首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The heavy chain of dynein forms a globular motor domain that tightly couples the ATP-cleavage region and the microtubule-binding site to transform chemical energy into motion along the cytoskeleton. Here we show that, in the fungus Ustilago maydis, two genes, dyn1 and dyn2, encode the dynein heavy chain. The putative ATPase region is provided by dyn1, while dyn2 includes the predicted microtubule-binding site. Both genes are located on different chromosomes, are transcribed into independent mRNAs and are translated into separate polypeptides. Both Dyn1 and Dyn2 co-immunoprecipitated and co-localized within growing cells, and Dyn1-Dyn2 fusion proteins partially rescued mutant phenotypes, suggesting that both polypeptides interact to form a complex. In cell extracts the Dyn1-Dyn2 complex dissociated, and microtubule affinity purification indicated that Dyn1 or associated polypeptides bind microtubules independently of Dyn2. Both Dyn1 and Dyn2 were essential for cell survival, and conditional mutants revealed a common role in nuclear migration, cell morphogenesis and microtubule organization, indicating that the Dyn1-Dyn2 complex serves multiple cellular functions.  相似文献   

3.
Dyneins are molecular motors that translocate towards the minus ends of microtubules. In Chlamydomonas flagellar outer arm dynein, light chain 1 (LC1) associates with the nucleotide binding region within the gamma heavy chain motor domain and consists of a central leucine-rich repeat section that folds as a cylindrical right handed spiral formed from six beta-beta-alpha motifs. This central cylinder is flanked by terminal helical subdomains. The C-terminal helical domain juts out from the cylinder and is adjacent to a hydrophobic surface within the repeat region that is proposed to interact with the dynein heavy chain. The position of the C-terminal domain on LC1 and the unexpected structural similarity between LC1 and U2A' from the human spliceosome suggest that this domain interacts with the dynein motor domain.  相似文献   

4.
Sequence comparisons and structural analyses show that the dynein heavy chain motor subunit is related to the AAA family of chaperone-like ATPases. The core structure of the dynein motor unit derives from the assembly of six AAA domains into a hexameric ring. In dynein, the first four AAA domains contain consensus nucleotide triphosphate-binding motifs, or P-loops. The recent structural models of dynein heavy chain have fostered the hypothesis that the energy derived from hydrolysis at P-loop 1 acts through adjacent P-loop domains to effect changes in the attachment state of the microtubule-binding domain. However, to date, the functional significance of the P-loop domains adjacent to the ATP hydrolytic site has not been demonstrated. Our results provide a mutational analysis of P-loop function within the first and third AAA domains of the Drosophila cytoplasmic dynein heavy chain. Here we report the first evidence that P-loop-3 function is essential for dynein function. Significantly, our results further show that P-loop-3 function is required for the ATP-induced release of the dynein complex from microtubules. Mutation of P-loop-3 blocks ATP-mediated release of dynein from microtubules, but does not appear to block ATP binding and hydrolysis at P-loop 1. Combined with the recent recognition that dynein belongs to the family of AAA ATPases, the observations support current models in which the multiple AAA domains of the dynein heavy chain interact to support the translocation of the dynein motor down the microtubule lattice.  相似文献   

5.
Dynein is a large cytoskeletal motor protein that belongs to the AAA+ (ATPases associated with diverse cellular activities) superfamily. While dynein has had a rich history of cellular research, its molecular mechanism of motility remains poorly understood. Here we describe recent X-ray crystallographic studies that reveal the architecture of dynein's catalytic ring, mechanical linker element, and microtubule binding domain. This structural information has given rise to new hypotheses on how the dynein motor domain might change its conformation in order to produce motility along microtubules.  相似文献   

6.
Although cyclophilin A (CyP-A) is a relatively abundant small immunophilin present in the cytoplasm of all mammalian cells, its general function(s) in the absence of the immunosuppressant drug cyclosporin A is not known. In contrast, the high molecular weight hsp90-binding immunophilins appear to play a role in protein trafficking in that they have been shown to link glucocorticoid receptor-hsp90 and p53.hsp90 complexes to the dynein motor protein for retrograde movement along microtubules. These immunophilins link to cytoplasmic dynein indirectly through the association of the immunophilin peptidylprolyl isomerase (PPIase) domain with dynamitin, a component of the dynein-associated dynactin complex (Galigniana, M. D., Harrell, J. M., O'Hagen, H. M., Ljungman, M., and Pratt, W. B. (2004) J. Biol. Chem. 279, 22483-22489). Here, we show that CyP-A exists in native heterocomplexes containing cytoplasmic dynein that can be formed in cell-free systems. Prolyl isomerase activity is not required for forming the dynein complex, but the PPIase domain fragment of FKBP52 blocks complex formation and CyP-A binds to dynamitin in a PPIase domain-dependent manner. CyP-A heterocomplexes containing tubulin and dynein can be formed in cytosol prepared under microtubule-stabilizing conditions, and CyP-A colocalizes in mouse fibroblasts with microtubules. Colocalization with microtubules is disrupted by overexpression of the PPIase domain fragment. Thus, we conclude that CyP-A associates in vitro and in vivo with the dynein/dynactin motor protein complex and we suggest that CyP-A may perform a general function related to the binding of cargo for retrograde movement along microtubules.  相似文献   

7.
8.
Axonemal dyneins provide the driving force for flagellar/ciliary bending. Nucleotide-induced conformational changes of flagellar dynein have been found both in vitro and in situ by electron microscopy, and in situ studies demonstrated the coexistence of at least two conformations in axonemes in the presence of nucleotides (the apo and the nucleotide-bound forms). The distribution of the two forms suggested cooperativity between adjacent dyneins on axonemal microtubule doublets. Although the mechanism of such cooperativity is unknown it might be related to the mechanism of bending. To explore the mechanism by which structural heterogeneity of axonemal dyneins is induced by nucleotides, we used cilia from Tetrahymena thermophila to examine the structure of dyneins in a) the intact axoneme and b) microtubule doublets separated from the axoneme, both with and without additional pure microtubules. We also employed an ATPase assay on these specimens to investigate dynein activity functionally. Dyneins on separated doublets show more activation by nucleotides than those in the intact axoneme, both structurally and in the ATPase assay, and this is especially pronounced when the doublets are coupled with added microtubules, as expected. Paralleling the reduced ATPase activity in the intact axonemes, a lower proportion of these dyneins are in the nucleotide-bound form. This indicates a coordinated suppression of dynein activity in the axoneme, which could be the key for understanding the bending mechanism.  相似文献   

9.
Cytoplasmic dynein supports long-range intracellular movements of cargo in vivo but does not appear to be a processive motor protein by itself. We show here that the dynein activator, dynactin, binds microtubules and increases the average length of cytoplasmic-dynein-driven movements without affecting the velocity or microtubule-stimulated ATPase kinetics of cytoplasmic dynein. Enhancement of microtubule binding and motility by dynactin are both inhibited by an antibody to dynactin's microtubule-binding domain. These results indicate that dynactin acts as a processivity factor for cytoplasmic-dynein-based motility and provide the first evidence that cytoskeletal motor processivity can be affected by extrinsic factors.  相似文献   

10.
Dyneins are highly complex molecular motors that transport their attached cargo towards the minus end of microtubules. These enzymes are required for many essential motile activities within the cytoplasm and also power eukaryotic cilia and flagella. Each dynein contains one or more heavy chain motor units that consist of an N-terminal stem domain that is involved in cargo attachment, and six AAA+ domains (AAA1-6) plus a C-terminal globular segment that are arranged in a heptameric ring. At least one AAA+ domain (AAA1) is capable of ATP binding and hydrolysis, and the available data suggest that one or more additional domains also may bind nucleotide. The ATP-sensitive microtubule binding site is located at the tip of a 10nm coiled coil stalk that emanates from between AAA4 and AAA5. The function of this motor both in the cytoplasm and the flagellum must be tightly regulated in order to result in useful work. Consequently, dyneins also contain a series of additional components that serve to define the cargo-binding properties of the enzyme and which act as sensors to transmit regulatory inputs to the motor units. Here we describe the two basic dynein designs and detail the various regulatory systems that impinge on this motor within the eukaryotic flagellum.  相似文献   

11.
12.
We have used an antibody-Fab tag to mark the position of the cytoplasmic dynein amino-terminal tail domain, as it emerges from the main mass of the motor. Electron microscopy and single-particle image analysis reveal that the tag does not assume a rigidly fixed position, but instead can be found at various locations around the planar ring that comprises the motor's backbone. The work suggests that the tail is attached to the motor at a point near the ring center, and that the sequence immediately adjacent to this connection is flexible. Such flexibility argues against a simple-lever arm model for dynein force production.  相似文献   

13.
14.
After nearly four decades of investigation, the dynein motor is finally on the verge of revealing its inner secrets. This multisubunit ATPase participates in several important microtubule-based motilities in eukaryotic cells. Numerous recent articles have advanced the understanding of the dynein motor substructure and its mechanism of force production, revealing both similarities to other motors and some surprises. We are now in a position to summarize a basic blueprint for dynein. At its core, the motor is a ring-shaped object with two protruding levers: one engages cargo and might provide much of the force for movement, and the other interacts with the microtubule track. The activities of both levers are linked through nucleotide-dependent conformational changes in the ring.  相似文献   

15.
Neurofilaments are synthesized in the cell body of neurons and transported outward along the axon via slow axonal transport. Direct observation of neurofilaments trafficking in live cells suggests that the slow outward rate of transport is due to the net effects of anterograde and retrograde microtubule motors pulling in opposition. Previous studies have suggested that cytoplasmic dynein is required for efficient neurofilament transport. In this study, we examine the interaction of neurofilaments with cytoplasmic dynein. We used fluid tapping mode atomic force microscopy to visualize single neurofilaments, microtubules, dynein/dynactin, and physical interactions between these neuronal components. AFM images suggest that neurofilaments act as cargo for dynein, associating with the base of the motor complex. Yeast two-hybrid and affinity chromatography assays confirm this hypothesis, indicating that neurofilament subunit M binds directly to dynein IC. This interaction is blocked by monoclonal antibodies directed either to NF-M or to dynein. Together these data suggest that a specific interaction between neurofilament subunit M and cytoplasmic dynein is involved in the saltatory bidirectional motility of neurofilaments undergoing axonal transport in the neuron.  相似文献   

16.
Protein assembly is a critical process involved in a wide range of cellular events and occurs through extracellular and/or transmembrane domains (TMs). Previous studies demonstrated that a GXXXG motif is crucial for homodimer formation. Here we selected the TMs of ErbB1 and ErbB2 as a model since these receptors function both as homodimers and as heterodimers. Both TMs contain two GXXXG-like motifs located at the C and N termini. The C-terminal motifs were implicated previously in homodimer formation, but the role of the N-terminal motifs was not clear. We used the ToxR system and expressed the TMs of both ErbB1 and ErbB2 containing only the N-terminal GXXXG motifs. The data revealed that the ErbB2 but not the ErbB1 construct formed homodimers. Importantly, a synthetic ErbB1 TM peptide was able to form a heterodimer with ErbB2, by displacing the ErbB2 TM homodimer. The specificity of the interaction was demonstrated by using three controls: (i) Two single mutations within the GXXXG-like motif of the ErbB1 peptide reduced or preserved its activity, in agreement with similar mutations in glycophorin A. (ii) A TM peptide of the bacterial Tar receptor did not assemble with the ErbB2 construct. (iii) The ErbB1 peptide had no effect on the dimerization of a construct containing the TM-1 domain of the Tar receptor. Fluorescence microscopy demonstrated that all the peptides localized on the membrane. Furthermore, incubation with the peptides had no effect on bacterial growth and protein expression levels. Our results suggest that the N-terminal GXXXG-like motif of the ErbB1 TM plays a role in heterodimerization with the ErbB2 transmembrane domain. To our knowledge, this is the first demonstration of a transmembrane domain with two distinct recognition motifs, one for homodimerization and the other for heterodimerization.  相似文献   

17.
To test the hypothesis that the myosin II motor domain (S1) preferentially binds to specific subsets of actin filaments in vivo, we expressed GFP-fused S1 with mutations that enhanced its affinity for actin in Dictyostelium cells. Consistent with the hypothesis, the GFP-S1 mutants were localized along specific portions of the cell cortex. Comparison with rhodamine-phalloidin staining in fixed cells demonstrated that the GFP-S1 probes preferentially bound to actin filaments in the rear cortex and cleavage furrows, where actin filaments are stretched by interaction with endogenous myosin II filaments. The GFP-S1 probes were similarly enriched in the cortex stretched passively by traction forces in the absence of myosin II or by external forces using a microcapillary. The preferential binding of GFP-S1 mutants to stretched actin filaments did not depend on cortexillin I or PTEN, two proteins previously implicated in the recruitment of myosin II filaments to stretched cortex. These results suggested that it is the stretching of the actin filaments itself that increases their affinity for the myosin II motor domain. In contrast, the GFP-fused myosin I motor domain did not localize to stretched actin filaments, which suggests different preferences of the motor domains for different structures of actin filaments play a role in distinct intracellular localizations of myosin I and II. We propose a scheme in which the stretching of actin filaments, the preferential binding of myosin II filaments to stretched actin filaments, and myosin II-dependent contraction form a positive feedback loop that contributes to the stabilization of cell polarity and to the responsiveness of the cells to external mechanical stimuli.  相似文献   

18.
Membrane motility is a fundamental characteristic of all eukaryotic cells. One of the best-known examples is that of the mammalian Golgi apparatus, where constant inward movement of Golgi membranes results in its characteristic position near the centrosome. While it is clear that the minus-end-directed motor dynein is required for this process, the mechanism and regulation of dynein recruitment to Golgi membranes remains unknown. Here, we show that the Golgi protein golgin160 recruits dynein to Golgi membranes. This recruitment confers centripetal motility to membranes and is regulated by the GTPase Arf1. Further, during cell division, motor association with membranes is regulated by the dissociation of the receptor-motor complex from membranes. These results identify a cell-cycle-regulated membrane receptor for a molecular motor and?suggest a mechanistic basis for achieving the dramatic changes in organelle positioning seen during cell division.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号