首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Objective: To quantify plasma concentrations of hormones that regulate energy homeostasis in order to establish possible mechanisms for greater weight loss after Roux‐en‐Y gastric bypass (RYGBP) compared with gastric banding (BND). Research Methods and Procedures: Four groups of women were studied: lean (n = 8; mean BMI, 21.6 kg/m2); BND (n = 9; BMI, 35.8; 25% weight loss), RYGBP (n = 9; BMI, 34.2; 36% weight loss), and controls matched for BMI to the surgical groups (n = 11; BMI, 34.4). Results: Fasting total peptide YY (PYY) and PYY(3–36) immunoreactivity were similar among all groups, but the postprandial response in the RYGBP group was exaggerated, such that 30 minutes after the meal, total and PYY(3–36) levels were 2‐ to 4‐fold greater compared with all other groups. Maximal postprandial suppression of total ghrelin was blunted in the BND group (13%) compared with RYGBP (27%). Postprandial suppression of octanoylated ghrelin was also less in BND (29%) compared with RYGBP (56%). Fasting insulin was lower in RYGBP (6.6 μU/mL) compared with BND (10.0 μU/mL). Compared with lean controls, leptin concentrations were significantly higher in BND but not in RYGBP. There was a greater increase in post‐meal satiety in the RYGBP group compared with BND and overweight controls. Discussion: The differences between RYGBP and BND subjects in postprandial concentrations of PYY and ghrelin would be expected to promote increased satiety and earlier meal termination in RYGBP and may aid in greater weight loss. The differences in insulin and leptin concentrations associated with these procedures may also reflect differences in insulin sensitivity and energy partitioning.  相似文献   

2.
Objective: The objective was to evaluate ghrelin and growth hormone (GH) interactions and responses to a growth hormone‐releasing hormone (GHRH)/arginine test in severe obesity before and after surgically‐induced weight loss. Research Methods and Procedures: Our study population included 11 severely obese women 39 ± 12 years of age, with a mean BMI of 48.6 ± 2.4 kg/m2, re‐studied in a phase of stabilized body weight, with a BMI of 33.4 ± 1.2 kg/m2, 18 months after having successfully undergone biliopancreatic diversion (BPD). A GHRH/arginine test was performed before and 18 months after BPD to evaluate ghrelin and GH interactions. Active ghrelin, measured by radioimmunoassay (RIA), and GH, measured by chemiluminescence assay, were assayed before and after the GHRH/arginine test. Results: Fasting serum GH levels and GH area under the curve (AUC) significantly increased from 0.2 ± 0.05 ng/mL to 1 ± 0.3 ng/mL (p < 0.05) and from 514.76 ± 98.7 ng/mL for 120 minutes to 1957.3 ± 665.1 ng/mL for 120 minutes after bariatric surgery (p < 0.05), respectively. Although no significant change in fasting ghrelin levels was observed (573 ± 77.9 before BPD vs. 574.1 ± 32.7 after BPD), ghrelin AUC significantly increased from ?3253.9 ± 2180.9 pg/mL for 120 minutes to 1142.3 ± 916.4 pg/mL for 120 minutes after BPD (p < 0.05). Fasting serum insulin‐like growth factor (IGF)‐1 concentration did not change significantly (133.6 ± 9.9 ng/mL before vs. 153.3 ± 25.2 ng/mL after BPD). Discussion: Our study demonstrates that the mechanisms involved in ghrelin and GH secretion after the secretagogue stimulus (GHRH/arginine) are consistent with patterns observed in other populations.  相似文献   

3.
Objective: To prospectively evaluate the short‐term effects of Roux‐en‐Y gastric bypass (RYGBP) on ghrelin secretion and its relevance on food intake and body weight changes. Research Methods and Procedures: Ghrelin response to a standardized test meal was evaluated in eight obese patients (BMI, 43.5 to 59.1 kg/m2) before and 6 weeks after RYGBP. Ghrelin response was compared with that of an age‐matched group of six normal weight individuals (BMI, 19.6 to 24.9 kg/m2). Results: Fasting serum ghrelin levels were lower in obese subjects compared with controls (p < 0.05). Meal ingestion significantly suppressed ghrelin concentration in controls (p < 0.05) and obese subjects (p < 0.05), albeit to a lesser degree in the latter group (p < 0.05). Despite a 10.3 ± 1.5% weight loss, fasting serum ghrelin levels were paradoxically further decreased in obese subjects 6 weeks after RYGBP (p < 0.05). Moreover, at this time‐point, food intake did not elicit a significant ghrelin suppression. The changes in ghrelin secretion after RYGBP correlated with changes in insulin sensitivity (p < 0.05) and caloric intake (p < 0.05). Discussion: This study showed that the adaptive response of ghrelin to body weight loss was already impaired 6 weeks after RYGBP. Our study provides circumstantial evidence for the potential role of ghrelin in the negative energy balance in RYGBP‐operated patients.  相似文献   

4.
Objective: It has been hypothesized that increased free insulin‐like growth factor (IGF)‐I levels generated from an increase in IGF‐binding protein (IGFBP) protease activity could be the inhibitory mechanism for the decreased growth hormone (GH) secretion observed in obese subjects. Research Methods and Procedures: In this study, we determined basal and 24‐hour levels of free IGF‐I and ‐II, total IGF‐I and ‐II, IGFBP‐1, as well as basal IGFBP‐2, ?3, and ?4, acid‐labile subunit (ALS), IGFBP‐1, ?2, and ?3 protease activity, and 24‐hour GH release in obese women before and after a diet‐induced weight loss. Sixteen obese women (age, 29.5 ± 1.4 years) participated in a weight loss program and 16 age‐matched non‐obese women served as controls. Results: Circulating free IGF‐I and 24‐hour GH release were significantly decreased in obese women at before weight loss compared with non‐obese women (1.29 ± 0.12 vs. 0.60 ± 0.09 μg/L; p < 0.001 and 862 ± 90 vs. 404 ± 77 mU/24 hours; p < 0.001, respectively). Free IGF‐I and 24‐hour GH release were not inversely correlated to each other. IGFBP‐1 and ?2 levels were decreased, whereas ALS, IGFBP‐3 and ?4, and IGFBP‐1, ?2, and ?3 protease activity were similar in obese and non‐obese women. Eight of the 16 obese women achieved an average weight loss of 30 ± 5 kg during 26 to 60 weeks of dieting. After the considerable weight loss, significant differences in free IGF‐I, GH release, and IGFBP‐1 and ?2 levels were no longer present between previously obese and non‐obese women. Discussion: We showed that circulating free IGF‐I is markedly decreased in severely obese women and does not per se mediate the concomitant hyposomatotropism. The decreased levels of free IGF‐I seem to be transient and restored to normal levels after weight loss.  相似文献   

5.
Objective: Ghrelin is an enteric peptide with strong orexigenic and adipogenic effects. Plasma ghrelin levels are decreased in obese subjects but increase after weight loss; this increase is not observed after Roux‐en‐Y gastric bypass (RYGB). Prospective and comparative data after adjustable silicone gastric banding (ASGB) have not been reported previously. Research Methods and Procedures: Overnight fasting plasma ghrelin concentration was measured in morbidly obese subjects at baseline and 3, 6, 12, and 24 months after ASGB (n = 8) or RYGB (n = 5) and in nonoperated controls (n = 7). Results: After RYGB, body weight (BW) decreased by 29.5 ± 5.5 kg (mean ± SE, p < 0.001), whereas plasma ghrelin failed to increase significantly (+167 ± 119 pg/mL, not significant). In contrast, after ASGB, BW decreased less (by 22.8 ± 5.9 kg; p < 0.001), and plasma ghrelin significantly increased by 377 ± 201 pg/mL (p = 0.025). Neither BW nor plasma ghrelin changed in nonoperated controls. Plasma leptin decreased in both operated groups (similarly p < 0.05) but not in nonoperated controls. Plasma growth hormone and insulin‐like growth factor 1 were not correlated with changes in plasma ghrelin concentrations. Discussion: Plasma ghrelin levels failed to increase during substantial weight loss after RYGB, but did increase in response to lesser weight loss after ASGB. These findings suggest that the plasma ghrelin response after weight loss is impaired after exclusion of major parts of the stomach and the duodenum (RYGB), and the smaller long‐term weight loss after ASGB compared with RYGB may be due, at least in part, to an absent increase in plasma ghrelin after RYGB.  相似文献   

6.
Background: Bariatric surgery markedly improves glucose homeostasis in patients with type 2 diabetes even before any significant weight loss is achieved. Procedures that involve bypassing the proximal small bowel, such as Roux‐en‐Y gastric bypass (RYGBP), are more efficient than gastric restriction procedures such as gastric banding (GB). Objective: To evaluate the effects of RYGBP and GB on postprandial glucose kinetics and gastro‐intestinal hormone secretion after an oral glucose load. Methods and Procedures: This study was a cross‐sectional comparison among non‐diabetic, weight‐stable women who had undergone RYGBP (n = 8) between 9 and 48 months earlier or GB (n = 6) from 25 to 85 months earlier, and weight‐ and age‐matched control subjects (n = 8). The women were studied over 4 h following ingestion of an oral glucose load. Total glucose and meal glucose kinetics were assessed using glucose tracers and plasma insulin, and gut hormone concentrations were simultaneously monitored. Results: Patients who had undergone RYGBP showed a a more rapid appearance of exogenous glucose in the systemic circulation and a shorter duration of postprandial hyperglycemia than patients who had undergone GB and C. The response in RYGBP patients was characterized by early and accentuated insulin response, enhanced postprandial levels of glucagon‐like peptide‐1 (GLP‐1) and polypeptide YY (PYY), and greater postprandial suppression of ghrelin. Discussion: These findings indicate that RYGBP is associated with alterations in glucose kinetics and glucoregulatory hormone secretion. These alterations are probably secondary to the anatomic rearrangement of the foregut, given the fact that they are not observed after GB. Increased PYY and GLP‐1 concentrations and enhanced ghrelin suppression are compatible with reduced food intake after RYGBP.  相似文献   

7.
Objective: Ghrelin is postulated to be an orexigenic signal that promotes weight regain after weight loss (WL). However, it is not known whether this putative effect of ghrelin is sustained after weight stabilization. The objective of this study was to investigate the relationship of plasma ghrelin concentrations to active WL and weight maintenance in obese subjects. Research Methods and Procedures: This study was a randomized clinical trial, with a 12‐month follow‐up period. Obese Mexican‐American women matched for age and BMI were randomized to a 12‐month WL program (n = 25) or no intervention (controls, n = 23). Interventions included diet, exercise, and orlistat. Body weight and fasting ghrelin, leptin, insulin, and glucose concentrations were measured at baseline and 6 and 12 months. Results: The WL group lost 8.5% of body weight after 6 months and maintained the new weight for the next 6 months. Ghrelin concentrations increased significantly at 6 months but returned to baseline at 12 months. Baseline ghrelin concentrations were directly related to the degree of WL achieved after 12 months. Controls experienced no change in BMI or ghrelin levels. There were no associations between plasma ghrelin and leptin or insulin concentrations. Discussion: Consistent with previous results, ghrelin rises in response to WL, perhaps as a counterregulatory mechanism. However, the present results indicate that ghrelin concentrations return to baseline with sustained weight maintenance, suggesting that its effects are unlikely to regulate long‐term energy balance. Baseline ghrelin concentrations are related to the degree of WL that can be achieved by active weight reduction.  相似文献   

8.
Objective: Human obesity is characterized by growth hormone (GH) deficiency, which appears primarily related to a central pattern of obesity and is reverted on weight loss. As yet, the metabolic basis of the GH deficiency remains to be elucidated. The recently discovered endogenous ligand for the GH secretagogue receptor, ghrelin, stimulates GH secretion when administered to rodents or healthy humans. It may thus be hypothesized that low ghrelin levels underlie the hyposomatropism in obesity. Research Methods and Procedures: We have tested this hypothesis in individuals with widely varying body mass and fat distribution and evaluated whether the improved GH concentrations on weight loss are associated with enhanced ghrelin levels. Results: Both plasma GH and ghrelin levels were reciprocally related with body mass index (r = −0.67, p < 0.001). However, whereas 24-hour GH secretion was negatively related to the visceral fat area (r = −0.72, p < 0.01), ghrelin levels showed a positive relationship with the visceral fat area (r = 0.49, p < 0.02). Weight loss resulted in increased GH secretion (median 24-hour GH area under the curve: 1983 vs. 4024 mU/day before and after weight loss, respectively; p < 0.01) but did not affect ghrelin levels. No relationship could be found between GH and ghrelin plasma levels in obese subjects when comparing diurnal concentration profiles. Discussion: We showed that plasma ghrelin and GH levels are both reciprocally related with body mass index, but no causative relationship could be demonstrated between low ghrelin levels and the hyposomatropism in human obesity.  相似文献   

9.
Objective: The administration of the growth hormone (GH) secretagogue GH‐releasing peptide (GHRP)‐2, like ghrelin, increases food intake (FI) in lean healthy men. The aim of this study was to investigate whether this effect occurs in obese subjects and whether it is dose‐dependent. Research Methods and Procedures: Nineteen subjects (10 lean and nine obese), all healthy and weight stable, received a double‐blind randomized subcutaneous infusion of GHRP‐2 at high dose (HD; 1 μg/kg per hour), low dose (0.1 μg/kg per hour), or placebo for 270 minutes over three study visits. Blood for hormone assays was collected through an intravenous forearm catheter. Hunger and fullness were rated on visual analog scales before and after a fixed breakfast (320 kcal at 120 minutes) and a buffet lunch at 240 minutes. Before lunch, subjects received taped instructions to eat as much as they wanted. Results: GHRP‐2 infusion significantly increased ad libitum FI in a dose‐dependent manner by 10.2 ± 3.9% at low dose (p = 0.011) and by 33.5 ± 5.8% at HD (p = 0.000) compared with placebo. Obesity status did not influence the effect of GHRP‐2 on FI. All subjects had greater ratings of appetite before but similar levels of fullness after the meal with the HD GHRP‐2. Serum GH levels increased dose dependently in all subjects. Discussion: The dual stimulatory effect of GHRP‐2 on FI and human GH is dose dependent. Obese individuals retain their ability to respond to GHRP‐2 both in terms of FI and human GH.  相似文献   

10.
Lifespan in rodents is prolonged by caloric restriction (CR) and by mutations affecting the somatotropic axis. It is not known if CR can alter the age‐associated decline in growth hormone (GH), insulin‐like growth factor (IGF)‐1 and GH secretion. To evaluate the effect of CR on GH secretory dynamics; forty‐three young (36.8 ± 1.0 years), overweight (BMI 27.8 ± 0.7) men (n = 20) and women (n = 23) were randomized into four groups; control = 100% of energy requirements; CR = 25% caloric restriction; CR + EX = 12.5% CR + 12.5% increase in energy expenditure by structured exercise; LCD = low calorie diet until 15% weight reduction followed by weight maintenance. At baseline and after 6 months, body composition (DXA), abdominal visceral fat (CT) 11 h GH secretion (blood sampling every 10 min for 11 h; 21:00–08:00 hours) and deconvolution analysis were measured. After 6 months, weight (control: ?1 ± 1%, CR: ?10 ± 1%, CR + EX: ?10 ± 1%, LCD: ?14 ± 1%), fat mass (control: ?2 ± 3%, CR: ?24 ± 3%, CR + EX: ?25 ± 3%, LCD: ?31 ± 2%) and visceral fat (control: ?2 ± 4%, CR: ?28 ± 4%, CR + EX: ?27 ± 3%, LCD: ?36 ± 2%) were significantly (P < 0.001) reduced in the three intervention groups compared to control. Mean 11 h GH concentrations were not changed in CR or control but increased in CR + EX (P < 0.0001) and LCD (P < 0.0001) because of increased secretory burst mass (CR + EX: 34 ± 13%, LCD: 27 ± 22%, P < 0.05) and amplitude (CR + EX: 34 ± 14%, LCD: 30 ± 20%, P < 0.05) but not to changes in secretory burst frequency or GH half‐life. Fasting ghrelin was significantly increased from baseline in all three intervention groups; however, total IGF‐1 concentrations were increased only in CR + EX (10 ± 7%, P < 0.05) and LCD (19 ± 4%, P < 0.001). A 25% CR diet for 6 months does not change GH, GH secretion or IGF‐1 in nonobese men and women.  相似文献   

11.
Objective: Influences of gender and body weight on the hormonal response to eating are not well understood. This study was conducted to determine a convenient time‐point to evaluate peak postprandial hormone responses and to test the hypothesis that gender and BMI interact to produce differences in postprandial secretion of selected humoral markers implicated in hunger and satiety. Research Methods and Procedures: Fasting blood glucose, insulin, leptin, ghrelin, glucagon‐like peptide‐1, and glucagon were measured in normal‐weight (20 ≤ BMI < 25 kg/m2) men (n = 10) and women (n = 9) and obese (BMI ≥ 30 kg/m2) men (n = 9) and women (n = 11). A standard liquid meal was consumed, and humoral measurements were repeated every 10 minutes for 1 hour. Data were analyzed using repeated measures ANOVA with BMI and gender as main effects. Results: Obese subjects had delayed peak insulin responses (p = 0.004), whereas obese men had a delayed nadir ghrelin response (p = 0.05). Obese subjects had higher and more sustained postprandial glucose (p = 0.02), and greater fasting (p = 0.0004) and postprandial insulin (p = 0.0001). Ghrelin decreased after the meal (p = 0.003); the percent change from fasting tended to be reduced in obese subjects (p = 0.07). Men had greater fasting (p = 0.02) and postprandial (p = 0.03) glucagon and a subtle postprandial decline in plasma leptin (p = 0.01). Discussion: Peak hormone responses occurred 20 to 40 minutes after eating. Measurements made during this interval may be useful in evaluating postprandial response magnitude. Peak/nadir responses and time courses of postprandial responses are influenced by gender and BMI. Nutritional studies need to account for variability introduced by these factors.  相似文献   

12.

Context

Metabolic substrates and nutritional status play a major role in growth hormone (GH) secretion. Uncovering the mechanisms involved in GH secretion following oral glucose (OG) administration in normal and obese patients is a pending issue.

Objective

The aim of this study was to investigate GH after OG in relation with adiposity, insulin secretion and action, and ghrelin secretion in obese and healthy women, to further elucidate the mechanism of GH secretion after OG and the altered GH secretion in obesity.

Participants and Methods

We included 64 healthy and obese women. After an overnight fast, 75 g of OG were administered; GH, glucose, insulin and ghrelin were obtained during 300 minutes. Insulin secretion and action indices and the area under the curve (AUC) were calculated for GH, glucose, insulin and ghrelin. Univariate and multivariate linear regression analyses were employed.

Results

The AUC of GH (μg/L•min) was lower in obese (249.8±41.8) than in healthy women (490.4±74.6), P=0.001. The AUC of total ghrelin (pg/mL•min) was lower in obese (240995.5±11094.2) than in healthy women (340797.5±37757.5), P=0.042. There were significant correlations between GH secretion and the different adiposity, insulin secretion and action, and ghrelin secretion indices. After multivariate analysis only ghrelin AUC remained a significant predictor for fasting and peak GH.  相似文献   

13.
Patients with craniopharyngioma (CP), an embryological tumor located in the hypothalamic and/or pituitary region, often suffer from uncontrolled eating and severe obesity. We aimed to compare peripherally secreted hormones involved in controlling food intake in normal weight and obese children and adolescents with CP vs. controls. Plasma insulin, glucose, total ghrelin, and peptide‐YY (PYY) levels were assessed under fasting conditions as well as 60 min after liquid mixed meal in four groups: Normal weight (n = 12) and obese (n = 15) CP patients, and 12 normal weight and 15 obese otherwise healthy BMI‐, gender‐ and age‐matched controls. Homeostasis model assessment of insulin resistance (HOMAIR), as well as quantitative insulin sensitivity check index (QUICKI) were calculated. Obese CP subjects had significantly higher HOMAIR, higher baseline and postmeal insulin but lower ghrelin levels, weaker postmeal changes for PYY, and lower QUICKI compared to obese controls. QUICKI data from all CP patients correlated positively with ghrelin and PYY % postmeal changes (ghrelin: r = 0.38, P = 0.023; PYY r = 0.40, P = 0.017) and negatively with standard deviation score‐BMI (SDS‐BMI: r = ?0.49, P = 0.002). Tumor growth of 87% obese and 58% of normal weight CP patients affected the hypothalamic area which was associated with higher SDS‐BMI and weaker % postmeal ghrelin changes (P = 0.014) compared to CP patients without hypothalamic tumor involvement. Blunted postmeal ghrelin and PYY responses in obese CP subjects are likely due to their higher degree of insulin resistance and lower insulin sensitivity compared to matched obese controls. Thus, insulin resistance in CP patients seems to affect eating behavior by affecting meal responses of gut peptides.  相似文献   

14.
Objective: To evaluate the relationship between fasting plasma concentrations of ghrelin and gastric emptying in obese individuals compared with lean subjects. Research Methods and Procedures: We included 20 obese patients (9 men and 11 women, BMI > 30 kg/m2) and 16 nonobese control subjects (7 men and 9 women, BMI ≤ 25 kg/m2). Gastric emptying of solids (egg sandwich labeled with radionuclide) was measured at 120 minutes with (99m)Tc‐single photon emission computed tomography imaging. Ghrelin and leptin were analyzed by radioimmunoassay and ELISA methods, respectively. Results: The gastric half‐emptying time was similar in obese men and women (67.8 ± 14.79 vs. 66.6 ± 13.56 minutes) but significantly shorter (p < 0.001) than in the control population (men: 88.09 ± 11.72 minutes; women: 97.25 ± 10.31 minutes). Ghrelin levels were significantly lower in obese subjects (131.37 ± 47.67 vs. 306.3 ± 45.52 pg/mL; p < 0.0001 in men and 162.13 ± 32.95 vs. 272.8 ± 47.77 pg/mL; p < 0.0001 in women). A negative correlation between gastric emptying and fasting ghrelin levels was observed only in lean subjects (y = ?0.2391x + 157.9; R2 = 0.95). Also, in the lean group, ghrelin was the only significant independent determinant of gastric emptying, explaining 98% of the variance (adjusted R2) in a multiple regression analysis. Discussion: This report shows that, in humans, gastric emptying is faster in obese subjects than in lean controls and that, whereas ghrelin is the best determinant of gastric kinetics in healthy controls, this action is lost in obesity.  相似文献   

15.
Objective: Postprandial glucagon‐like peptide 1 (GLP‐1) release seems to be attenuated in obese subjects. Results on whether weight loss improves GLP‐1 release are contradictory. The aim of this study was to further investigate the effect of weight loss on basal and postprandial GLP‐1 release in overweight/obese subjects. Research Methods and Procedures: Thirty‐two overweight/obese subjects participated in a repeated measurement design before (BMI, 30.3 ± 2.8 kg/m2; waist circumference, 92.6 ± 7.8 cm; hip circumference, 111.1 ± 7.4 cm) and after a weight loss period of 6 weeks (BMI, 28.2 ± 2.7 kg/m2; waist circumference, 85.5 ± 8.5 cm; hip circumference, 102.1 ± 9.2 cm). During weight loss, subjects received a very‐low‐calorie diet (Optifast) to replace three meals per day. Subjects came to the laboratory fasted, and after a baseline blood sample, received a standard breakfast (1.9 MJ). Postprandially, blood samples were taken every one‐half hour relative to intake for 120 minutes to determine GLP‐1, insulin, glucose, and free fatty acids from plasma. Appetite ratings were obtained with visual analog scales. Results: After weight loss, postprandial GLP‐1 concentrations at 30 and 60 minutes were significantly lower than before weight loss (p < 0.05). Glucose concentrations were also lower, and free fatty acids were higher compared with before weight loss. Ratings of satiety were increased, and hunger scores were decreased after weight loss (p < 0.05). Discussion: In overweight/obese subjects, GLP‐1 concentrations after weight loss were decreased compared with before weight loss, and nutrient‐related stimulation was abolished. This might be a response to a proceeding negative energy balance. Satiety and GLP‐1 seem to be unrelated in the long term.  相似文献   

16.
The objective of the study was to examine the association between a functional 4 bp proinsulin gene insertion polymorphism (IVS‐69), fasting insulin concentrations, and body composition in black South African women. Body composition, body fat distribution, fasting glucose and insulin concentrations, and IVS‐69 genotype were measured in 115 normal‐weight (BMI <25 kg/m2) and 138 obese (BMI ≥30 kg/m2) premenopausal women. The frequency of the insertion allele was significantly higher in the class 2 obese (BMI ≥35kg/m2) compared with the normal‐weight group (P = 0.029). Obese subjects with the insertion allele had greater fat mass (42.3 ± 0.9 vs. 38.9 ± 0.9 kg, P = 0.034) and fat‐free soft tissue mass (47.4 ± 0.6 vs. 45.1 ± 0.6 kg, P = 0.014), and more abdominal subcutaneous adipose tissue (SAT, 595 ± 17 vs. 531 ± 17 cm2, P = 0.025) but not visceral fat (P = 0.739), than obese homozygotes for the wild‐type allele. Only SAT was greater in normal‐weight subjects with the insertion allele (P = 0.048). There were no differences in fasting insulin or glucose levels between subjects with the insertion allele or homozygotes for the wild‐type allele in the normal‐weight or obese groups. In conclusion, the 4 bp proinsulin gene insertion allele is associated with extreme obesity, reflected by greater fat‐free soft tissue mass and fat mass, particularly SAT, in obese black South African women.  相似文献   

17.
Objective: To assess the main determinant of serum leptin concentration changes in morbidly obese patients treated by banded vertical gastroplasty. Research Methods and Procedures: Serum leptin and insulin concentrations, insulin resistance, BMI, body weight, and body fat mass in 18 obese women and 8 obese men treated by vertical banded gastroplasty were studied. Lean women and men subjects were used as controls. Results: Before surgery, serum leptin and insulin concentrations and insulin resistance index were significantly higher in morbidly obese patients than in control subjects. BMI, body fat mass, and serum triacylglycerol concentrations were also significantly higher in obese than in lean subjects. All of these parameters gradually decreased during 50 weeks after surgery. Univariate regression analysis displayed significant correlations between the following: serum leptin concentration and BMI (and body fat mass), serum leptin concentration and serum insulin concentration, and serum leptin concentration and insulin resistance index. Multivariate regression analysis indicated that only BMI was independently correlated with the decrease in serum leptin concentration. Discussion: Obtained data suggest the following: 1) vertical banded gastroplasty causes reduction of body weight, serum leptin and insulin concentration, insulin resistance, and serum triacylglycerol concentration; and 2) BMI is the main determinant of the circulating leptin concentration in morbidly obese women after anti‐obesity surgery.  相似文献   

18.
Objective: To evaluate insulin action on substrate use and insulinemia in nondiabetic class III obese patients before and after weight loss induced by bariatric surgery. Research Methods and Procedures: Thirteen obese patients (four men/nine women; BMI = 56.3 ± 2.7 kg/m2) and 13 lean subjects (five men/eight women; BMI = 22.4 ± 0.5 kg/m2) underwent euglycemic clamp, oral glucose tolerance test, and indirect calorimetry. The study was carried out before (Study I) and after (~40% relative to initial body weight; Study II) weight loss induced by Roux‐en‐Y Gastric bypass with silastic ring surgery. Results: The obese patients were insulin resistant (whole‐body glucose use = 19.7 ± 1.5 vs. 51.5 ± 2.4 μmol/min per kilogram fat‐free mass, p < 0.0001) and hyperinsulinemic in the fasting state (332 ± 86 vs. 85 ± 5 pM, p < 0.0001) and during the oral glucose tolerance test compared with the lean subjects. Fasting plasma insulin normalized after weight loss, whereas whole‐body glucose use increased (35.5 ± 3.7 μmol/min per kilogram fat‐free mass, p < 0.05 vs. Study I). The higher insulin clearance of obese did not change during the follow‐up period. Insulin‐induced glucose oxidation and nonoxidative glucose disposal were lower in the obese compared with the lean group (all p < 0.05). In Study II, the former increased slightly, whereas nonoxidative glucose disposal reached values similar to those of the control group. Fasting lipid oxidation was higher in the obese than in the control group and did not change significantly in Study II. The insulin effect on lipid oxidation was slightly improved (p = 0.01 vs. Study I). Discussion: The rapid weight loss after surgery in obese class III patients normalized insulinemia and improved insulin sensitivity almost entirely due to glucose storage, whereas fasting lipid oxidation remained high.  相似文献   

19.
Objective: The purpose of this study was to determine whether chronic energy deficiency achieved with caloric restriction combined with exercise is associated with changes in the 24‐hour profile of ghrelin in non‐obese, pre‐menopausal women. Research Methods and Procedures: Twelve non‐obese (BMI = 18 to 25 kg/m2), non‐exercising women (age, 18 to 24 years) were randomly assigned to a non‐exercising control group or a diet and exercise group. The 3‐month diet and exercise intervention yielded a daily energy deficit of ?45.7 ± 12.4%. Serial measurements were made of body composition, energy balance, and feelings of fullness. Repeated blood sampling over 24 hours to measure ghrelin occurred before and after the study. Results: Significant decreases in body weight, body fat, and feelings of fullness were observed in only the energy‐deficit group (p < 0.05); significant changes in the following ghrelin features were found in only the deficit group (p < 0.05): elevations in baseline (+353 ± 118 pg/mL), lunch peak (+370 ± 102 pg/mL), dinner peak (+438 ± 149 pg/mL), nocturnal rise (+269 ± 77 pg/mL), and nocturnal peak (+510 ± 143 pg/mL). In addition, we found a larger dinner decline (?197 ± 52 pg/mL) and negative correlations between changes in the ghrelin dinner profile and changes in body weight (R = 0.784), 24‐hour intake (R = 0.67), energy deficiency (R = 0.762), and feelings of fullness (R = 0.648; p < 0.05). Discussion: Changes in ghrelin concentrations across the day after weight loss are closely associated with other physiological adaptations to energy deficiency, further supporting the role of ghrelin as a countermeasure to restore energy balance.  相似文献   

20.
Objective: Leptin concentrations increase with obesity and tend to decrease with weight loss. However, there is large variation in the response of serum leptin levels to decreases in body weight. This study examines which endocrine and body composition factors are related to changes in leptin concentrations following weight loss in obese, postmenopausal women. Research Methods and Procedures: Body composition (DXA), visceral obesity (computed tomography), leptin, cortisol, insulin, and sex hormone‐binding globulin (SHBG) concentrations were measured in 54 obese (body mass index [BMI] = 32.0 ± 4.5 kg/m2; mean ± SD), women (60 ± 6 years) before and after a 6‐month hypocaloric diet (250 to 350 kcal/day deficit). Results: Body weight decreased by 5.8 ± 3.4 kg (7.1%) and leptin levels decreased by 6.6 ± 11.9 ng/mL (14.5%) after the 6‐month treatment. Insulin levels decreased 10% (p < 0.05), but mean SHBG and cortisol levels did not change significantly. Relative changes in leptin with weight loss correlated positively with relative changes in body weight (r = 0.50, p < 0.0001), fat mass (r = 0.38, p < 0.01), subcutaneous fat area (r = 0.52, p < 0.0001), and with baseline values of SHBG (r = 0.38, p < 0.01) and baseline intra‐abdominal fat area (r = ?0.27, p < 0.06). Stepwise multiple regression analysis showed that baseline SHBG levels (r2 = 0.24, p < 0.01), relative changes in body weight (cumulative r2 = 0.40, p < 0.05), and baseline intra‐abdominal fat area (cumulative r2 = 0.48, p < 0.05) were the only independent predictors of the relative change in leptin, accounting for 48% of the variance. Discussion: These results suggest that obese, postmenopausal women with a lower initial SHBG and more visceral obesity have a greater decrease in leptin with weight loss, independent of the amount of weight lost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号