首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Clenbuterol, a compound classified as a beta2-adrenoceptor (AR) agonist, has been employed in combination with left ventricular assist devices (LVADs) to treat patients with severe heart failure. Previous studies have shown that chronic administration of clenbuterol affects cardiac excitation-contraction coupling. However, the acute effects of clenbuterol and the signaling pathway involved remain undefined. We investigated the acute effects of clenbuterol on isolated ventricular myocyte sarcomere shortening, Ca2+ transients, and L-type Ca2+ current and compared these effects to two other clinically used beta2-AR agonists: fenoterol and salbutamol. Clenbuterol (30 microM) produced a negative inotropic response, whereas fenoterol showed a positive inotropic response. Salbutamol had no significant effects. Clenbuterol reduced Ca2+ transient amplitude and L-type Ca2+ current. Selective beta1-AR blockade did not affect the action of clenbuterol on sarcomere shortening but significantly reduced contractility in the presence of fenoterol and salbutamol (P < 0.05). Incubation with 2 microg/ml pertussis toxin significantly reduced the negative inotropic effects of 30 microM clenbuterol. In addition, overexpression of inhibitory G protein (Gi) by adenoviral transfection induced a stronger clenbuterol-mediated negative inotropic effect, suggesting the involvement of the Gi protein. We conclude that clenbuterol does not increase and, at high concentrations, significantly depresses contractility of isolated ventricular myocytes, an effect not seen with fenoterol or salbutamol. In its negative inotropism, clenbuterol predominantly acts through Gi, and the consequent downstream signaling pathways activation may explain the beneficial effects observed during chronic administration of clenbuterol in patients treated with LVADs.  相似文献   

2.
Inositol 1,4,5-trisphosphate receptors in the heart   总被引:2,自引:0,他引:2  
Inositol 1,4,5-trisphosphate (InsP3) is an established calcium-mobilizing messenger, which is well-known to activate Ca2+ signaling in many cell types. Contractile cardiomyocytes express hormone receptors that are coupled to the production of InsP3. Such cardioactive hormones, including endothelin, may have profound inotropic and arrhythmogenic actions, but it is unclear whether InsP3 underlies any of these effects. We have examined the expression and localization of InsP3 receptors (InsP3Rs), and the potential role of InsP3 in modulating cardiac excitation-contraction coupling (EC coupling). Stimulation of electrically-paced atrial and ventricular myocytes with a membrane-permeant InsP3 ester was found to evoke an increase in the amplitudes of action potential-evoked Ca2+ transients and to cause pro-arrhythmic diastolic Ca2+ transients. All the effects of the InsP3 ester could be blocked using a membrane-permeant antagonist of InsP3Rs (2-aminoethoxydiphenyl borate; 2-APB). Furthermore, 2-APB blocked arrhythmias evoked by endothelin and delayed the onset of positive inotropic responses. Our data indicate that atrial and ventricular cardiomyocytes express functional InsP3Rs, and these channels have the potential to influence EC coupling.  相似文献   

3.
This study characterized age-related alterations in excitation-contraction (EC)-coupling in ventricular myocytes and investigated whether these alterations are affected by the sex of the animal. Voltage-clamp experiments were conducted in myocytes from young adult (approximately 7 mo) and aged (approximately 24 mo) male and female mice. Intracellular Ca(2+) concentrations and unloaded cell shortening were measured at 37 degrees C with fura-2 and a video edge detector. Fractional shortening and Ca(2+) current density were significantly reduced in aged male myocytes compared with those in young adult male cells. In addition, Ca(2+) transients were significantly smaller in aged male myocytes. Sarcoplasmic reticulum (SR) content, assessed by rapid application of 10 mM caffeine, declined with age in male myocytes. However, EC coupling gain and fractional release of SR Ca(2+) were similar in young adult and aged male cells. In contrast to results in male animals, fractional shortening and Ca(2+) current densities were similar in young adult and aged myocytes isolated from female hearts. Furthermore, Ca(2+) transient amplitudes were unaffected by age in female cells. Interestingly, SR Ca(2+) content was elevated in aged female myocytes, and fractional SR Ca(2+) release declined with age in females. However, the gain of EC coupling was not different in myocytes from young adult and aged female mice. These data demonstrate that age-related alterations in EC coupling are more prominent in myocytes from male hearts than in cells from female hearts and suggest that it is important to consider sex as a variable in studies of the effects of aging on cardiac EC coupling.  相似文献   

4.
The roles of the Ca2+-mobilising messenger inositol 1,4,5-trisphosphate (InsP3) in heart are unclear, although many hormones activate InsP3 production in cardiomyocytes and some of their inotropic, chronotropic and arrhythmogenic effects may be due to Ca2+ release mediated by InsP3 receptors (InsP3Rs) [1-3]. In the present study, we examined the expression and subcellular localisation of InsP3R isoforms, and investigated their potential role in modulating excitation-contraction coupling (EC coupling). Western, PCR and InsP3-binding analysis indicated that both atrial and ventricular myocytes expressed mainly type II InsP3Rs, with approximately sixfold higher levels of InsP3Rs in atrial cells. Co-immunostaining of atrial myocytes with antibodies against type II ryanodine receptors (RyRs) and type II InsP3Rs revealed that the latter were arranged in the subsarcolemmal space where they largely co-localised with the junctional RyRs. Stimulation of quiescent or electrically paced atrial myocytes with a membrane-permeant InsP3 ester, which enters cells and directly activates InsP3Rs, caused the appearance of spontaneous Ca2+-release events. In addition, in paced cells, the InsP3 ester evoked an increase in the amplitudes of action potential-evoked Ca2+ transients. These data indicate that atrial cardiomyocytes express functional InsP3Rs, and that these channels could modulate EC coupling.  相似文献   

5.
Endothelin-1 (ET-1) is a potent G(q)-coupled agonist with important physiological effects on the heart. In the present study, we characterised the effect of prolonged ET-1 stimulation on Ca(2+) signalling within acutely isolated atrial myocytes. ET-1 induced a reproducible and complex sequence of effects, including negative inotropy, positive inotropy and pro-arrhythmic spontaneous Ca(2+) transients (SCTs). The negative and positive inotropic effects correlated with the ability of Ca(2+) to propagate from the subsarcolemmal sites where EC-coupling initiates into the centre of the atrial cells. We examined the spatial and temporal properties of the SCTs and observed them to range from elementary Ca(2+) sparks, flurries of Ca(2+) sparks, to Ca(2+) waves and action potential-evoked global Ca(2+) transients. The positive inotropic effect of ET-1 and its ability to trigger SCTs were mimicked by direct stimulation of InsP(3)Rs. An antagonist of InsP(3)Rs prevented the generation of SCTs and partially reduced the positive inotropy evoked by ET-1. Our data suggest that ET-1 engages multiple signal transduction pathways to provoke a plethora of different responses within an atrial myocyte. Some of the actions of ET-1 appear to be due to stimulation of InsP(3)Rs.  相似文献   

6.
7.
1. Acetylcholine reduced atrial contractions by 82.5% in guinea pig, 50.8% in rat, and 41.5% in rabbit. 2. The EC50 values for the negative inotropic effect of acetylcholine were 3.3 x 10(-7) M in rat and guinea pig atria and 4.1 x 10(-6) M in rabbit atria. 3. There was no correlation between the species differences in the negative inotropic effect of acetylcholine in atria and the density or affinity of acetylcholinesterase or muscarinic receptors. 4. Inhibition of atrial acetylcholinesterase with soman reduced the EC50 of acetylcholine three-fold in all species, but did not change the maximal inotropic effect of acetylcholine. 5. Species differences in the negative inotropic effect of acetylcholine may be caused by differences in the coupling between myocardial muscarinic receptors and the ion channels that mediate negative inotropy.  相似文献   

8.
Endothelin-1 (ET-1) induces positive inotropy (enhanced contractility) in cardiac muscle, but establishing underlying cellular mechanisms has been controversial in part because of a growing number of signaling pathways and end effectors targeted by ET-1. Here we present evidence that ET-1 induces positive inotropism in ventricular tissue by increasing both systolic Ca2+ and myofilament Ca2+ sensitivity. To examine the roles of PKC-δ and PKC-ε in these acute responses to ET-1, kinase inactive dominant negative PKC (dn-PKC) constructs were expressed in adult rat ventricular myocytes. Yellow fluorescent protein (YFP) was fused to dn-PKC constructs to visualize expression and localization of dn-PKC in living myocytes. Due to an alanine to glutamate mutation in the pseudosubstrate site, dn-PKCs constitutively translocated to anchoring sites and were unaffected by agonist or phorbol ester treatment. Dn-PKC-δ-YFP mainly distributed at Z-lines and at intercalated disks in adult myocytes, whereas dn-PKC-ε-YFP stained the surface sarcolemma, T-tubules/Z-lines and perinuclear region. Myocytes expressing dn-PKC-δ-YFP showed normal systolic Ca2+ and contractile responses to ET-1. In contrast, the entire ensemble of ET-1 responses was blocked in myocytes expressing dn-PKC-ε-YFP including increased Ca2+ transients, enhanced myofilament Ca2+ sensitivity, and positive inotropy. This report provides direct evidence that PKC-ε is activated early and robustly following ET-1 stimulation and thus mediates multiple intracellular changes underlying the acute actions of ET-1 on myocardium.  相似文献   

9.
The inotropic and toxic effects of cardiac steroids are thought to result from Na(+)-K(+)-ATPase inhibition, with elevated intracellular Na(+)(Na)causing increased intracellular Ca(2+)(Ca) via Na-Ca exchange. We studied the effects of ouabain on cat ventricular myocytes in Na(+)-free conditions where the exchanger is inhibited. Cell shortening and Ca transients (with fluo 4-AM fluorescence) were measured under voltage clamp during exposure to Na(+)-free solutions [LiCl or N-methyl-D-glucamine (NMDG) replacement]. Ouabain enhanced contractility by 121 +/- 55% at 1 micromol/l (n = 11) and 476 +/- 159% at 3 micromol/l (n = 8) (means +/- SE). Ca transient amplitude was also increased. The inotropic effects of ouabain were retained even after pretreatment with saxitoxin (5 micromol/l) or changing the holding potential to -40 mV (to inactivate Na(+) current). Similar results were obtained with both Li(+) and NMDG replacement and in the absence of external K(+), indicating that ouabain produced positive inotropy in the absence of functional Na-Ca exchange and Na(+)-K(+)-ATPase activity. In contrast, ouabain had no inotropic response in rat ventricular myocytes (10-100 micromol/l). Finally, ouabain reversibly increased Ca(2+) overload toxicity by accelerating the rate of spontaneous aftercontractions (n = 13). These results suggest that the cellular effects of ouabain on the heart may include actions independent of Na(+)-K(+)-ATPase inhibition, Na-Ca exchange, and changes in Na.  相似文献   

10.
Defects in excitation-contraction coupling have been reported in failing hearts, but little is known about the relationship between these defects and the development of heart failure (HF). We compared the early changes in intracellular Ca(2+) cycling to those that underlie overt pump dysfunction and arrhythmogenesis found later in HF. Laser-scanning confocal microscopy was used to measure Ca(2+) transients in myocytes of intact hearts in Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHRs) at different ages. Early compensatory mechanisms include a positive inotropic effect in SHRs at 7.5-9 mo compared with 6 mo. Ca(2+) transient duration increased at 9 mo in SHRs, indicating changes in Ca(2+) reuptake during decompensation. Cell-to-cell variability in Ca(2+) transient duration increased at 7.5 mo, decreased at 9 mo, and increased again at 22 mo (overt HF), indicating extensive intercellular variability in Ca(2+) transient kinetics during disease progression. Vulnerability to intercellular concordant Ca(2+) alternans increased at 9-22 mo in SHRs and was mirrored by a slowing in Ca(2+) transient restitution, suggesting that repolarization alternans and the resulting repolarization gradients might promote reentrant arrhythmias early in disease development. Intercellular discordant and subcellular Ca(2+) alternans increased as early as 7.5 mo in SHRs and may also promote arrhythmias during the compensated phase. The incidence of spontaneous and triggered Ca(2+) waves was increased in SHRs at all ages, suggesting a higher likelihood of triggered arrhythmias in SHRs compared with WKY rats well before HF develops. Thus serious and progressive defects in Ca(2+) cycling develop in SHRs long before symptoms of HF occur. Defective Ca(2+) cycling develops early and affects a small number of myocytes, and this number grows with age and causes the transition from asymptomatic to overt HF. These defects may also underlie the progressive susceptibility to Ca(2+) alternans and Ca(2+) wave activity, thus increasing the propensity for arrhythmogenesis in HF.  相似文献   

11.
This study was done to identify the mechanism of the alpha1-adrenoceptor (AR) mediated negative inotropic effects of phenylephrine (PE) on adult mouse myocardium. As reported by others, we also found that the nonselective alpha1AR agonist PE produced a negative inotropic effect on ventricular strips from adult mice that was inhibited by the alpha1AAR antagonist 5-methylurapidil (5MU) but not by the alpha1BAR antagonist chloroethylclonidine (CEC) or the alpha1DAR antagonist BMY 7378. The selective alpha1AAR agonist A61603 also produced a negative inotropic effect, which was antagonized by 5MU. Phorbol 12,13-dibutyrate (activator of all PKC isoforms) mimicked the negative inotropic responses to PE and A61603. The negative inotropic effects of PE were inhibited by bisindolylmaleimide (inhibitor of all PKC isoforms) but not by G? 6976 (inhibitor of Ca2+-dependent PKC). Rottlerin, an inhibitor of Ca2+-independent PKCdelta, antagonized the negative inotropic effects of PE and A61603. PE and A61603 increased the translocation of PKCdelta, which was prevented by rottlerin. These data suggest that the alpha1AR-mediated negative inotropy on adult mouse myocardium is signaled by Ca2+-independent PKCdelta.  相似文献   

12.
Sphingosine-1-phosphate (S1P) induces a transient bradycardia in mammalian hearts through activation of an inwardly rectifying K(+) current (I(K(ACh))) in the atrium that shortens action potential duration (APD) in the atrium. We have investigated probable mechanisms and receptor-subtype specificity for S1P-induced negative inotropy in isolated adult mouse ventricular myocytes. Activation of S1P receptors by S1P (100 nM) reduced cell shortening by approximately 25% (vs. untreated controls) in field-stimulated myocytes. S1P(1) was shown to be involved by using the S1P(1)-selective agonist SEW2871 on myocytes isolated from S1P(3)-null mice. However, in these myocytes, S1P(3) can modulate a somewhat similar negative inotropy, as judged by the effects of the S1P(1) antagonist VPC23019. Since S1P(1) activates G(i) exclusively, whereas S1P(3) activates both G(i) and G(q), these results strongly implicate the involvement of mainly G(i). Additional experiments using the I(K(ACh)) blocker tertiapin demonstrated that I(K(ACh)) can contribute to the negative inotropy following S1P activation of S1P(1) (perhaps through G(ibetagamma) subunits). Mathematical modeling of the effects of S1P on APD in the mouse ventricle suggests that shortening of APD (e.g., as induced by I(K(ACh))) can reduce L-type calcium current and thus can decrease the intracellular Ca(2+) concentration ([Ca(2+)](i)) transient. Both effects can contribute to the observed negative inotropic effects of S1P. In summary, these findings suggest that the negative inotropy observed in S1P-treated adult mouse ventricular myocytes may consist of two distinctive components: 1) one pathway that acts via G(i) to reduce L-type calcium channel current, blunt calcium-induced calcium release, and decrease [Ca(2+)](i); and 2) a second pathway that acts via G(i) to activate I(K(ACh)) and reduce APD. This decrease in APD is expected to decrease Ca(2+) influx and reduce [Ca(2+)](i) and myocyte contractility.  相似文献   

13.
The effects of short (1 min) and long (7-10 min) exposure to hyposmotic solution on excitation-contraction coupling in rat ventricular myocytes were studied. After short exposure, the action potential duration at 90% repolarization (APD(90)), the intracellular Ca(2+) concentration ([Ca(2+)](i)) transient amplitude, and contraction increased, whereas the L-type Ca(2+) current (I(Ca, L)) amplitude decreased. Fractional sarcoplasmic reticulum (SR) Ca(2+) release increased but SR Ca(2+) load did not. After a long exposure, I(Ca,L), APD(90), [Ca(2+)](i) transient amplitude, and contraction decreased. The abbreviation of APD(90) was partially reversed by 50 microM DIDS, which is consistent with the participation of Cl(-) current activated by swelling. After 10-min exposure to hyposmotic solution in cells labeled with di-8-aminonaphthylethenylpyridinium, t-tubule patterning remained intact, suggesting the loss of de-t-tubulation was not responsible for the fall in I(Ca,L). After long exposure, Ca(2+) load of the SR was not increased, and swelling had no effect on the site-specific phosphorylation of phospholamban, but fractional SR Ca(2+) release was depressed. The initial positive inotropic response to hyposmotic challenge may be accounted for by enhanced coupling between Ca(2+) entry and release. The negative inotropic effect of prolonged exposure can be accounted for by shortening of the action potential duration and a fall in the I(Ca,L) amplitude.  相似文献   

14.
In cardiac muscle the amplitude of Ca(2+) transients can be increased by enhancing Ca(2+) influx. Among the processes leading to increased Ca(2+) influx, agonists of the L-type Ca(2+)-channel can play an important role. Known pharmacological Ca(2+)-channel agonists act on different binding sites on the channel protein, which may lead not only to enhanced peak currents, but also to distinct changes in other biophysical characteristics of the current. In this study, membrane currents were recorded with the patch-clamp technique in the whole-cell configuration in guinea pig isolated ventricular myocytes in combination with confocal fluorescence Ca(2+) imaging techniques and a variety of pharmacological tools. Testing a new positive inotropic steroid-like compound, we found that it increased the L-type Ca(2+)-current by 2.5-fold by shifting the voltage-dependence of activation by 20.2 mV towards negative potentials. The dose-response relationship revealed two vastly different affinities (EC(50(high-affinity))=4.5+/-1.7 nM, EC(50(low-affinity))=8.0+/-1.1 microM) exhibiting differential pharmacological interactions with three classes of Ca(2+)-current antagonists, suggesting more than one binding site on the channel protein. Therefore, we identified and characterized a novel positive inotropic compound (F90927) as a member of a new class of Ca(2+)-channel agonists exhibiting unique features, which set it apart from other presently known L-type Ca(2+)-channel agonists.  相似文献   

15.
The predominant histamine receptor subtype in the supraventricular and ventricular tissue of various mammalian species is the H2 receptor (H2-R) subtype, which is known to couple to stimulatory G proteins (Gs), i.e. the major effects of this autacoid are an increase in sinus rate and in force of contraction. To investigate histamine effects in H2-R-transfected rat atrial myocytes, endogenous GIRK currents and L-type Ca2+ currents were used as functional assays. In H2-R-transfected myocytes, exposure to His resulted in a reversible augmentation of L-type Ca2+ currents, consistent with the established coupling of this receptor to the Gs-cAMP-PKA signalling pathway. Mammalian K+ channels composed of GIRK (Kir3.x) subunits are directly controlled by interaction with betagamma subunits released from G proteins, which couple to seven-helix receptors. In mock-transfected atrial cardiomyocytes, activation of muscarinic K+ channels (IK(ACh)) was limited to Gi-coupled receptors (M2R, A1R). In H2-R-overexpressing cells, histamine activated IK(ACh) via Gs-derived betagamma subunits since the histamine-induced current was insensitive to pertussis toxin. These data indicate that overexpression of Gs-coupled H2-R results in a loss of target specificity due to an increased agonist-induced release of Gs-derived betagamma subunits. When IK(ACh) was maximally activated by GTP-gamma-S, histamine induced an irreversible inhibition of the inward current in a fraction of H2-R-transfected cells. This inhibition is supposed to be mediated via a G(q/11)-PLC-mediated depletion of PIP2, suggesting a partial coupling of overexpressed H2-R to G(q/11). Dual coupling of H2-Rs to Gs and Gq is demonstrated for the first time in cardiac myocytes. It represents a novel mechanism to augment positive inotropic effects by activating two different signalling pathways via one type of histamine receptor. Activation of the Gs-cAMP-PKA pathway promotes Ca2+ influx through phosphorylation of L-type Ca2+ channels. Simultaneous activation of Gq-signalling pathways might result in phosphoinositide turnover and Ca2+ release from intracellular stores, thereby augmenting H2-induced increases in [Ca2+]i.  相似文献   

16.
Gut-derived factors in intestinal lymph have been shown to trigger myocardial contractile dysfunction. However, the underlying cellular mechanisms remain unclear. We examined the effects of physiologically relevant concentrations of mesenteric lymph collected from rats with 40% burn injury (burn lymph) on excitation-contraction coupling in rat ventricular myocytes. Burn lymph (0.1-5%), but not control mesenteric lymph from sham-burn animals, induced dual positive and negative inotropic effects depending on the concentrations used. At lower concentrations (<0.5%), burn lymph increased the amplitude of myocyte contraction (1.6 +/- 0.3-fold; n = 12). At higher concentrations (>0.5%), burn lymph initially enhanced myocyte contraction, which was followed by a block of contraction. These effects were partially reversible on washout. The initial positive inotropic effect was associated with a prolongation of action potential duration (measured at 90% repolarization, 2.5 +/- 0.6-fold; n = 10), leading to significant increases in the net Ca2+ influx (1.7 +/- 0.1-fold; n = 8). There were no significant changes in the resting membrane potential. The negative inotropic effect was accompanied by a decrease in the action potential plateau (overshoot decrease by 69 +/- 10%; n = 4) and membrane depolarization. Voltage-clamp experiments revealed that the positive inotropic effects of burn lymph were due to an inhibition of the transient outward K+ currents that prolong action potential duration, and the inhibitory effects were due to a concentration-dependent inhibition of Ca2+ currents that lead to a reduction of action potential plateau. These burn lymph-induced changes in cardiac myocyte Ca2+ handling can contribute to burn-induced contractile dysfunction and ultimately to heart failure.  相似文献   

17.
ANG II type 2 receptor (AT(2)) is upregulated in failing hearts, but its effect on myocyte contractile function is not known. We measured fractional cell shortening and intracellular Ca(2+) concentration transients in left ventricular myocytes derived from transgenic mice in which ventricle-specific expression of AT(2) was driven by the myosin light chain 2v promoter. Confocal microscopy studies confirmed upregulation of AT(2) in the ventricular myocytes and partial colocalization of AT(2) with AT(1). Three components of contractile performance were studied. First, baseline measurements (0.5 Hz, 1.5 mmol/l extracellular Ca(2+) concentration, 25 degrees C) and study of contractile reserve at faster pacing rates (1-5 Hz) revealed Ca(2+)-dependent contractile dysfunction in myocytes from AT(2) transgenic mice. Comparison of two transgenic lines suggested a dose-dependent relationship between magnitude of contractile dysfunction and level of AT(2) expression. Second, activity of the Na(+)/H(+) exchanger, a dominant transporter that regulates beat-to-beat intracellular pH, was impaired in the transgenic myocytes. Third, the inotropic response to beta-adrenergic versus ANG II stimulation differed. Both lines showed impaired contractile response to beta-adrenergic stimulation. ANG II elicited an increase in contractility and intracellular Ca(2+) in wild-type myocytes but caused a negative inotropic effect in myocytes from AT(2) transgenic mice. In contrast with beta-adrenergic response, the depressed response to ANG II was related to level of AT(2) overexpression. The depressed response to ANG II was also present in myocytes from young transgenic mice before development of heart failure. Thus chronic overexpression of AT(2) has the potential to cause Ca(2+)- and pH-dependent contractile dysfunction in ventricular myocytes, as well as loss of the inotropic response to ANG II.  相似文献   

18.
High-mobility group box 1 (HMGB1) released from necrotic cells or macrophages functions as a late inflammatory mediator and has been shown to induce cardiovascular collapse during sepsis. Thus far, however, the effect(s) of HMGB1 in the heart are not known. We determined the effects of HMGB1 on isolated feline cardiac myocytes by measuring sarcomere shortening in contracting cardiac myocytes, intracellular Ca2+ transients by using fluo-3, and L-type calcium currents by using whole cell perforate configuration of the patch-clamp technique. Treatment of isolated myocytes with HMGB1 (100 ng/ml) resulted in a 70% decrease in sarcomere shortening and a 50% decrease in the height of the peak Ca2+ transient within 5 min (P < 0.01). The immediate negative inotropic effects of HMGB1 on cell contractility and calcium homeostasis were partially reversible upon washout of HMGB1. A significant inhibition of the inward l-type calcium currents was also documented by the patch-clamp technique. HMGB1 induced the PKC-epsilon translocation, and a PKC inhibitor significantly attenuated the negative inotropic effects of HMGB1. These studies show for the first time that HMGB1 impairs sarcomere shortening by decreasing calcium availability in cardiac myocytes through modulating membrane calcium influx and suggest that HMGB1 maybe acts as a novel myocardial depressant factor during cardiac injury.  相似文献   

19.
PPHN, caused by perinatal hypoxia or inflammation, is characterized by an increased thromboxane-prostacyclin ratio and pulmonary vasoconstriction. We examined effects of hypoxia on myocyte thromboxane responsiveness. Myocytes from 3rd-6th generation pulmonary arteries of newborn piglets were grown to confluence and synchronized in contractile phenotype by serum deprivation. On the final 3 days of culture, myocytes were exposed to 10% O2 for 3 days; control myocytes from normoxic piglets were cultured in 21% O2. PPHN was induced in newborn piglets by 3-day hypoxic exposure (Fi(O2) 0.10); pulmonary arterial myocytes from these animals were maintained in normoxia. Ca2+ mobilization to thromboxane mimetic U-46619 and ATP was quantified using fura-2 AM. Three-day hypoxic exposure in vitro results in increased basal [Ca2+]i, faster and heightened peak Ca2+ response, and decreased U-46619 EC50. These functional changes persist in myocytes exposed to hypoxia in vivo but cultured in 21% O2. Blockade of Ca2+ entry and store refilling do not alter peak U-46619 Ca2+ responses in hypoxic or normoxic myocytes. Blockade of ryanodine-sensitive or IP3-gated intracellular Ca2+ channels inhibits hypoxic augmentation of peak U-46619 response. Ca2+ response to ryanodine alone is undetectable; ATP-induced Ca2+ mobilization is unaltered by hypoxia, suggesting no independent increase in ryanodine-sensitive or IP3-linked intracellular Ca2+ pool mobilization. We conclude hypoxia has a priming effect on neonatal pulmonary arterial myocytes, resulting in increased resting Ca2+, thromboxane hypersensitivity, and hyperreactivity. We postulate that hypoxia increases agonist-induced TP-R-linked IP3 pathway activation. Myocyte thromboxane hyperresponsiveness persists in culture after removal from the initiating hypoxic stimulus, suggesting altered gene expression.  相似文献   

20.
It has been proposed that intracellular alkalinization underlies the enhanced contractility of ventricular myocytes exposed to endothelin (ET)-1. The effects of ET-1 on the contractility and intracellular pH (pH(i)) were examined here in cultured adult rat ventricular myocytes by employing the pH-sensitive fluorescent dye SNARF-1. Variable pH(i) changes were observed on ET-1 stimulation. Most myocytes (n = 20 of 32) did not alkalinize, but showed an approximate 60% increase in twitch amplitude in response to ET-1. In the remaining myocytes (12 of 32), ET-1 induced an increase in pH(i) by 0.05 +/- 0.02 pH units with a similar approximate 60% increase in twitch amplitude. Therefore, there was no strong correlation between ET-1-mediated positive inotropy (enhanced contractility) and intracellular alkalinization. To determine whether ET-1 contractile and pH(i) responses were mediated by protein kinase C (PKC), yellow fluorescent protein (YFP)-fused dominant negative (dn) PKC constructs were used as isoform specific inhibitors. In dn-PKC-epsilon-YFP-expressing myocytes, the ET-1-mediated positive inotropic response was greatly diminished to 13 +/- 15%, but alkalinization was still observed. Expression of dn-PKC-delta-YFP also did not block alkalinization, but in this case the positive inotropic response was still observed. In a previous study, we showed that expression of PKC-delta and PKC-epsilon caused a strong positive inotropy on stimulation with phorbol 12,13-dibutyrate (PDBu). Using this system, PDBu failed to affect pH(i) in the majority of PKC expressing myocytes despite increases in twitch amplitudes of >60%. Overall, the poor correlation of positive inotropic responses and alkalinization was observed for ET-1 with and without dn-PKC constructs and for PDBu with and without wild-type PKC constructs. These results suggest that ET-1 produces positive inotropy via PKC-epsilon by mechanisms other than intracellular alkalinization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号