首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recycled iron from reticuloendothelial macrophages to erythroid precursors is important to maintain the iron homeostasis. However, the molecular mechanisms underlying iron homeostasis in macrophages are poorly understood. In this study, male Sprague-Dawley rats were treated with recombinant human erythropoietin (rHuEpo, 500 IU/day, s.c.) for 3 days. At the fifth day, peritoneal exudate macrophages were harvested, and then (55)Fe uptake and release were measured by liquid scintillation counting method. The expression of divalent metal transporter 1 (DMT1) and ferroportin 1 (FPN1) in peritoneal exudate macrophages was detected by RT-PCR and Western blot. In order to exclude the direct effect of rHuEpo on macrophages, the parallel experiments were performed with incubation normal peritoneal exudate macrophages with rHuEpo (2 IU/ml). Our results showed rHuEpo injection reduced the peritoneal exudate macrophages iron retention. The uptake of Fe(II) was decreased via the suppression of DMT1 (+IRE) expression and the release of Fe(II) was increased with increasing the expression of FPN1 in macrophages. Moreover, the expression of HAMP mRNA was four times lower in rHuEpo-treated liver of rats than control group (CG). HAMP mRNA expression was increased; the synthesis of DMT1 had no significant change, whereas the FPN1 was decreased in normal peritoneal exudate macrophages after treatment with rHuEpo in vitro. We conclude that hepcidin may play a major, causative role in the change of FPN1 synthesis and that decreased the iron retention in macrophages of rHuEpo-treated rats.  相似文献   

2.
Elevated iron levels are considered to play a role in the neurodegenerative mechanisms that underlie Alzheimer's and Parkinson's disease. The linkage between hepcidin (Hepc) and ferroportin-1 (FPN1), the divalent metal transporter 1 (DMT1), and ceruloplasmin (CP) in the brain is unknown. To discern the role of Hepc in regulating the expression of these proteins, we investigated FPN1, DMT1, and CP protein and mRNA expression in the brain after the intracerebroventricular injection of Hepc. Our results show that after Hepc injection, expression of FPN1 mRNA and FPN1 protein was inhibited in the cerebral cortex and hippocampus. Furthermore, we showed a clear change of DMT1 and CP protein and mRNA levels in the brain. The immunohistochemical analysis revealed an increase of DMT1 and a decrease of CP levels. Semi-quantitative analysis using PCR methods showed an increase of DMT1(+IRE) mRNA, and a decrease of DMT1(−IRE) mRNA and CP mRNA levels. Since alterations in iron levels in the brain are causally linked to degenerative conditions such as Alzheimer's disease, an improved understanding of the regulation of iron transport protein expression such as FPN1, DMT1, and CP could lead to novel strategies for treatments.  相似文献   

3.
Molecular analysis of increased iron status in moderately exercised rats   总被引:5,自引:0,他引:5  
Although iron plays a critical role in exercise, the regulatory mechanism of iron metabolism remains poorly understood. The aims of the present study were to investigate the effects of different intensity exercise on body iron status and the regulatory mechanism of duodenal iron absorption. Thirty female Sprague-Dawley rats (90–100 g) were randomly divided into three groups: a control group (remained sedentary, CG), a moderately exercised group (swam 1.5 h/day, MG) and a strenuously exercised group (swam with different load, SG). Serum iron status, serum ferritin and Hct were examined after 10 weeks of swimming. Western blot was performed to detect the expression of iron transport proteins: divalent metal transporter1 (DMT1) and ferroportin 1 (FPN1) in duodenal epithelium. The expression of hepcidin mRNA in liver was examined by RT-PCR. The results showed: (1) the body iron status in MG was kept at a high level compared to that of CG and SG, (2) Western blot showed DMT1 with iron responsive element (IRE) and FPN1 in duodenal epithelium which were higher in MG than that of CG and (3) the expression of hepatic hepcidin mRNA was down regulated in MG (p < 0.05). The data suggested that moderate exercise improved iron status and that was likely regulated by increased DMT1 with IRE and FPN1 expression. Hepcidin signaling pathway may involve in the regulation of duodenal iron absorption proteins. Xiang Lin Duan and Yan Zhong Chang share Senior Authorship  相似文献   

4.
目的:观察肥胖对小鼠十二指肠二价金属离子转运体(divalent metal transporter 1,DMT1)mRNA、膜铁转运蛋白(ferroportin1,FPN1)mRNA及蛋白表达的变化,探讨肥胖影响铁吸收的机制。方法 C57BL/6J小鼠随机分为正常对照组和肥胖模型组,每组6只,通过喂养高脂饲料喂养建立肥胖模型,对照组采用普通饲料饲养,实验干预期14周。建模完成后,采用实时荧光定量PCR方法检测小鼠十二指肠DMT1、FPN1 mRNA 的表达,用Western blot检测小鼠十二指肠FPN1蛋白表达。结果与对照组小鼠相比,肥胖模型组小鼠十二指肠DMT1、FPN1 mRNA表达以及FPN1蛋白表达水平降低,差异具有统计学意义( P <0.05)。结论肥胖会下调机体十二指肠DMT1、FPN1的表达,导致铁吸收不良,为进一步研究肥胖引起铁缺乏机制提供理论和实验依据。  相似文献   

5.
Regulatory effects of eotaxin on acute lung inflammatory injury   总被引:3,自引:0,他引:3  
Eotaxin, which is a major mediator for eosinophil recruitment into lung, has regulatory effects on neutrophil-dependent acute inflammatory injury triggered by intrapulmonary deposition of IgG immune complexes in rats. In this model, eotaxin mRNA and protein were up-regulated during the inflammatory response, resulting in eotaxin protein expression in alveolar macrophages and in alveolar epithelial cells. Ab-induced blockade of eotaxin in vivo caused enhanced NF-kappaB activation in lung, substantial increases in bronchoalveolar lavage levels of macrophage inflammatory protein (MIP)-2 and cytokine-induced neutrophil chemoattractant (CINC), and increased MIP-2 and CINC mRNA expression in alveolar macrophages. In contrast, TNF-alpha levels were unaffected, and IL-10 levels fell. Under these experimental conditions, lung neutrophil accumulation was significantly increased, and vascular injury, as reflected by extravascular leak of (125)I-albumin, was enhanced. Conversely, when recombinant eotaxin was administered in the same inflammatory model of lung injury, bronchoalveolar lavage levels of MIP-2 were reduced, as was neutrophil accumulation and the intensity of lung injury. In vitro stimulation of rat alveolar macrophages with IgG immune complexes greatly increased expression of mRNA and protein for MIP-2, CINC, MIP-1alpha, MIP-1beta, TNF-alpha, and IL-1beta. In the copresence of eotaxin, the increased levels of MIP-2 and CINC mRNAs were markedly diminished, whereas MIP-1alpha, MIP-1beta, TNF-alpha, and IL-1beta expression of mRNA and protein was not affected. These data suggest that endogenous eotaxin, which is expressed during the acute lung inflammatory response, plays a regulatory role in neutrophil recruitment into lung and the ensuing inflammatory damage.  相似文献   

6.
Previous studies have demonstrated an effect of estrogen on iron metabolism in peripheral tissues. The role of estrogen on brain iron metabolism is currently unknown. In this study, we investigated the effect and mechanism of estrogen on iron transport proteins. We demonstrated that the iron exporter ferroportin 1 (FPN1) and iron importer divalent metal transporter 1 (DMT1) were upregulated and iron content was decreased after estrogen treatment for 12 hr in primary cultured astrocytes. Hypoxia-inducible factor-1 alpha (HIF-1α) was upregulated, but HIF-2α remained unchanged after estrogen treatment for 12 hr in primary cultured astrocytes. In primary cultured neurons, DMT1 was downregulated, FPN1 was upregulated, iron content decreased, iron regulatory protein (IRP1) was downregulated, but HIF-1α and HIF-2α remained unchanged after estrogen treatment for 12 hr. These results suggest that the regulation of iron metabolism by estrogen in astrocytes and neurons is different. Estrogen increases FPN1 and DMT1 expression by inducing HIF-1α in astrocytes, whereas decreased expression of IRP1 may account for the decreased DMT1 and increased FPN1 expression in neurons.  相似文献   

7.
Despite a lack of transferrin, hypotransferrinemic (Hp) mice demonstrate an accumulation of iron in peripheral organs including the lungs. One potential candidate for such transferrin-independent uptake of iron is divalent metal transporter-1 (DMT1), an established iron transporter. We tested the hypothesis that increased concentrations of iron in the lungs of Hp mice are associated with elevations in DMT1 expression. With the use of inductively coupled plasma emission spectroscopy, measurements of nonheme iron confirmed significantly elevated concentrations in the lung tissue of Hp mice relative to the wild-type mice. Western blot analyses for the expression of two isoforms of DMT1 in the Hp mice relative to the wild-type animals demonstrated an elevation for the isoform that lacks an iron-responsive element (IRE) with significant decrements in the expression of +IRE DMT1. With the use of immunohistochemistry, -IRE DMT1 was localized to both airway epithelial cells and alveolar macrophages in wild-type mice. Staining appeared increased in both types of cells in the Hp mice. Elevated concentrations of both tissue nonheme iron and expression of -IRE DMT1 in the Hp mice were associated with increased quantities of -IRE mRNA. There was no difference between wild-type and homozygotic Hp mice in the amount of mRNA for DMT1 +IRE. We conclude that differences between Hp and wild-type mice in nonheme iron concentrations were accompanied by increases in the expression of -IRE DMT1. Increased expression of -IRE DMT1 in the lungs of the Hp mice could be responsible for elevated concentrations of the metal in these tissues.  相似文献   

8.
9.
Patients with alcoholic liver disease (ALD) often display disturbed iron indices. Hepcidin, a key regulator of iron metabolism, has been shown to be down‐regulated by alcohol in cell lines and animal models. This down‐regulation led to increased duodenal iron transport and absorption in animals. In this study, we investigated gene expression of duodenal iron transport molecules and hepcidin in three groups of patients with ALD (with anaemia, with iron overload and without iron overload) and controls. Expression of DMT1, FPN1, DCYTB, HEPH, HFE and TFR1 was measured in duodenal biopsies by using real‐time PCR and Western blot. Serum hepcidin levels were measured by using ELISA. Serum hepcidin was decreased in patients with ALD. At the mRNA level, expressions of DMT1, FPN1 and TFR1 genes were significantly increased in ALD. This pattern was even more pronounced in the subgroups of patients without iron overload and with anaemia. Protein expression of FPN1 paralleled the increase at the mRNA level in the group of patients with ALD. Serum ferritin was negatively correlated with DMT1 mRNA. The down‐regulation of hepcidin expression leading to up‐regulation of iron transporters expression in the duodenum seems to explain iron metabolism disturbances in ALD. Alcohol consumption very probably causes suppression of hepcidin expression in patients with ALD.  相似文献   

10.
Regulation of the metal transport protein divalent metal transporter-1 (DMT1) may contribute to the uptake and detoxification of iron by cells resident in the respiratory tract. Inflammation has been associated with an increased availability of this metal resulting in an oxidative stress. Because proinflammatory cytokines and LPS have been demonstrated to affect an elevated expression of DMT1 in a macrophage cell line, we tested the hypothesis that tumor necrosis factor (TNF)-alpha, interferon (IFN)-gamma, and LPS increase DMT1 expression in airway epithelial cells. We used RT-PCR to detect mRNA for both -IRE DMT1 and +IRE DMT1 in BEAS-2B cells. Treatment with TNF-alpha, IFN-gamma, or LPS increased both forms. Western blot analysis also demonstrated an increase in the expression of both isoforms of DMT1 after these treatments. Twenty-four hours after exposure of an animal model to TNF-alpha, IFN-gamma, or LPS, a significant increase in pulmonary expression of -IRE DMT1 was seen by immunohistochemistry; the level of +IRE DMT1 was too low in the lung to be visualized using this methodology. Finally, iron transport into BEAS-2B cells was increased after inclusion of TNF-alpha, IFN-gamma, or LPS in the media. We conclude that proinflammatory cytokines and LPS increase mRNA and protein expression of DMT1 in airway cells in vitro and in vivo. Furthermore, both -IRE and +IRE isoforms are elevated after exposures. Increased expression of this protein appears to be included in a coordinated response of the cell and tissue where the function might be to diminish availability of metal.  相似文献   

11.
We have reported that alpha 1-acid glycoprotein (AGP) gene expression was induced in lung tissue and in alveolar type II cells during pulmonary inflammatory processes, suggesting that local production of this immunomodulatory protein might contribute to the modulation of inflammation within the alveolar space. Because AGP may also be secreted by other cell types in the alveolus, we have investigated the expression and the regulation of the AGP gene in human and rat alveolar macrophages. Spontaneous AGP secretion by alveolar macrophages was increased 4-fold in patients with interstitial lung involvement compared with that in controls. In the rat, immunoprecipitation of [35S]methionine-labeled cell lysates showed that alveolar macrophages synthesize and secrete AGP. IL-1 beta had no effect by itself, but potentiated the dexamethasone-induced increase in AGP production. RNase protection assay demonstrated that AGP mRNA, undetectable in unstimulated cells, was induced by dexamethasone. Conditioned medium from LPS-stimulated macrophages as well as IL-1 beta had no effect by themselves, but potentiated the dexamethasone-induced increase in AGP mRNA levels. In addition to cytokines, PGE2 as well as dibutyryl cAMP increased AGP mRNA levels in the presence of dexamethasone. When AGP expression in other cells of the monocyte/macrophage lineage was examined, weak and no AGP production by human blood monocytes and by rat peritoneal macrophages, respectively, were observed. Our data showed that 1) AGP expression is inducible specifically in alveolar macrophages in vivo and in vitro; and 2) PGE2 and cAMP act as new positive stimuli for AGP gene expression.  相似文献   

12.
Mi  Xiaoqing  Li  Qijun  Wen  Xiaoming  Xie  Junxia  Wang  Youcui  Song  Ning 《Neurochemical research》2021,46(6):1502-1513

Alpha-synuclein plays a vital role in the pathology of Parkinson’s disease (PD). Spreading of α-synuclein in neighboring cells was believed to contribute to progression in PD. How α-synuclein transmission affects adjacent cells is not full elucidated. Here, we used recombinant α-synuclein to mimic intercellular transmitted α-synuclein in MES23.5 dopaminergic cells, to investigate whether and how it could modulate iron metabolism. The results showed that α-synuclein treatment up-regulated divalent metal transporter 1 (DMT1) and down-regulated iron transporter (FPN), also up-regulated iron regulatory protein 1 (IRP1) protein levels and hepcidin mRNA levels. Endocytosis inhibitor dynasore pretreatment completely abolished and even reversed the upregulation of DMT1 and IRP1 induced by α-synuclein, however, FPN down-regulation was partially blocked by dynasore. Autophagy-inducing agent rapamycin reversed DMT1 up-regulation and FPN down-regulation, and fully blocked the upregulation of IRP1. Elevated hepcidin levels induced by α-synuclein was fully blocked by dynasore pretreatment, however, even higher with rapamycin pretreatment. Alpha-synuclein treatment triggered endoplasmic reticulum (ER) stress. ER stress inducer thapsigargin induced similar responses elicited by α-synuclein. ER stress inhibitor salubrinal blocked the up-regulation of IRP1 and hepcidin, as well as DMT1 up-regulation and FPN down-regulation, also dramatically abolished cAMP-response elements binding protein phosphorylation induced by α-synuclein. Taken together, these finding indicated that extracellular α-synuclein could regulate cellular iron metabolism, probably mediated by ER stress. It provides novel evidence to elucidate the relationships between transmitted α-synuclein and iron metabolism disturbance in PD.

  相似文献   

13.
Ferroportin 1 (FPN1) is an iron export protein expressed in liver and duodenum, as well as in reticuloendothelial macrophages. Previously, we have shown that divalent metal transporter 1 (DMT1) is expressed in late endosomes and lysosomes of the kidney proximal tubule (PT), the nephron segment responsible for the majority of solute reabsorption. We suggested that following receptor mediated endocytosis of transferrin filtered by the glomerulus, DMT1 exports iron liberated from transferrin into the cytosol. FPN1 is also expressed in the kidney yet its role remains obscure. As a first step towards determining the role of renal FPN1, we localized FPN1 in the PT. FPN1 was found to be located in association with the basolateral PT membrane and within the cytosolic compartment. FPN1 was not expressed on the apical brush‐border membrane of PT cells. These data support a role for FPN1 in vectorial export of iron out of PT cells. Furthermore, under conditions of iron loading of cultured PT cells, FPN1 was trafficked to the plasma membrane suggesting a coordinated cellular response to export excess iron and limit cellular iron concentrations.  相似文献   

14.
Two iron transporters, divalent metal transporter1 (DMT1) and ferroportin1 (FPN1) have been identified; however, their role during infancy is unknown. We investigated DMT1, FPN1, ferritin, and transferrin receptor expression, iron absorption and tissue iron in iron-deficient rat pups, iron-deficient rat pups given iron supplements, and controls during early (day 10) and late infancy (day 20). With iron deficiency, DMT1 was unchanged and FPN1 was decreased (-80%) at day 10. Body iron uptake, mucosal iron retention, and total iron absorption were unchanged. At day 20, DMT1 increased fourfold and FPN1 increased eightfold in the low-Fe group compared with controls. Body iron uptake and total iron absorption were increased, and mucosal iron retention was decreased with iron deficiency. Iron supplementation normalized expression levels of the transporters, body iron uptake, mucosal iron retention, and total iron absorption of the low-Fe group to those of controls at day 20. In summary, the molecular mechanisms regulating iron absorption during early infancy differ from late infancy when they are similar to adult animals, indicating developmental regulation of iron absorption.  相似文献   

15.
Divalent metal transporter 1 (DMT1) is the major iron transporter responsible for duodenal dietary iron absorption and is required for erythropoiesis. Recent studies suggest that loss of DMT1 activity could be involved in metal-related lung injury, but little is known about the effects of iron status and DMT1 function on pulmonary inflammation. To better define the role of DMT1 and iron status in pulmonary inflammatory responses, we performed bronchoalveolar lavage (BAL) following intratracheal instillation of lipopolysaccharide (LPS) to the Belgrade rat, an animal model deficient in DMT1 function. In the basal state, the BAL fluid of Belgrade rats had more macrophages and higher lactate dehydrogenase, myeloperoxidase, albumin, and hemoglobin levels compared with heterozygote control rats. Following LPS instillation, the macrophage fraction relative to total BAL cell content and levels of albumin and IgM were increased in Belgrade rats compared with controls. In contrast, heterozygote Belgrade rats made anemic by diet-induced iron deficiency exhibited attenuated inflammatory responses to LPS. These combined results show that pulmonary inflammation can be modified by both DMT1 and iron status. Loss of DMT1 alters pulmonary responses necessary for lung homeostasis in the basal state and enhances LPS-induced inflammation and therefore would contribute to progression of lung injury.  相似文献   

16.

Background

There is a need for novel anti-inflammatory therapies to treat COPD. The liver X receptor (LXR) is a nuclear hormone receptor with anti-inflammatory properties.

Methods

We investigated LXR gene and protein expression levels in alveolar macrophages and whole lung tissue from COPD patients and controls, the effect of LXR activation on the suppression of inflammatory mediators from LPS stimulated COPD alveolar macrophages, and the effect of LXR activation on the induction of genes associated with alternative macrophage polarisation.

Results

The levels of LXR mRNA were significantly increased in whole lung tissue extracts in COPD patients and smokers compared to non-smokers. The expression of LXR protein was significantly increased in small airway epithelium and alveolar epithelium in COPD patients compared to controls. No differences in LXR mRNA and protein levels were observed in alveolar macrophages between patient groups. The LXR agonist GW3965 significantly induced the expression of the LXR dependent genes ABCA1 and ABCG1 in alveolar macrophage cultures. In LPS stimulated alveolar macrophages, GW3965 suppressed the production of CXCL10 and CCL5, whilst stimulating IL-10 production.

Conclusions

GW3965 did not significantly suppress the production of TNFα, IL-1β, or CXCL8. Our major finding is that LXR activation has anti-inflammatory effects on CXC10, CCL5 and IL-10 production from alveolar macrophages.  相似文献   

17.
LPS is known to be a potent activator of macrophages and induces the production of TNF-alpha and IL-1. However, the signaling events and regulatory mechanisms required for the activation of macrophages by LPS have not been resolved precisely. We show that LPS modulates its own response in macrophages. Proteose peptone-induced murine peritoneal macrophages (P-PEM) produce significant amount of TNF-alpha and IL-1 after stimulation with LPS. However, preexposure of macrophages to low doses (less than 1 ng/ml) of LPS renders them refractory to stimulation by a second round of LPS, as evaluated by production of TNF-alpha. The loss of sensitivity to a second round of LPS was selective for TNF-alpha production as the LPS-primed macrophages retained the ability to produce IL-1. Northern blot analysis was performed with total RNA obtained from control and LPS- (1 ng/ml) primed P-PEM after 3-h stimulation with a second round of LPS. The expression of TNF-alpha mRNA was inhibited in LPS-primed P-PEM, whereas the expression of IL-1 beta mRNA was the same in control and LPS-primed P-PEM, consistent with the data of biologic activities of these two cytokines. Zymosan-induced TNF-alpha production was the same in control and LPS-primed macrophages, indicating that not all of the pathways required for TNF-alpha production were affected by LPS priming. Monokines such as human (h) rIL-1 alpha, hrTNF-alpha, hrIL-6, and murine rIFN-beta could not substitute for the action of low doses of LPS, and addition of indomethacin could not restore TNF-alpha production. These results suggest that exposure of macrophages to low doses of LPS suppresses the production of TNF-alpha, but not of IL-1, by inhibiting the expression of mRNA through a noncyclooxygenase-dependent mechanism. Thus, LPS-induced production of TNF-alpha and IL-1 in macrophages are differently regulated.  相似文献   

18.
Ferroptosis, a newly discovered type of regulated cell death, has been implicated in numerous human diseases. Idiopathic pulmonary fibrosis (IPF) is a progressive and ultimately fatal interstitial lung disease with poor prognosis and limited treatment options. Emerging evidence has linked ferroptosis and glutamate-determined cell fate which is considered a new light on the etiology of pulmonary fibrosis. Here, we observed that N-methyl d-aspartate receptor (NMDAR) activation promoted cell damage and iron deposition in MLE-12 cells in a dose-, time-, and receptor-dependent manner. This mediated substantial Ca2+ influx, upregulated the expression levels of nNOS and IRP1, and affected intracellular iron homeostasis by regulating the expression of iron transport-related proteins (i.e., TFR1, DMT1, and FPN). Excessive iron load promoted the continuous accumulation of total intracellular and mitochondrial reactive oxygen species, which ultimately led to ferroptosis. NMDAR inhibition reduced lung injury and pulmonary fibrosis in bleomycin-induced mice. Bleomycin stimulation upregulated the expression of NMDAR1, nNOS, and IRP1 in mouse lung tissues, which ultimately led to iron deposition via regulation of the expression of various iron metabolism-related genes. NMDAR activation initiated the pulmonary fibrosis process by inducing iron deposition in lung tissues and ferroptosis of alveolar type II cells. Our data suggest that NMDAR activation regulates the expression of iron metabolism-related genes by promoting calcium influx, increasing nNOS and IRP1 expression, and increasing iron deposition by affecting cellular iron homeostasis, ultimately leading to mitochondrial damage, mitochondrial dysfunction, and ferroptosis. NMDAR activation-induced ferroptosis of alveolar type II cells might be a key event to the initiation of pulmonary fibrosis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号