothelium-dependent responsiveness. Isometric tension was measured in rings (with or without endothelium) of porcine coronary arteries. Secretoneurin did not induce contraction of quiescent or contracted rings. In preparations contracted by U-46619, relaxation was observed with high concentrations of the peptide. This relaxation was endothelium dependent and reduced by the nitric oxide synthase inhibitor N(ω)-nitro-l-arginine methyl ester (l-NAME). It was abolished when the preparations were incubated with l-NAME in combination with the cyclooxygenase inhibitor indomethacin. The relaxation was not affected by the combination of 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34) and 6,12,19,20,25,26-hexahydro-5,27:13,18:21,24-trietheno-11,7-etheno-7H-dibenzo[b,m][1,5,12,16]tetraazacyclotricosine-5,13-diiumditrifluoroacetate hydrate (UCL 1684), which abrogates endothelium-dependent hyperpolarizations. These results indicate that secretoneurin acutely induces relaxation through the activation of endothelial nitric oxide synthase (eNOS) and cyclooxygenase, with nitric oxide playing the dominant role. Prolonged (24 h) incubation with physiological concentrations of secretoneurin enhanced the relaxations to bradykinin and to the calcium ionophore A-23187, but this difference was not observed in preparations incubated with l-NAME or the calmodulin antagonist calmidazolium. Under these conditions, the relaxation to sodium nitroprusside remained unchanged. Incubation with secretoneurin significantly augmented the expression of eNOS and calmodulin as well as the dimerization of eNOS in cultures of porcine coronary arterial endothelial cells. These observations suggest that secretoneurin not only acutely causes but also, upon prolonged exposure, enhances endothelium-dependent relaxations.  相似文献   

5.
Rings of rabbit aorta that were both incubated in a high concentration of D-glucose and contracted submaximally by phenylephrine showed significantly decreased endothelium-dependent relaxations induced by acetylcholine. The cGMP production of aorta rings was also reduced. Treatment with endomorphins (1-1000 nmol/L) restored acetylcholine-induced relaxations of aorta rings incubated in high glucose concentrations and increased the cGMP synthesis. Moreover, this effect of endomorphins on endothelium was antagonized by naloxone, and the increase in the production of cGMP was also blocked.  相似文献   

6.
The internal mammary artery (IMA) is currently the preferred conduit for myocardial revascularization. However, perioperative vasospasm and a hypoperfusion state during maximal exercise may limit its use as a bypass graft. The mechanism of spasm has not been clearly defined. Since beta-adrenoceptor activation plays a major role in vasorelaxation, the present study was carried out to investigate the beta-adrenoceptor responsiveness of human IMA smooth muscle. Isoproterenol produced a concentration-dependent relaxation in endothelium-denuded IMA segments, precontracted with phenylephrine (maximal relaxation 46.33+/-5.45%). Atenolol (10(-6)M) and propranolol (2x10(-7)M) inhibited isoproterenol-induced relaxation. While atenolol produced partial inhibition, propranolol caused a complete inhibition in a majority of the segments and a partial inhibition in a minority. BRL 37344, a selective beta 3-adrenoceptor agonist, produced a concentration-dependent relaxation in phenylephrine-precontracted rings of endothelium-denuded IMA (maximal relaxation 40.35+/-4.07%). Cyanopindolol, a beta-adrenoceptor partial agonist, produced a marked relaxation (58.65+/-6.2%) in endothelium-denuded IMA rings, precontracted with phenylephrine. Cyanopindolol-induced relaxation was resistant to blockade by propranolol (2x10(-7)M). Spontaneous contractions of IMA rings were also observed in some cases that were inhibited by isoproterenol and BRL 37344. This observation implies the important role of beta-adrenoceptor activation in prevention of human IMA spasm. The results obtained in present study indicate that human IMA smooth muscle possesses an atypical beta-adrenoceptor together with beta1- and beta2-adrenoceptors. Regarding the relaxation induced in IMA rings by adding BRL 37344, the possible identical entities of IMA atypical beta-adrenoceptors and beta 3-adrenoceptors are suggested.  相似文献   

7.
The present study was designed to evaluate endothelium-dependent relaxation to the calcium ionophore A-23187 in isolated canine saphenous veins. Isometric force recordings and cGMP measurements using isolated veins with and without valves were performed. During contractions to U-46619 (3 x 10(-7) M), endothelium-dependent relaxations to A-23187 (10(-9)-10(-6) M) were significantly reduced in rings with valves compared with rings without valves. Endothelial removal abolished A-23187-induced relaxation. Relaxations to forskolin (FK; 10(-8)-10(-5) M) and diethylaminodiazen-1-ium-1,2-dionate; DEA-NONOate, 10(-9)-10(-5) M) were identical in rings with and without valves. In rings without valves, a nitric oxide synthase inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME; 3 x 10(-4) M), and a cyclooxygenase inhibitor, indomethacin (10(-5) M), partially reduced A-23187-induced relaxation. However, in rings with valves, L-NAME had no effect, whereas indomethacin abolished the relaxation to A-23187. A selective soluble guanylate cyclase inhibitor, 1H-[1,2,4]-oxadiazolo [4,3-a]quinoxalin-1-one (ODQ; 3x10(-6) M), had no effect on the relaxation to A-23187 in either group. In contrast, ODQ abolished the A-23187-induced increase in cGMP levels, suggesting that relaxation to nitric oxide released by A-23187 is independent of increases in cGMP. These results demonstrate that endothelium-dependent relaxation to A-23187 is reduced in regions of veins with valves compared with relaxation in the nonvalvular venous wall. Lower production of nitric oxide in endothelial cells of valvular segments appears to be a mechanism responsible for reduced reactivity to A-23187.  相似文献   

8.
Relaxin mediates renal and mesenteric vascular adaptations to pregnancy by increasing endothelium-dependent vasodilation and compliance and decreasing myogenic reactivity. Diet-induced overweight and obesity are associated with impaired endothelial dysfunction and vascular remodeling leading to a reduction in arterial diameter. In this study, we tested the hypothesis that local vascular responses to relaxin are impaired in diet-induced overweight female rats on a high-fat cafeteria-style diet for 9 wk. Rats were chronically infused with either relaxin or placebo for 5 days, and vascular responses were measured in isolated mesenteric arteries and the perfused kidney. Diet-induced overweight significantly increased sensitivity to phenylephrine (by 17%) and vessel wall thickness, and reduced renal perfusion flow (RPFF; by 16%), but did not affect flow-mediated vasodilation, myogenic reactivity, and vascular compliance. In the normal weight rats, relaxin treatment significantly enhanced flow-mediated vasodilation (2.67-fold), decreased myogenic reactivity, and reduced sensitivity to phenylephrine (by 28%), but had no effect on compliance or RPFF. NO blockade by l-NAME diminished most relaxin-mediated effects. In diet-induced overweight rats, the vasodilator effects of relaxin were markedly reduced for flow-mediated vasodilation, sensitivity to phenylephrine, and myogenic response compared with the normal diet rats, mostly persistent under l-NAME. Our data demonstrate that some of the vasodilator responses to in vivo relaxin administration are impaired in isolated mesenteric arteries and the perfused kidney in diet-induced overweight female rats. This does not result from a decrease in Rxfp1 (relaxin family peptide receptor) expression but is likely to result from downstream disruption to endothelial-dependent mechanisms in diet-induced overweight animals.  相似文献   

9.
Experiments were undertaken to investigate the existence of inhibitory nonadrenergic, noncholinergic (i-NANC) nerve activity by using in vitro functional and immunohistochemical techniques in rat main pulmonary arterial rings. Vessels precontracted with phenylephrine (3 microM) relaxed in response to electrical field stimulation (EFS) (50 V, 0.2 ms, 0.1-10 Hz for 5 s) in the presence of atropine (1 microM) and guanethidine (1 microM). Tetrodotoxin (0.3 microM) abolished this response, indicating that it is neuronal in origin. l-NAME (30 microM), methylene blue (10 microM), and removal of endothelium significantly reduced the EFS-induced relaxations. The inhibitory action of l-NAME was completely reversed by l-arginine (1 mM) but not by d-arginine (1 mM). Moreover l-arginine alone potentiated the magnitude of the relaxations elicited by EFS. On the other hand, immunohistochemical work clearly demonstrated the existence of neuronal nitric oxide synthase in the pulmonary artery vessel wall. All these results are consistent with the suggestion that nitric oxide is the likely mediator of this vasodilatation. However, the incomplete blockade of the responses by l-NAME gives evidence of an additional inhibitory NANC neurotransmitter(s) mediating the residual relaxation, which requires further experiments to clarify its nature.  相似文献   

10.
三羟异黄酮对离体家兔股动脉张力的影响及其机制   总被引:9,自引:0,他引:9  
Ji ES  Li Q  He RR 《生理学报》2002,54(5):422-426
植物雌激素三羟异黄酮(genistein,GST)使离体的预先收缩的动脉舒张,其舒张的机制仍然不完全清楚。本研究旨在观察植物雌激素三羟异黄酮对离体家兔股动脉的作用及其机制,结果如下:(1)在苯肾上腺素(PE,1umol/L)引起血管收缩的基础上,GST(10-40umol/L)剂量依赖性地舒张离体家兔股动脉;(2)去除血管内皮显著地抑制GST引起的舒张;(3)在内皮完整情况下,预先应用NOS抑制剂L-NAME(100umol/L)也可显著地抑制GST引起的舒张,提示GST的舒血管作用是内皮依赖的,并与一氧化氮有关;(4)在内皮完整的扣去除内皮的股动脉环,预先应用L-型钙通道激动剂Bay M8644(0.5umol/L)也显著抑制由GST引起的血管舒张,以上结果表明,GST引起的兔股动脉的舒张是部分内皮依赖的,且与拮抗钙有关。  相似文献   

11.
Lo YC  Tsou HH  Lin RJ  Wu DC  Wu BN  Lin YT  Chen IJ 《Life sciences》2005,76(8):931-944
The vasorelaxation activities of MCPT, a newly synthesized xanthine derivative, were investigated in this study. In phenylephrine (PE)-precontracted rat aortic rings with intact endothelium, MCPT caused a concentration-dependent relaxation, which was inhibited by endothelium removed. This relaxation was also reduced by the presence of nitric oxide synthase inhibitor Nomega-nitro-L-arginine methylester (L-NAME, 100 microM), soluble guanylyl cyclase (sGC) inhibitors methylene blue (10 microM), 1 H-[1,2,4] oxidazolol [4,3-a] quinoxalin-1-one (ODQ, 1 microM), adenylyl cyclase (AC) blocker SQ 22536 (100 microM), ATP-sensitive K+ channel blocker (KATP) glibenclamide (1 microM), a Ca2+ activated K+ channels blocker tetraethylammonium (TEA, 10 mM) and a voltage-dependent potassium channels blocker 4-aminopyridine (4-AP, 100 microM). The vasorelaxant effects of MCPT together with IBMX (0.5 microM) had an additive action. In PE-preconstricted endothelium-denuded aortic rings, the vasorelaxant effects of MCPT were attenuated by pretreatments with glibenclamide (1 microM), SQ 22536 (100 microM) or ODQ (1 microM), respectively. MCPT enhanced cAMP-dependent vasodilator isoprenaline- and NO donor/cGMP-dependent vasodilator sodium nitroprusside-induced relaxation activities in endothelium-denuded aortic rings. In A-10 cell and washed human platelets, MCPT induced a concentration-dependent increase in intracellular cyclic GMP and cyclic AMP levels. In phosphodiesterase assay, MCPT displayed inhibition effects on PDE 3, PDE 4 and PDE 5. The inhibition % were 52 +/- 3.9, 32 +/- 2.6 and 8 +/- 1.1 respectively. The Western blot analysis on HUVEC indicated that MCPT increased the expression of eNOS. It is concluded that the vasorelaxation by MCPT may be mediated by the inhibition of phosphodiesterase, stimulation of NO/sGC/ cGMP and AC/cAMP pathways, and the opening of K+ channels.  相似文献   

12.
The purpose of this study was to analyse the influence of experimental diabetes on vascular response of rabbit carotid artery to acetylcholine (Ach). We compared the Ach-induced relaxant response of isolated arterial segments obtained from both control and diabetic animals. To assess the influence of the endothelium, this cell layer was mechanically removed in some of the arterial segments ("rubbed arteries") from each experimental group. Ach induced a concentration-related endothelium-mediated relaxation of carotid artery from control rabbits that was significantly higher with respect to that obtained in diabetic animals. Pre-treatment with N(G)-nitro-L-arginine (L-NA) induced a concentration-dependent inhibition of relaxant response to Ach, which was significantly higher in carotid arteries isolated from diabetic rabbits. Incubation of rubbed arteries with L-NA almost abolished the relaxant response to Ach in arterial segments from both control and diabetic animals. Indomethacin potentiated Ach-induced response of carotid arteries from control rabbits, without modifying that obtained in those from diabetic animals. Aminoguanidine did not significantly inhibit the relaxant action of Ach in arterial segments from either control or diabetic rabbits. These results suggest that diabetes impairs endothelial modulatory mechanisms of vascular response of rabbit carotid artery to Ach. This endothelial dysfunction is neither related with a lower release of nitric oxide (NO) or prostacyclin. Diabetes impairs the production of some arachidonic acid vasoconstrictor derivative. There has been observed an increased modulatory activity of NO, but this is not related with the expression of an inducible isoform of NO synthase.  相似文献   

13.
Tetrahydrobiopterin (BH4) is an essential co-factor for endothelial nitric oxide synthase enzymatic activity. GTP cyclohydrolase I (GTPCH I) is the rate-limiting enzyme in BH4 synthesis. This study set out to test the hypothesis that in vivo gene transfer of GTPCH I to endothelial cells could increase bioavailability of BH4, enhance biosynthesis of nitric oxide and thereby enhance endothelium-dependent relaxations mediated by nitric oxide. In vivo gene transfer was carried out by adenovirus (Ad)-mediated delivery into rabbit carotid arteries. Each artery was transduced by 20-min intraluminal incubation of 10(9) plaque-forming units of Ad-encoding GTPCH I (AdGTPCH) or beta-galactosidase as a control. The rabbits were euthanized 72 h later, and vasomotor function of isolated arteries was assessed by isometric force recording. GTPCH I enzymatic activity, BH4, and oxidized biopterin levels were detected with the use of HPLC, and cGMP was measured with the use of radioimmunoassay. Expression of recombinant proteins was detected predominantly in endothelial cells. Both GTPCH I activity and BH4 levels were increased in arteries transduced with AdGTPCH. However, contraction to phenylephrine (10(-5) to 10(-9) M), endothelium-dependent relaxation to acetylcholine (10(-5) to 10(-9) M) and cGMP levels were not significantly affected by increased expression of GTPCH I. Our results suggest that expression of GTPCH I in vascular endothelium in vivo increases intracellular concentration of BH4. However, under physiological conditions, it appears that this increase does not affect nitric oxide production in endothelial cells of the carotid artery.  相似文献   

14.
This study investigated the potential effects of adrenaline and noradrenaline on the external carotid blood flow of vagosympathectomised dogs and the receptor mechanisms involved. One minute (1 min) intracarotid infusions of adrenaline and noradrenaline produced dose-dependent decreases in external carotid blood flow without changes in blood pressure or heart rate. These responses, which remained unaffected after saline, were: (i) mimicked by the adrenoceptor agonists, phenylephrine (alpha1) and BHT933 (6-Ethyl-5,6,7,8-tetrahydro-4H-oxazolo [4,5-d] azepin-2-amine dihydrochloride; alpha2); (ii) abolished after phentolamine (2000 microg/kg) unmasking a vasodilator component (subsequently blocked by propranolol; 1000 microg/kg); and (iii) partly blocked by rauwolscine (30 and 100 microg/kg), and subsequently abolished by prazosin (100 microg/kg). Accordingly, rauwolscine (100 and 300 microg/kg) markedly blocked the responses to BHT933 without affecting those to phenylephrine; likewise, prazosin (100 microg/kg) markedly blocked the responses to phenylephrine without affecting those to BHT933. These results show that both alpha1- and alpha2-adrenoceptors mediate vasoconstriction within the canine external carotid circulation. Moreover, after blockade of alpha1/alpha2-adrenoceptors, both adrenaline and noradrenaline exhibit a beta-adrenoceptor-mediated vasodilator component.  相似文献   

15.
We tested two hypotheses: 1) that the effects of hypercholesterolemia on endothelial function in femoral arteries exceed those reported in brachial arteries and 2) that exercise (Ex) training enhances endothelium-dependent dilation and improves femoral artery blood flow (FABF) in hypercholesterolemic pigs. Adult male pigs were fed a normal fat (NF) or high-fat/cholesterol (HF) diet for 20 wk. Four weeks after the diet was initiated, pigs were Ex trained or remained sedentary (Sed) for 16 wk, thus yielding four groups: NF-Sed, NF-Ex, HF-Sed, and HF-Ex. Endothelium-dependent vasodilator responses were assessed in vivo by measuring changes in FABF after intra-arterial injections of ADP and bradykinin (BK). Endothelium-dependent and -independent relaxation was assessed in vitro by measuring relaxation responses to BK and sodium nitroprusside (SNP). FABF increased in response to ADP and BK in all groups. FABF responses to ADP and BK were not impaired by HF but were improved by Ex in HF pigs. BK- and SNP-induced relaxation of femoral artery rings was not altered by HF or Ex. To determine whether the mechanism(s) for vasorelaxation of femoral arteries was altered by HF or Ex, BK-induced relaxation was assessed in vitro in the absence or presence of N(G)-nitro-l-arginine methyl ester [l-NAME; to inhibit nitric oxide synthase (NOS)], indomethacin (Indo; to inhibit cyclooxygenase), or l-NAME + Indo. BK-induced relaxation was inhibited by l-NAME and l-NAME + Indo in all groups of femoral arteries. Ex increased the NOS-dependent component of endothelium-dependent relaxation in NF (not HF) arteries. Indo did not inhibit BK-induced relaxation. Collectively, these results indicate that hypercholesterolemia does not alter endothelial function in femoral arteries and that Ex training improves FABF responses to ADP and BK; however, the improvement cannot be attributed to enhanced endothelial function in HF femoral arteries. These data suggest that Ex-induced improvements in FABF in HF arteries are mediated by vascular adaptations in arteries/arterioles downstream from the femoral artery.  相似文献   

16.
17.
The present work examined the effect of chronic oral administration of quercetin, a flavonoid antioxidant, on blood glucose, vascular function and oxidative stress in STZ-induced diabetic rats. Male Wistar-Kyoto (WKY) rats were randomized into euglycemic, untreated diabetic, vehicle (1% w/v methylcellulose)-treated diabetic, which served as control, or quercetin (10mgkg(-1) body weight)-treated diabetic groups and treated orally for 6 weeks. Quercetin treatment reduced blood glucose level in diabetic rats. Impaired relaxations to endothelium-dependent vasodilator acetylcholine (ACh) and enhanced vasoconstriction responses to alpha(1)-adrenoceptor agonist phenylephrine (PE) in diabetic rat aortic rings were restored to euglycemic levels by quercetin treatment. Pretreatment with N(omega)-nitro-l-arginine methyl ester (l-NAME, 10microM) or methylene blue (10microM) completely blocked but indomethacin (10microM) did not affect relaxations to ACh in aortic rings from vehicle- or quercetin-treated diabetic rats. PE-induced vasoconstriction with an essentially similar magnitude in vehicle- or quercetin-treated diabetic rat aortic rings pretreated with l-NAME (10microM) plus indomethacin (10microM). Quercetin treatment reduced plasma malonaldehyde (MDA) plus 4-hydroxyalkenals (4-HNE) content as well as increased superoxide dismutase activity and total antioxidant capacity in diabetic rats. From the present study, it can be concluded that quercetin administration to diabetic rats restores vascular function, probably through enhancement in the bioavailability of endothelium-derived nitric oxide coupled to reduced blood glucose level and oxidative stress.  相似文献   

18.
The possible roles of endothelial intracellular Ca(2+) concentration ([Ca(2+)](i)), nitric oxide (NO), arachidonic acid (AA) metabolites, and Ca(2+)-activated K(+) (K(Ca)) channels in adrenergically induced vasomotion were examined in pressurized rat mesenteric arteries. Removal of the endothelium or buffering [Ca(2+)](i) selectively in endothelial cells with BAPTA eliminated vasomotion in response to phenylephrine (PE; 10.0 microM). In arteries with intact endothelium, inhibition of NO synthase with N(omega)-nitro-l-arginine methyl ester (l-NAME; 300.0 microM) or N(omega)-nitro-l-arginine (l-NNA; 300.0 microM) did not eliminate vasomotion. Neither inhibition of cGMP formation with 10.0 microM 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) nor inhibition of prostanoid formation (10.0 microM indomethacin) eliminated vasomotion. Similarly, inhibition of AA cytochrome P-450 metabolism with an intraluminal application of 17-octadecynoic acid (17-ODYA) or 6-(2-propargyloxyphenyl)hexanoic acid (PPOH) failed to eliminate vasomotion. In contrast, intraluminal application of the K(Ca) channel blockers apamin (250.0 nM) and charybdotoxin (100.0 nM), together, abolished vasomotion and changed synchronous Ca(2+) oscillations in smooth muscle cells to asynchronous propagating Ca(2+) waves. Apamin, charybdotoxin, or iberiotoxin (100.0 nM) alone did not eliminate vasomotion, nor did the combination of apamin and iberiotoxin. The results show that adrenergic vasomotion in rat mesenteric arteries is critically dependent on Ca(2+)-activated K(+) channels in endothelial cells. Because these channels (small- and intermediate-conductance K(Ca) channels) are a recognized component of EDHF, we conclude therefore that EDHF is essential for the development of adrenergically induced vasomotion.  相似文献   

19.
Measurements of isometric tensions of rat aortic rings revealed the fact that when aortic rings with intact endothelium were precontracted (preconditioned) for 20 min by the alpha1-adrenergic agonist phenylephrine (10 microM), the tonic level of subsequent contraction by the same agonist was depressed and/or declined regardless of the presence or absence of endothelium during the second contraction. The removal of endothelium before preconditioning showed no such phenomenon. With the use of specific blockers, involvements of adenosine or of ATP-sensitive K+ (K(ATP)) channels during preconditioning or second contraction, respectively, were evaluated. Actions of nitric oxide synthase, cyclooxygenase, P(2) ATP purinoceptors, or K(ATP) channels during preconditioning appear not to be involved. Exogenous adenosine (up to 100 microM) without endothelium could mimic the preconditioning; however, contractile preconditioning by phenylephrine, mechanical stretching, or activation of protein kinase C needed to be done. The release of adenosine and adenine nucleotides from aortic rings was augmented by phenylephrine or by mechanical stretching of the rings with intact endothelium. Our results suggest that during vasocontraction, endothelium-derived adenosine acquires an ability to protect vascular tone against subsequent repeated contractions by mediating a delayed, possibly indirect, opening of K(ATP) channels.  相似文献   

20.
It has been suggested that low concentrations of angiotensin II cause vasoconstriction whereas high concentrations evoke vasodilation. Thus, this work aimed to functionally characterize the mechanisms underlying the relaxation induced by angiotensin II at high concentrations in isolated rat carotid rings. Experiments using standard muscle bath procedures showed that angiotensin II (0.01-3 μM) concentration dependently induces relaxation of phenylephrine-pre-contracted rings. No differences between intact or denuded endothelium were found. The angiotensin II-induced relaxation was strongly inhibited by saralasin, the non-selective antagonist of angiotensin II receptors but not by the selective antagonists of AT1 and AT2 receptors, losartan and PD123319, respectively. However, A-779, a selective angiotensin-(1-7) receptor antagonist, reduced the relaxation induced by angiotensin II. Administration of exogenous angiotensin-(1-7) on pre-contracted tissues produced concentration-dependent relaxation, which was also inhibited by A-779. HOE-140, the selective antagonist of the bradykinin in B2 receptor did not produce any significant effect on angiotensin II-induced relaxation. Pre-incubation of denuded-rings with N G-nitro-l-arginine methyl ester (l-NAME) or 1H-[1,2,4] Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) reduced angiotensin II-induced relaxation. On the other hand, neither indomethacin nor tetraethylammonium (TEA) produced any significant effect. The major new finding of this work is that high concentrations of angiotensin II induce relaxation of the rat carotid via activation of the NO-cGMP pathway through a mechanism that seems to be partially dependent on activation of angiotensin-(1-7) receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号