首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cdo and Boc encode cell surface Ig/fibronectin superfamily members linked to muscle differentiation. Data here indicate they are also targets and signaling components of the Sonic hedgehog (Shh) pathway. Although Cdo and Boc are generally negatively regulated by Hedgehog (HH) signaling, in the neural tube Cdo is expressed within the Shh-dependent floor plate while Boc expression lies within the dorsal limit of Shh signaling. Loss of Cdo results in a Shh dosage-dependent reduction of the floor plate. In contrast, ectopic expression of Boc or Cdo results in a Shh-dependent, cell autonomous promotion of ventral cell fates and a non-cell-autonomous ventral expansion of dorsal cell identities consistent with Shh sequestration. Cdo and Boc bind Shh through a high-affinity interaction with a specific fibronectin repeat that is essential for activity. We propose a model where Cdo and Boc enhance Shh signaling within its target field.  相似文献   

3.
Holoprosencephaly (HPE), the most common developmental defect of the forebrain and midface, is caused by a failure to delineate the midline in these structures. Despite the identification of several HPE genes, its genetic basis is largely unknown. Furthermore, the phenotype of affected individuals is highly variable, even within pedigrees. Facial defects in HPE range from cyclopia and proboscis in severe cases to solitary median maxillary central incisor in individuals with microforms of HPE. Cdon (also known as Cdo), an Ig superfamily member, is a component of a cell surface receptor that positively regulates skeletal myogenesis. Cdon is also highly expressed in the frontonasal and maxillary processes (FNP and MXP, respectively) of the developing mouse embryo, structures that contain signaling centers that pattern the face. We report here that mice homozygous for targeted mutations of Cdon display the hallmark facial defects associated with microforms of HPE. This is the first example of a mouse mutant with this phenotype, and this finding implicates a new family of receptors in development of the facial midline and suggests a potential role for Cdon in the pathogenesis and expressivity of HPE in humans.  相似文献   

4.
5.
6.
主要嗅觉表皮(main olfactory epithelium, MOE)是哺乳动物感知气味分子的主要嗅觉器官。在MOE组织内,大多数嗅觉神经元通过cAMP信号传导通路感知气味信息。作为嗅觉cAMP信号通路的主要成员之一,腺苷酸环化酶3(adenylyl cyclase 3, ac3)基因敲除小鼠嗅觉探测功能丧失。除cAMP信号传导通路外,MOE内AC3相关因子AC2和AC4,以及肌醇1,4,5-三磷酸(inositol 1,4,5-trisphosphate,IP3)信号通路和Sonic Hedgehog(Shh)信号通路均有表达。然而,敲除ac3是否会对ac2和ac4以及IP3和Shh信号通路成员产生影响,尚不清楚。本文以AC3缺失(AC3-/-)及其野生型小鼠(AC3+/+)MOE为材料,采用实时荧光定量PCR(qRT-PCR)和免疫荧光组织化学方法,发现AC3缺失后,MOE内的ac2和ac4,以及IP3信号通路中的IP3受体ip3r1及钙调蛋白calm1和calm2表达水平均明显降低。Shh信号通路中的受体patched(ptch)与smoothened(smo)、以及核转录因子gli1与gli2的表达也受到了影响。总之,AC3基因缺失不但导致小鼠MOE组织中cAMP信号通路受损,同时AC3相关因子,IP3信号通路和Shh信号通路的传导也受到抑制。本文对于阐明AC3基因敲除小鼠嗅觉丧失的原因及其嗅觉探测机制具有重要启示作用。  相似文献   

7.
8.
Gli1 can rescue the in vivo function of Gli2.   总被引:6,自引:0,他引:6  
In mice, three Gli genes are thought to mediate sonic hedgehog (Shh) signaling collectively. Mis-expression studies and analysis of null mutants for each gene have indicated that the Gli proteins have different functions. In particular, Gli1 appears to be a constitutive activator, and Gli2 and Gli3 have repressor functions. To determine the precise functional differences between Gli1 and Gli2, we have expressed Gli1 in place of Gli2 from the endogenous Gli2 locus in mice. Strikingly, a low level of Gli1 can rescue all the Shh signaling defects in Gli2 mutants; however, only in the presence of a wild-type Shh gene. These studies demonstrate that only the activator function of Gli2 is actually required, and indicates that in specific situations, Shh can modulate the ability of Gli1 to activate target genes. Furthermore, expression of both copies of Gli1 in place of Gli2 does not disrupt spinal cord patterning, but does result in new gain-of-function defects that lead to lethality. We show that the defects are enhanced when Gli3 function is reduced, demonstrating that an important difference between Gli1 and Gli2 is the ability of Gli1 to antagonize Gli3 function.  相似文献   

9.
Hedgehog pathway activation is required for expansion of specific neuronal precursor populations during development and is etiologic in the human cerebellar tumor, medulloblastoma. We report that sonic hedgehog (Shh) signaling upregulates expression of the proto-oncogene Nmyc in cultured cerebellar granule neuron precursors (CGNPs) in the absence of new protein synthesis. The temporal-spatial expression pattern of Nmyc, but not other Myc family members, precisely coincides with regions of hedgehog proliferative activity in the developing cerebellum and is observed in medulloblastomas of Patched (Ptch) heterozygous mice. Overexpression of Nmyc promotes cell-autonomous G(1) cyclin upregulation and CGNP proliferation independent of Shh signaling. Furthermore, Myc antagonism in vitro significantly decreases proliferative effects of Shh in cultured CGNPs. Together, these findings identify Nmyc as a direct target of the Shh pathway that functions to regulate cell cycle progression in cerebellar granule neuron precursors.  相似文献   

10.
The Sonic Hedgehog (Shh) pathway plays important roles in embryogenesis, stem cell maintenance, tissue repair, and tumorigenesis. Haploinsufficiency of Patched-1, a gene that encodes a repressor of the Shh pathway, dysregulates the Shh pathway and increases genomic instability and the development of spontaneous and ionizing radiation (IR)–induced tumors by an unknown mechanism. Here we show that Ptc1+/− mice have a defect in the IR-induced activation of the ATR–Chk1 checkpoint signaling pathway. Likewise, transient expression of Gli1, a downstream target of Shh signaling, disrupts Chk1 activation in human cells by preventing the interaction of Chk1 with Claspin, a Chk1 adaptor protein that is required for Chk1 activation. These results suggest that inappropriate Shh pathway activation promotes tumorigenesis by disabling a key signaling pathway that helps maintain genomic stability and inhibits tumorigenesis.  相似文献   

11.
Multiple roles for Hedgehog signaling in zebrafish pituitary development   总被引:1,自引:0,他引:1  
The endocrine-secreting lobe of the pituitary gland, or adenohypophysis, forms from cells at the anterior margin of the neural plate through inductive interactions involving secreted morphogens of the Hedgehog (Hh), fibroblast growth factor (FGF), and bone morphogenetic protein (BMP) families. To better understand when and where Hh signaling influences pituitary development, we have analyzed the effects of blocking Hh signaling both pharmacologically (cyclopamine treatments) and genetically (zebrafish Hh pathway mutants). While current models state that Shh signaling from the oral ectoderm patterns the pituitary after placode induction, our data suggest that Shh plays a direct early role in both pituitary induction and patterning, and that early Hh signals comes from adjacent neural ectoderm. We report that Hh signaling is necessary between 10 and 15 h of development for induction of the zebrafish adenohypophysis, a time when shh is expressed only in neural tissue. We show that the Hh responsive genes ptc1 and nk2.2 are expressed in preplacodal cells at the anterior margin of the neural tube at this time, indicating that these cells are directly receiving Hh signals. Later (15-20 h) cyclopamine treatments disrupt anterior expression of nk2.2 and Prolactin, showing that early functional patterning requires Hh signals. Consistent with a direct role for Hh signaling in pituitary induction and patterning, overexpression of Shh results in expanded adenohypophyseal expression of lim3, expansion of nk2.2 into the posterior adenohypophysis, and an increase in Prolactin- and Somatolactin-secreting cells. We also use the zebrafish Hh pathway mutants to document the range of pituitary defects that occur when different elements of the Hh signaling pathway are mutated. These defects, ranging from a complete loss of the adenohypophysis (smu/smo and yot/gli2 mutants) to more subtle patterning defects (dtr/gli1 mutants), may correlate to human Hh signaling mutant phenotypes seen in Holoprosencephaly and other congenital disorders. Our results reveal multiple and distinct roles for Hh signaling in the formation of the vertebrate pituitary gland, and suggest that Hh signaling from neural ectoderm is necessary for induction and functional patterning of the vertebrate pituitary gland.  相似文献   

12.
Sonic hedgehog (Shh) is a morphogen that is crucial for normal development of a variety of organ systems, including the brain and spinal cord, the eye, craniofacial structures, and the limbs. Mutations in the human SHH gene and genes that encode its downstream intracellular signaling pathway cause several clinical disorders. These include holoprosencephaly (HPE, the most common anomaly of the developing forebrain), nevoid basal cell carcinoma syndrome, sporadic tumors, including basal cell carcinomas, and three distinct congenital disorders: Greig syndrome Pallister–Hall syndrome, and isolated postaxial polydactyly. These conditions caused by abnormalities in the SHH pathway demonstrate the crucial role of SHH in complex developmental processes, and molecular analyses of these disorders provide insight into the normal function of the SHH pathway in human development.  相似文献   

13.
Disruption of cerebellar granular neuronal precursor (GNP) maturation can result in defects in motor coordination and learning, or in medulloblastoma, the most common childhood brain tumor. The Sonic Hedgehog (Shh) pathway is important for GNP proliferation; however, the factors regulating the extent and timing of GNP proliferation, as well as GNP differentiation and migration are poorly understood. The p53 tumor suppressor has been shown to negatively regulate the activity of the Shh effector, Gli1, in neural stem cells; however, the contribution of p53 to the regulation of Shh signaling in GNPs during cerebellar development has not been determined. Here, we exploited a hypomorphic allele of Mdm2 (Mdm2(puro)), which encodes a critical negative regulator of p53, to alter the level of wild-type MDM2 and p53 in vivo. We report that mice with reduced levels of MDM2 and increased levels of p53 have small cerebella with shortened folia, reminiscent of deficient Shh signaling. Indeed, Shh signaling in Mdm2-deficient GNPs is attenuated, concomitant with decreased expression of the Shh transducers, Gli1 and Gli2. We also find that Shh stimulation of GNPs promotes MDM2 accumulation and enhances phosphorylation at serine 166, a modification known to increase MDM2-p53 binding. Significantly, loss of MDM2 in Ptch1(+/-) mice, a model for Shh-mediated human medulloblastoma, impedes cerebellar tumorigenesis. Together, these results place MDM2 at a major nexus between the p53 and Shh signaling pathways in GNPs, with key roles in cerebellar development, GNP survival, cerebellar foliation, and MB tumorigenesis.  相似文献   

14.
15.
Holoprosencephaly (HPE) is the most commonly occurring congenital structural forebrain anomaly in humans. HPE is associated with mental retardation and craniofacial malformations. The genetic causes of HPE have recently begun to be identified, and we have previously shown that HPE can be caused by haploinsufficiency for SONIC HEDGEHOG ( SHH). We hypothesize that mutations in genes encoding other components of the SHH signaling pathway could also be associated with HPE. PATCHED-1 (PTCH), the receptor for SHH, normally acts to repress SHH signaling. This repression is relieved when SHH binds to PTCH. We analyzed PTCH as a candidate gene for HPE. Four different mutations in PTCHwere detected in five unrelated affected individuals. We predict that by enhancing the repressive activity of PTCH on the SHH pathway, these mutations cause decreased SHH signaling, and HPE results. The mutations could affect the ability of PTCH to bind SHH or perturb the intracellular interactions of PTCH with other proteins involved in SHH signaling. These findings further demonstrate the genetic heterogeneity associated with HPE, as well as showing that mutations in different components of a single signaling pathway can result in the same clinical condition.  相似文献   

16.
Holoprosencephaly (HPE) is a commonly occurring developmental defect in which midline patterning of the forebrain and midface is disrupted. Sonic hedgehog (SHH) signaling is required during multiple stages of rostroventral midline development, and heterozygous mutations in SHH pathway components are associated with HPE. However, clinical presentation of HPE is highly variable, and carriers of heterozygous mutations often lack apparent defects. It is therefore thought that such mutations must interact with more common modifiers, genetic and/or environmental. We have modeled this scenario in mice. Cdon mutant mice have a largely subthreshold defect in SHH signaling, rendering them sensitive to a wide spectrum of HPE phenotypes by additional hits that are themselves insufficient to produce HPE, including transient in utero exposure to ethanol. These variable HPE phenotypes may arise in embryos that fail to reach a threshold level of SHH signaling at a specific developmental stage. To provide evidence for this possibility, here we tested the effect of removing one copy of the negative regulator Ptch1 from Cdon−/− embryos and compared their response to ethanol with that of Cdon−/−;Ptch1+/+ embryos. Ptch1 heterozygosity decreased the penetrance of HPE in this system by >75%. The major effect of reduced Ptch1 gene dosage was on penetrance, as those Cdon−/−;Ptch1+/− embryos that displayed HPE did not show major differences in phenotype from Cdon−/−;Ptch1+/+ embryos with ethanol-induced HPE. Our findings are consistent with the notion that even in an etiologically complex model of HPE, the level of SHH pathway activity is rate-limiting. Furthermore, the clinical outcome of an individual carrying a SHH pathway mutation will likely reflect the sum effect of both deleterious and protective modifier alleles and their interaction with non-genetic risk factors like fetal alcohol exposure.  相似文献   

17.
18.
Sonic Hedgehog (Shh) signaling is crucial for growth, cell fate determination, and axonal guidance in the developing nervous system. Although the receptors Patched (Ptch1) and Smoothened (Smo) are required for Shh signaling, a number of distinct co-receptors contribute to these critical responses to Shh. Several membrane-embedded proteins such as Boc, Cdo, and Gas1 bind Shh and promote signaling. In addition, heparan sulfate proteoglycans (HSPGs) have also been implicated in the initiation of Shh responses. However, the attributes of HSPGs that function as co-receptors for Shh have not yet been defined. Here, we identify HSPGs containing a glypican 5 core protein and 2-O-sulfo-iduronic acid residues at the nonreducing ends of the glycans as co-receptors for Shh. These HSPG co-receptors are expressed by cerebellar granule cell precursors and promote Shh binding and signaling. At the subcellular level, these HSPG co-receptors are located adjacent to the primary cilia that act as Shh signaling organelles. Thus, Shh binds to HSPG co-receptors containing a glypican 5 core and 2-O-sulfo-iduronic acid to promote neural precursor proliferation.  相似文献   

19.
Holoprosencephaly (HPE), the most common forebrain malformation, is characterized by an incomplete separation of the cerebral hemispheres. Mutations in the homeobox gene SIX3 account for 1.3% of all cases of human HPE. Using zebrafish-based assays, we have now determined that HPE-associated Six3 mutant proteins function as hypomorphs. Haploinsufficiency of Six3 caused by deletion of one allele of Six3 or by replacement of wild-type Six3 with HPE-associated Six3 mutant alleles was sufficient to recapitulate in mouse models most of the phenotypic features of human HPE. We demonstrate that Shh is a direct target of Six3 in the rostral diencephalon ventral midline (RDVM). Reduced amounts of functional Six3 protein fail to activate Shh expression in the mutant RDVM and ultimately lead to HPE. These results identify Six3 as a direct regulator of Shh expression and reveal a crossregulatory loop between Shh and Six3 in the ventral forebrain.  相似文献   

20.
Precise patterning of cell types along the dorsal-ventral axis of the spinal cord is essential to establish functional neural circuits. In order to prove the feasibility of studying a single biological process through random mutagenesis in the mouse, we have identified recessive ENU-induced mutations in six genes that prevent normal specification of ventral cell types in the spinal cord. We positionally cloned the genes responsible for two of the mutant phenotypes, smoothened and dispatched, which are homologs of Drosophila Hh pathway components. The Dispatched homolog1 (Disp1) mutation causes lethality at midgestation and prevents specification of ventral cell types in the neural tube, a phenotype identical to the Smoothened (Smo) null phenotype. As in Drosophila, mouse Disp1 is required to move Shh away from the site of synthesis. Despite the existence of a second mouse disp homolog, Disp1 is essential for long-range signaling by both Shh and Ihh ligands. Our data indicate that Shh signaling is required within the notochord to maintain Shh expression and to prevent notochord degeneration. Disp1, unlike Smo, is not required for this juxtacrine signaling by Shh.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号