首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Insulin resistance in skeletal muscle is present in humans with type 2 diabetes (noninsulin-dependent diabetes mellitus) and obesity and in rodents with these disorders. Malonyl CoA is a regulator of carnitine palmitoyl transferase I (CPT I), the enzyme that controls the transfer of long chain fatty acyl CoA into mitochondria where it is oxidized. In rat skeletal muscle, the formation of malonyl CoA is regulated acutely (in minutes) by changes in the activity of acetyl CoA carboxylase (ACC), the enzyme that catalyzes malonyl CoA synthesis. Acc activity can be regulated by changes in the concentration of citrate which is both an allosteric activator of Acc and a source of its precursor, cytosolic acetyl CoA. Increases in cytosolic citrate leading to an increase in the concentration of malonyl CoA occur when muscle is presented with insulin and glucose, or when it is made inactive by denervation. In contrast, exercise lowers the concentration of malonyl CoA, by activating an AMP activated protein kinase (AMPK), which phosphorylates and inhibits ACC. Recently we have shown that the activity of malonyl CoA decarboxylase (MCD), an enzyme that degrades malonyl CoA, is also regulated by phosphorylation. The concentration of malonyl CoA in liver and muscle in certain circumstances correlates inversely with changes in MCD activity. This review will describe the current literature on the regulation of malonyl CoA/AMPK mechanism and its physiological function.  相似文献   

2.
Thiazolidinediones have been shown to activate AMP-activated protein kinase activity in cultured cells. Whether they have a similar effect in vivo and if so whether it is physiologically relevant is not known. To assess these questions, we examined the effects of pioglitazone, administered orally to intact rats, on AMPK phosphorylation (AMPK-P) (a measure of its activation) and acetyl CoA carboxylase (ACC) activity and malonyl CoA concentration in rat liver and adipose tissue. In the first study, measurements were made in the Dahl-salt-sensitive rat (Dahl-S), a strain of Sprague-Dawley rat with endogenous hypertriglyceridemia and high levels of malonyl CoA that are restored to control values by pioglitazone. Treatment with pioglitazone (20mg/kg bw/day for 3 weeks) did not significantly increase either P-AMPK or P-ACC (which varies inversely with ACC activity) in control rats. However, in the Dahl-S rats values for AMPK-P and ACC-P were 50% lower than in control rats and were doubled by pioglitazone treatment. In a second study, the effects of two weeks treatment with pioglitazone (3mg/kg bw/day administered orally) were evaluated in Wistar rats. Under basal conditions (no manipulation of the animals), pioglitazone increased AMPK phosphorylation by twofold and decreased ACC activity and the concentration of malonyl CoA by 50% in liver. Following a euglycemic-hyperinsulinemic clamp (6h), 50% decreases in AMPK and ACC phosphorylation (indicating an increase in its activity) and comparable increases in malonyl CoA concentration were observed in liver and adipose tissue. In both tissues, pre-treatment with pioglitazone prevented these changes. Where studied (in Wistar rats under basal conditions) treatment with pioglitazone decreased the concentration of ATP by 1/3 and increased the concentration of ADP and AMP in liver. The results indicate that treatment with pioglitazone can increase AMPK activity in rat liver and adipose tissue in a variety of circumstances. They also suggest that this activation of AMPK may be mediated by a change in cellular energy state. Whether these effects of pioglitazone contribute to its insulin-sensitizing and other actions in vivo remains to be determined.  相似文献   

3.
The objects of structural studies on biotin-enzymes were acetyl CoA-carboxylase and pyruvate carboxylase of Saccharomyces cerevisiae and beta-methylcrotonyl CoA-carboxylase and acetyl CoA-carboxylase of Achromobacter IV S. It was found that these enzymes can be arranged in three groups. In the first group, as represented by acetyl CoA-carboxylase of Achromobacter, the active enzyme could be resolved in three types of functional components: (1) the biotin-carboxyl carrier protein, (2) the biotin carboxylase, and (3) the carboxyl transferase. In the second group, as represented by beta-methylcrotonyl CoA-carboxylase from Achromobacter only two types of polypeptides are present. The one carries the biotin carboxylase activity together with the biotin-carboxyl-carrier protein, the other one carries the carboxyl transferase activity. In this third group, as represented by the two enzymes of yeast, all three catalytic functions are incorporated in one multifunctional polypeptide chain. The evolution of the different enzymes is discussed. The animal tissues acetyl CoA-carboxylase is under metabolic control, as known from previous studies. It thus has to be expected that the levels of malonyl CoA in livers of rats in all states of depressed fatty acid synthesis are much lower than under normal conditions because the carboxylation of acetyl CoA is strongly reduced and cannot keep pace with the consumption of malonyl CoA by fatty acid synthetase. A new highly sensitive assay method for malonyl CoA was developed which uses tritiated NADPH and measures the incorporation of radioactivity into the fatty acids formed from malonyl CoA in the presence of purified fatty acid synthetase. The application of this method to liver extracts showed that the level of malonyl CoA which amounts to about 7 nmoles per gram of wet liver drops to less than 10% within a starvation period of 24 hr and even further if the starvation period is extended to 48 hr. A low malonyl CoA concentration is also found in the alloxan diabetic animals and in animals being fed a fatty diet after starvation. On the other hand, feeding a carbohydrate rich diet leads to malonyl CoA levels surpassing the levels found after feeding a balanced diet. These observations reconfirm the concept that fatty acid synthesis is principally regulated by the carboxylation of acetyl CoA.  相似文献   

4.
The adenosine monophosphate-activated protein kinase (AMPK) is a metabolic sensor of energy metabolism at the cellular as well as whole-body level. It is activated by low energy status that triggers a switch from ATP-consuming anabolic pathways to ATP-producing catabolic pathways. AMPK is involved in a wide range of biological activities that normalizes lipid, glucose, and energy imbalances. These pathways are dysregulated in patients with metabolic syndrome (MetS), which represents a clustering of major cardiovascular risk factors including diabetes, lipid abnormalities, and energy imbalances. Clearly, there is an unmet medical need to find a molecule to treat alarming number of patients with MetS. AMPK, with multifaceted activities in various tissues, has emerged as an attractive drug target to manage lipid and glucose abnormalities and maintain energy homeostasis. A number of AMPK activators have been tested in preclinical models, but many of them have yet to reach to the clinic. This review focuses on the structure-function and role of AMPK in lipid, carbohydrate, and energy metabolism. The mode of action of AMPK activators, mechanism of anti-inflammatory activities, and preclinical and clinical findings as well as future prospects of AMPK as a drug target in treating cardio-metabolic disease are discussed.  相似文献   

5.
AMP-activated protein kinase (AMPK) is a key sensor and regulator of intracellular and whole-body energy metabolism. We have identified a thienopyridone family of AMPK activators. A-769662 directly stimulated partially purified rat liver AMPK (EC50 = 0.8 μM) and inhibited fatty acid synthesis in primary rat hepatocytes (IC50 = 3.2 μM). Short-term treatment of normal Sprague Dawley rats with A-769662 decreased liver malonyl CoA levels and the respiratory exchange ratio, VCO2/VO2, indicating an increased rate of whole-body fatty acid oxidation. Treatment of ob/ob mice with 30 mg/kg b.i.d. A-769662 decreased hepatic expression of PEPCK, G6Pase, and FAS, lowered plasma glucose by 40%, reduced body weight gain and significantly decreased both plasma and liver triglyceride levels. These results demonstrate that small molecule-mediated activation of AMPK in vivo is feasible and represents a promising approach for the treatment of type 2 diabetes and the metabolic syndrome.  相似文献   

6.
Unger RH 《Cell》2004,117(2):145-146
New evidence suggests that leptin and other anorexigenic agents reduce appetite by inactivating hypothalamic AMP-activated protein kinase (AMPK), thereby increasing malonyl CoA levels. This preview examines AMP biology and its role in malonyl-CoA generation and attempts to integrate its central actions with its peripheral antilipotoxic actions within the context of leptin physiology in obesity.  相似文献   

7.
8.
Subcellular fractions of aorta of squirrel monkey (Saimiri sciureus) were examined for their ability to synthesize and elongate fatty acids. High-speed supernate (HSS) incorporated substantial quantities of malonyl CoA into fatty acids while acetyl CoA was much less effectively utilized. Acetyl-CoA carboxylase activity exceeded the amount of acetyl CoA incorporated into fatty acids and thus does not account for the low incorporation of this substrate. Microsomes used malonyl CoA and acetyl CoA equally well; mitochondria incorporated either acetyl CoA or acetate. The amounts of substrate incorporated into fatty acids (m micro moles/mg of protein per hr) were 2.3 for HSS, 1.2 for microsomes, and 0.9 for mitochondria. The synthesized fatty acids were separated by gas-liquid chromatography, radioassayed, extracted from the scintillation fluid, and decarboxylated. HSS completely synthesized palmitic and stearic acids from malonyl CoA. Microsomes and mitochondria utilized acetyl CoA to elongate endogenous fatty acids and gave mainly palmitic, stearic, and C(18) and C(20) monoenoic acids, with lesser amounts of other saturated and unsaturated fatty acids. A significant quantity of malonyl CoA was utilized by microsomes to yield a fatty acid tentatively identified as docosapentaenoic. Radioactive fatty acids are incorporated into various lipid classes by the particulate preparations. These studies demonstrate that aortic tissue in a nonhuman primate is able to carry out several processes of fatty acid metabolism and that the aortic synthesis and elongation of fatty acids may play an important role in providing fatty acids for incorporation into aortic lipids.  相似文献   

9.
There seems to be an association between increased concentrations of malonyl coenzyme A (malonyl CoA) in skeletal muscle and diabetes and/or insulin resistance. The purpose of the current study was to test the hypothesis that treatments designed to manipulate malonyl CoA concentrations would affect insulin-stimulated glucose transport in cultured C2C12 myotubes. We assessed glucose transport after polyamine-mediated delivery of malonyl CoA to myotubes, after incubation with dichloroacetate (which reportedly increases malonyl CoA levels), or after exposure of myotubes to 2-bromopalmitate, a carnitine palmitoyl transferase I inhibitor. All three of these treatments prevented stimulation of glucose transport by insulin. We also assayed glucose transport after 30 min of inhibition of acetyl coenzyme A carboxylase (ACC), the enzyme which catalyzes the production of malonyl CoA. Three unrelated ACC inhibitors (diclofop, clethodim, and Pfizer CP-640186) all enhanced insulin-stimulated glucose transport. However, none of the treatments designed to manipulate malonyl CoA concentrations altered markers of proximal insulin signaling through Akt. The findings support the hypothesis that acute changes in malonyl CoA concentrations affect insulin action in muscle cells but suggest that the effects do not involve alterations in proximal insulin signaling.  相似文献   

10.
The concentration of fatty acids in the blood or perfusate is a major determinant of the extent of myocardial fatty acid oxidation. Increasing fatty acid supply in adult rat increases myocardial fatty acid oxidation. Plasma levels of fatty acids increase post-surgery in infants undergoing cardiac bypass operation to correct congenital heart defects. How a newborn heart responds to increased fatty acid supply remains to be determined. In this study, we examined whether the tissue levels of malonyl CoA decrease to relieve the inhibition on carnitine palmitoyltransferase (CPT) I when the myocardium is exposed to higher concentrations of long-chain fatty acids in newborn rabbit heart. We then tested the contribution of the enzymes that regulate tissue levels of malonyl CoA, acetyl CoA carboxylase (ACC), and malonyl CoA decarboxylase (MCD). Our results showed that increasing fatty acid supply from 0.4 mmol/L (physiological) to 1.2 mmol/L (pathological) resulted in an increase in cardiac fatty acid oxidation rates and this was accompanied by a decrease in tissue malonyl CoA levels. The decrease in malonyl CoA was not related to any alterations in total and phosphorylated acetyl CoA carboxylase protein or the activities of acetyl CoA carboxylase and malonyl CoA decarboxylase. Our results suggest that the regulatory role of malonyl CoA remained when the hearts were exposed to high levels of fatty acids.  相似文献   

11.
Acetyl CoA carboxylase (ACC) catalyzes the carboxylation of acetyl CoA to form malonyl CoA. In skeletal muscle and heart, malonyl CoA functions to regulate lipid oxidation by inhibition of carnitine palmitoyltransferase-1, an enzyme which controls the entry of long chain fatty acids into mitochondria. We have found that several members of the cyclohexanedione class of herbicides are competitive inhibitors of rat heart ACC. These compounds constitute valuable reagents for drug development and the study of ACCbeta, a validated anti-obesity target.  相似文献   

12.
5'AMP-activated protein kinase (AMPK) is a serine/threonine kinase that acts as a fuel gauge in regulating energy metabolism. It restores cellular ATP levels by switching on catabolic pathways and switching off anabolic pathways. Some evidence indicates that AMPK could be also implicated in reproductive functions such as granulosa cell steroidogenesis and nuclear oocyte maturation in several species. Some metabolic hormones such as leptin, resistin, adiponectin (three adipokines) and ghrelin may in part act through the AMPK signaling. These hormones are also involved in the control of the reproductive functions at the hypothalamus-pituitary-gonadal axis level in both male and female. Thus, AMPK could be one of the signaling pathways controlling the interactions between energy balance and reproduction. The reproductive system is tightly coupled with energy balance, and thereby metabolic abnormalities can lead to the development of some physiopathological situations such as the polycystic ovary syndrome (PCOS). Women with PCOS show altered fertility mostly associated with metabolic disorders such as insulin-resistance, hyperinsulinemia and/or dyslipidemia. Metformin, an insulin-sensitizer, is used for the treatment of women with PCOS. It restores subnormal fertility and energy balance. Recent studies show that AMPK is involved in the mechanism of action of metformin. Thus, it may be a therapeutic target. However, further investigations are necessary to elucidate the functions of AMPK in both metabolic and reproductive tissues.  相似文献   

13.
14.
AMPK regulation of the growth of cultured human keratinocytes   总被引:2,自引:0,他引:2  
AMP kinase (AMPK) is a fuel sensing enzyme that responds to cellular energy depletion by increasing processes that generate ATP and inhibiting others that require ATP but are not acutely necessary for survival. In the present study, we examined the relationship between AMPK activation and the growth (proliferation) of cultured human keratinocytes and assessed whether the inhibition of keratinocyte growth by vitamin D involves AMPK activation. In addition, we explored whether the inhibition of keratinocyte proliferation as they approach confluence could be AMPK-related. Keratinocytes were incubated for 12 h with the AMPK activator, 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR). At concentrations of 10(-4) and 10(-3) M, AICAR inhibited keratinocyte growth by 50% and 95%, respectively, based on measurements of thymidine incorporation into DNA. It also increased AMPK and acetyl CoA carboxylase phosphorylation (P-AMPK and P-ACC) and decreased the concentration of malonyl CoA confirming that AMPK activation had occurred. Incubation with the thiazolidinedione, troglitazone (10(-6) M) caused similar alterations in P-AMPK, P-ACC, and cell growth. In contrast, the well known inhibition of keratinocyte growth by 1,25-dihydroxyvitamin D3 (10(-7) and 10(-6) M) was not associated with changes in P-AMPK or P-ACC. Like most cells, the growth of keratinocytes diminished as they approached confluence. Thus, it was of note that we found a progressive increase in P-AMPK (1.5- to 2-fold, p < 0.05) as keratinocytes grown in control medium went from 25% to 100% confluence. In conclusion, the data are consistent with the hypothesis that activation of AMPK acts as a signal to diminish the proliferation of cultured keratinocytes as they approach confluence. They also suggest that AMPK activators, such as AICAR and troglitazone, inhibit keratinocyte growth and that the inhibition of cell growth by 1,25-dihydroxyvitamin D3 is AMPK-independent.  相似文献   

15.
鸭肝脂肪酸合成酶的NADPH底物抑制及作用动力学   总被引:7,自引:0,他引:7  
己知动物脂肪酸合成酶的底物乙酰辅酶A和丙二酰辅酶A具有竞争性双底物抑制的乒乓机制。实验发现鸭肝脂肪酸合成酶的第三个底物NADPH也具有底物抑制,并研究了它的规律及与NADPH有关的稳态动力学。发现对于该酶的全反应,增加丙二酰辅酶A浓度,降低环境盐浓度,均使NADPH底物抑制减少。但以NADPH作底物的酮酰还原和烯酰还原二步单独反应以及包含四步单独反应的乙酰乙酰辅酶A还原反应都无NADPH底物抑制现象。NADPH底物抑制对丙二酰辅酶A为竞争性,丙二酰辅酶A底物抑制对NADPH为非竞争性。在全反应中NADPH和丙二酰辅酶A之间发现为乒乓机制,在乙酰乙酰辅酶A还原反应中,两个底物NADPH和乙酰乙酰辅酶A之间则表现为序列反应机制。降低环境盐浓度使NADPH和丙二酰辅酶A之间的乒乓机制向序列机制转化。在全反应中,NADP产物抑制相对NADP为竞争性,对丙二酰辅酶A为非竞争性。  相似文献   

16.
AMP-activated protein kinase (AMPK) is a cellular energy sensor activated by metabolic stresses that either inhibit ATP synthesis or accelerate ATP consumption. Activation of AMPK in response to an increase in the cellular AMP:ATP ratio results in inhibition of ATP-consuming processes such as gluconeogenesis and fatty acid synthesis, while stimulating ATP-generating processes, including fatty acid oxidation. These alterations in lipid and glucose metabolism would be expected to ameliorate the pathogenesis of obesity, type 2 diabetes and other metabolic disorders. Recently, AMPK has also been identified as a potential target for cancer prevention and/or treatment. Cell growth and proliferation are energetically demanding, and AMPK may act as an “energy checkpoint” that permits growth and proliferation only when energy reserves are sufficient. Thus, activators of AMPK could have potential as novel therapeutics both for metabolic disorders and for cancer, which together constitute two of the most prevalent groups of diseases worldwide.  相似文献   

17.
Prostate cancer cells require high rates of de novo fatty acid synthesis and protein synthesis for their rapid growth. We report here that the growth of these cells is markedly diminished by incubation with activators of AMP-activated protein kinase (AMPK), a fuel-sensing enzyme that has been shown to diminish both of these processes in intact tissues. Inhibition of cell growth was observed when AMPK was activated by either 5-aminoimidazole-4-carboxamide riboside (AICAR) or the thiazolidinedione rosiglitazone. Thus, a 90% inhibition of the growth of androgen-independent (DU145, PC3) and androgen-sensitive (LNCaP) cells was achieved after 4 days of exposure to one or both of these agents. Where studied, this was associated with a decrease in the concentration of malonyl CoA, an intermediate of de novo fatty acid synthesis, and an increase in expression of the cell cycle inhibitor p21. In addition, AICAR inhibited two key enzymes involved in protein synthesis, mTOR and p70S6K, and blocked the ability of the androgen R1881 to increase cell growth and the expression of two enzymes for de novo fatty acid synthesis, acetyl CoA carboxylase and fatty acid synthase, in the LNCaP cells. The results suggest that AMPK is a potential target for the treatment of prostate cancer.  相似文献   

18.
Heart/skeletal muscle carnitine palmitoyltransferase I (M-CPTI) is 30-100-fold more sensitive to malonyl CoA inhibition than the liver isoform (L-CPTI). To determine the role of the N-terminal region of human heart M-CPTI on malonyl CoA sensitivity and binding, a series of deletion mutations were constructed ranging in size from 18 to 83 N-terminal residues. All of the deletions except Delta83 were active. Mitochondria from the yeast strains expressing Delta28 and Delta39 exhibited a 2.5-fold higher activity compared to the wild type, but were insensitive to malonyl CoA inhibition and had complete loss of high-affinity malonyl CoA binding. The high-affinity site (K(D1), B(max1)) for binding of malonyl CoA to M-CPTI was completely abolished in the Delta28, Delta39, Delta51, and Delta72 mutants, suggesting that the decrease in malonyl CoA sensitivity observed in these mutants was due to the loss of the high-affinity binding entity of the enzyme. Delta18 showed only a 4-fold loss in malonyl CoA sensitivity but had activity and high-affinity malonyl CoA binding similar to the wild type. Replacement of the N-terminal domain of L-CPTI with the N-terminal domain of M-CPTI does not change the malonyl CoA sensitivity of the chimeric L-CPTI, suggesting that the amino acid residues responsible for the differing sensitivity to malonyl CoA are not located in this N-terminal region. These results demonstrate that the N-terminal residues critical for activity and malonyl CoA sensitivity in M-CPTI are different from those of L-CPTI.  相似文献   

19.
Acute and chronic treatment with clofibrate increased the total CoA content of rat liver and altered the profile of the various CoA thioesters. There resulted a 2–3 fold increase in the contents of long chain acyl CoA, acetyl CoA and free CoA, contrasting with significant decreases found in succinyl CoA, malonyl CoA and acetoacetyl CoA contents. It is postulated that the known increase in fatty acid binding protein and/or the increased extramitochondrial β-oxidation of fat by an increased peroxisomal population may direct the compartmentation and metabolic fate of fatty acids and their CoA derivatives following clofibrate treatment.  相似文献   

20.
The muscle isoform of carnitine palmitoyltransferase I (M-CPTI) is 30- to 100-fold more sensitive to malonyl CoA inhibition than the liver isoform (L-CPTI). We have previously shown that deletion of the first 28 N-terminal amino acid residues in M-CPTI abolished malonyl CoA inhibition and high-affinity binding [Biochemistry 39 (2000) 712-717]. To determine the role of specific residues within the first 28 N-terminal amino acids of human heart M-CPTI on malonyl CoA sensitivity and binding, we constructed a series of substitution mutations and a mutant M-CPTI composed of deletion 18 combined with substitution mutations V19A, L23A, and S24A. All mutants had CPT activity similar to that of the wild type. A change of Glu3 to Ala resulted in a 60-fold decrease in malonyl CoA sensitivity and loss of high-affinity malonyl CoA binding. A change of His5 to Ala in M-CPTI resulted in only a 2-fold decrease in malonyl CoA sensitivity and a significant loss in the low- but not high-affinity malonyl CoA binding. Deletion of the first 18 N-terminal residues combined with substitution mutations V19A, L23A, and S24A resulted in a mutant M-CPTI with an over 140-fold decrease in malonyl CoA sensitivity and a significant loss in both high- and low-affinity malonyl CoA binding. This was further confirmed by a combined four-residue substitution of Glu3, Val19, Leu23, and Ser24 with alanine. Our site-directed mutagenesis studies demonstrate that Glu3, Val19, Leu23, and Ser24 in M-CPTI are important for malonyl CoA inhibition and binding, but not for catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号