首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
The objective of this study was to characterize the histodifferentiation of somatic embryogenesis obtained from leaf explants of C. arabica. Therefore, we histologically analyzed the respective stages of the process: leaf segments at 0, 4, 7, 15 and 30 days of cultivation, Type 1 primary calli (primary calli with embryogenic competence) and 2 (primary calli with no embryogenic competence), embryogenic calli, globular, torpedo and cotyledonary embryos, and mature zygotic embryos. Callus formation occurred after seven days of culture, with successive divisions of procambium cell. In this cultivation phase, it was found that Type 1 primary calli are basically formed by parenchymal cells with reduced intercellular spacing, whereas Type 2 primary calli are predominantly composed of parenchymal cells with ample intercellular spaces and embryogenic calli composed entirely of meristematic cells. After 330 days, it was evident from the differentiation of somatic embryogenesis that there was formation of globular somatic embryos, consisting of a characteristic protoderm surrounding the fundamental meristem. With the maturation of these propagules after 360 days, torpedo-stage somatic embryos arose, in which tissue polarization and early differentiation of procambial strands were verified. After 390 days, cotyledonary somatic embryos were obtained, where the onset of vessel elements differentiation was verified, a characteristic also observed in mature zygotic embryos. We concluded that somatic embryogenesis obtained from C. arabica leaves initiates from procambium cell divisions that, in the course of cultivation, produce mature somatic embryos suitable for regenerating whole plants.  相似文献   

2.
Oil palm is an economically important plant species due to its high oil production per unit area. Large-scale clonal propagation of the species’s elite specimens is only possible through somatic embryogenesis, although methodology is partially still unknown and insufficiently understood. Current study characterizes in morphological and anatomical terms the acquisition and development stages of somatic embryogenesis of the oil palm’s immature leaves. The respective embryogenic stages were analyzed and characterized: immature leaves (initial explants); leaves with calli formation; leaves which failed to respond to calli formation; leaves with formation of root structures; primary calli; primary calli with differentiation of embryogenic calli; embryogenic calli; pro-embryogenic calli; calli with differentiated somatic embryos; somatic embryos at globular and torpedo stage; and mature fruit zygotic embryos. Cell masses emerged after approximately 60 days of cultivation through the proliferation of cells associated to initial explants´ vascular bundles. Consequently, the formation of two different types of calli was identified, namely, primary and embryogenic, respectively consisting partially and completely of meristematic cell clusters. After 420 days of cultivation, the propagules formed somatic embryos with no connection to source tissues, initially composed (globular stage) of a very characteristic ground meristem and protoderm. After 480 days of cultivation, as the cultures matured (torpedo stage), procambial strands, a structural characteristic also observed in mature zygotic embryos, were reported. The results provide an in-depth understanding of somatic embryogenesis of immature leaves of oil palm. Further, current analysis develops morphological markers at different stages of development obtained during the process.  相似文献   

3.
To assess the potential of different genotypes of Brazilian oil palm (Elaeis guineensis Jacq.) to somatic embryogenesis and somatic embryo proliferation, mature zygotic embryos of nine commercial genotypes of E. guineensis (BRSC2001, BRSC2328, BRSC2301, BRSC3701, BRSCM1115, BRSC7201, BRSC2528, BRSC2501, and BRSCN1637) were used. Explants were incubated on Murashige and Skoog (MS) supplemented with 450 μM picloram, 3.0 % sucrose, 500 mg l?1 glutamine, and 2.5 g l?1 activated charcoal, and gelled with 2.5 g l?1 Phytagel. After induction, for differentiation and maturation, the embryogenic calli (ECs) were transferred into fresh medium supplemented with 0.6 μM naphthaleneacetic acid (NAA) and 12.30 μM 2-isopentenyladenine (2iP) or 40 μM picloram in combination with 0.3 g l?1 activated charcoal, and 500 mg l?1 glutamine. Somatic embryos were converted into plants on MS medium with macro- and micro-nutrients at half strength, 2 % sucrose, and 2.5 g l?1 activated charcoal, and gelled with 2.5 g l?1 Phytagel. In general, zygotic embryos swelled after 14 days. Primary calli, which were observed in all the genotypes after 45–60 days of culture, eventually progressed to ECs at 90 days. At this time, scanning electron microscopy (SEM) analysis showed cellular differences between compact and friable calli. After 150 days in the induction phase, the ECs with proembryos that were transferred to the medium for differentiation and maturation, differentiated asynchronically into somatic embryos at globular and torpedo stages. The results showed that BRSC2328 and BRSCM1115 had the highest potential for EC formation (90–100 %) and somatic embryo differentiation (40.7 and 52.5 somatic embryos per callus, respectively) when compared to other genotypes. After approximately 90 days of culture on MS basal medium without growth regulators, protrusion of the leaf primordia was observed, characterizing the onset of germination of the somatic embryos into plants.  相似文献   

4.
The aim of this paper was to describe the histological events that led to somatic embryogenesis in macaw palm (Acrocomia aculeata (Jacq.) Lodd. ex Martius). Zygotic embryos were inoculated on Y3 medium containing 9 μM 4-amino-3,5,6-trichloropicolonic acid (picloram). Somatic embryos regenerated from nodular callus on induction medium with activated charcoal under photoperiod or without activated charcoal under dark. Many proembryos originated from the fundamental meristem after 10–20 days of culture. When transferred to medium containing activated charcoal, under photoperiod, calli regenerated into somatic embryos of unicellular origin. These embryos had protoderm, plumule and procambial strands and some of them could germinate. After 30–40 days of culture, meristematic masses grew from procambial cells. The masses generated nodular callus, and after transfer to medium without activated charcoal, under dark, they generated somatic embryos of multicellular origin. Those embryos did not regenerate into plants.  相似文献   

5.
Histological analysis was carried out during the sequence ofevents which lead to the obtaining of somatic embryos of oilpalm. Calluses from the division of perivascular cells formedat the veins of young leaf explants. Subsequent proliferationof histologically similar nodules was by means of a cambium-likezone. Under certain conditions these calluses consisted almostentirely of meristematic cells. They then differentiated rapidly:the cambium-like zone fragmented, leading to protuberance inwhich the cells divide rapidly; epidermal structures were formed,with a network of procambial strands, and synthesis of storagelipids accompanied the formation of these embryo-like structureswhich developed into clumps of true somatic embryos, each witha shoot apex and a root apex. Other structures frequently observedduring in vitro culture are also described and show that alternatepathways do exist. The structure and evolution of somatic embryosare compared to those of zygotic embryos. Storage lipids emergeas an early tracer of the satisfactory development of tissuetowards somatic embryogenesis. Oil palm, Elaeis guineensis, histology, somatic embryogenesis, callogenesis, storage lipids  相似文献   

6.
A method for secondary somatic embryogenesis was developed on embryos derived from embryogenic callus formed on Hepatica nobilis seedlings. Somatic embryogenesis (SE) was induced on seedlings (on the hypocotyl and epicotyl parts) grown on the Murashige and Skoog (1962) medium (MS) supplemented with 1 µM naphthaleneacetic acid (NAA), and/or 0.1 µM 6-benzyladenine (BA) and on medium without plant growth regulators (PGR). The best response of embryogenic callus formation was observed on the medium containing 1 µM NAA alone or with 0.1 µM BA. Individual somatic embryos, formed on embryogenic callus on the medium without PGR (MS0), at heart, torpedo and cotyledonary stage, were transferred to the media where secondary somatic embryo formation and development into plantlets occurred. Although the most efficient repetitive cycles of secondary SE were recorded for all stages of somatic embryos (heart, torpedo, cotyledonary) on the MS0 medium (77.8–87.4 %), secondary somatic embryos were also obtained on all media supplemented with cytokinins. The best rate of somatic embryos germination was achieved on MS media with 0.2 µM NAA and 2 µM BA, and 0.1 µM NAA and 1 µM BA (48.8–52.0 %) when more mature embryos (cotyledonary stage) were used. Plantlets grown from somatic embryos were successfully acclimatized to greenhouse conditions.  相似文献   

7.
A reproducible protocol for somatic embryogenesis was established for mango ginger (Curcuma amada Roxb.)—an important horticultural aromatic rhizomatous plant. Embryogenic callus induction was obtained from leaf sheath explants of in vitro raised plants on Murashige and Skoog (MS) agar medium containing 2.0 mg/L 2,4-dichlorophenoxyacetic acid and 0.5 mg/L 6-benzyladenine (BA). Embryogenic callus proliferation, somatic embryo (SE) formation and subsequent plantlet conversion occurred under optimal culture conditions. The effects of MS medium strength, sucrose and BA on SE formation were also evaluated. Half strength MS liquid medium necessary for SE formation and optimal sucrose concentration was found to be 3.0 %. BA at 0.3 mg/L produced the highest number (84.71 %) of SEs from leaf sheath explants. Secondary somatic embryos originated from primary somatic embryos on the same medium supplemented with 0.4–0.6 mg/L BA. Stereo microscopic and scanning electron microscopic observation revealed that the globular and torpedo shaped somatic embryos resulted in suspension culture during development. Mature somatic embryos germinated readily and developed into normal plantlets after 3 weeks on half strength MS basal agar medium under dark condition. Well rooted plantlets were successfully acclimatized at the survival rate of 70 %.  相似文献   

8.
Maturation of somatic embryos of Anthurium andraeanum cv. Eidibel from embryogenic callus was evaluated. Following induction of embryogenic calli from nodal segments, tissues were transferred to 125-mL Erlenmeyer flasks containing 25 mL liquid medium, with 0, 4.52, or 9.05 μM 2,4-dichlorophenoxyacetic acid and 0, 0.47, or 2.32 μM kinetin. Callus cultures were maintained in a dark growth room at 25?±?2°C. At 45 d, the mass of embryogenic calli, number of primary and secondary somatic embryos, and percentage browning were evaluated. Nonparametric tests were used to evaluate color, texture, and somatic embryo development. The highest yield of somatic embryos was in the medium with 0.47 μM kinetin. Calli were friable, with a lower yield of secondary somatic embryos, and have minimal browning. Histology revealed polar globular somatic embryos and mature somatic embryos with defined apical and root meristematic zones, axillary buds, and primary leaves. These are important features for converting somatic embryos into plantlets.  相似文献   

9.
The objective was to establish an efficient regeneration protocol for Distylium chinense based on somatic embryogenesis and evaluate the genetic stability of plants regenerated in vitro. To induce callus mature zygotic embryos were cultured on Murashige and Skoog’s (MS) medium that was supplemented with different concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D) and N6-benzyladenine (BA). After 20 days, the highest rate of callus formation (88.9 %) occurred on MS medium supplemented with 0.5 mg l?1 2,4-D and 0.1 mg l?1 BA. It was observed that light-yellow, compact, dry, nodular embryogenic calli had formed. These calli were then subcultured on fresh MS medium supplemented with 0.1 mg l?1 BA and 0.5 mg l?1 α-naphthaleneacetic acid (NAA) for proliferation for an additional 30 days. To induce somatic embryos and plant regeneration, the embryogenic callus was transferred to fresh MS medium that was supplemented with different concentrations of BA and NAA. After 30 days, 0.5 mg l?1 BA in combination with 0.5 mg l?1 NAA produced the best result in terms of somatic embryogenesis (%), shoot differentiation (%), number of shoots per callus and shoot length. Next, the plantlets were transferred to the field for 5 weeks and a 95 % survival rate was observed. The sequence-related amplified polymorphism markers confirmed genetic stability of plants regenerated in vitro. To our knowledge, this is the first report that describes a plant regeneration protocol for D. chinense via somatic embryogenesis to be used for germplasm conservation and commercial cultivation.  相似文献   

10.
Somatic embryos were induced from internodal segment derived callus of Oldenlandia umbellata L., in MS medium supplemented with different concentrations of 2,4-Dichlorophenoxy acetic acid (2,4-D). Initially calli were developed from internodes of microshoots inoculated in 2.5 µM NAA supplemented medium. Then calli were transferred to 2,4-D added medium for somatic embryogenesis. Nutritional stress coupled with higher concentration of 2,4-D triggered somatic embryogenesis. Nutritional stress was induced by culturing callus in a fixed amount of medium for a period up to 20 weeks without any external supply of nutrients. Addition of 2.5 µM 2,4-D gave 100% embryogenesis within 16 weeks of incubation. Callus mass bearing somatic embryos were transferred to germination medium facilitated production of in vitro plantlets. MS medium supplemented with 2.5 µM benzyl adenine and 0.5 µM α-naphthalene acetic acid produced 15.33 plants per culture within 4 weeks of culture. Somatic embryo germinated plants were then hardened and transferred to green house.  相似文献   

11.
Direct embryogenesis without an intervening callus phase from cotyledonary nodes of germinated immature zygotic embryos of hybrids viz. DG1 and DG21 of oil palm (Elaeis guineensis) is reported here. Direct embryogenesis was achieved when the cotyledonary nodes of germinated immature zygotic embryos were cultured in dark for 8 weeks on Eeuwens media (Y3) supplemented with 40 μM 2,4-Dichlorophenoxyacetic acid (2,4-D), 40 μM α-Naphthaleneacetic acid (NAA), 10 μM 2,4,5-Trichorophenoxyacetic acid (2,4,5-T), 10 μM Thiadiazuron (TDZ), 10 μM 6-Benzyladenine (BA). The globular embryos with clear suspensor region appeared directly on the explants and multiplied. On subculture to fresh media, the other stages such as torpedo and heart shaped embryos were seen. On transfer to light in Y3 media containing BA (2 μM) and ABA (1 μM) they matured into complete plantlets. In 2% of the cultures secondary embryogenesis also was seen. Along with several other advantages of direct somatic embryogenesis this protocol opens up the prospect of genetic transformation in this important commercial crop.  相似文献   

12.
An improved protocol for plant regeneration via somatic embryogenesis was developed using mature macaw palm (Acrocomia aculeata) zygotic embryos as initial explant. For induction of the embryogenic callus (EC), two basic media (BM) were tested consisting of Murashige and Skoog and Eeuwens (Y3) salts with 30 g L?1 sucrose, 0.5 g L?1 glutamine and 2.5 g L?1 Phytagel. The 3,6-dichloro-2-methoxybenzoic acid (dicamba), 4-amino-3,5,6-trichloro-picolinic acid (picloram) and 2,4-dichlorophenoxyacetic acid (2,4-D) auxins were added to the culture media at concentrations of 0, 1.5 or 3.0 mg L?1. After 240 days, the embryogenic calli were transferred to the respective BM media with auxin concentrations reduced to 0.5 or 1.0 mg L?1 in order to differentiate the somatic embryos (SEs). Plant regeneration was performed on the BM media without growth regulators. Embryogenic calli were observed after 180 days of culture and in all treatments with auxin. The Y3 medium showed the best EC formation results (60.8 %). These calli showed yellowish coloration, compact consistency and nodular aspect. After 60 days in differentiation medium, SEs were verified in different stages of development. Histological analysis showed that the SEs were formed from a nodular EC. The SEs generally presented unicellular origin with suspensor formation, and at the end of development, bipolar embryos were observed. The plant regeneration frequency reached levels up to 31.9 % when using induction medium consisting of Y3 associated to 1.5 mg L?1 of 2,4-D and the subsequent auxin reduction to 0.5 mg L?1 in the differentiation stage. Regenerated plants showed normal development, with root and aerial part growth.  相似文献   

13.
A protocol has been developed for achieving somatic embryogenesis from callus derived from nodal cuttings and production of synthetic seeds in Hemidesmus indicus L. R. Br. a highly traded ethnomedicinal plant. Proembryogenic, friable, light yellowish callus was induced from the basal cut end of the nodal cuttings on Murashige and Skoog (MS) medium supplemented with 3 μM indole-3-butyric acid (IBA). The highest rate of somatic embryogenesis (92 %) was observed when the callus was subcultured on half strength MS medium supplemented with 2 μM IBA. On induction medium somatic embryos were developed up to the torpedo stage. Further elongation and germination of somatic embryos were obtained in MS medium supplemented with 4 μM 6-benzylaminopurine (BA) in combination with 1.5 μM gibberellic acid (GA3). Somatic embryos were collected and suspended in a matrix of MS medium containing sodium alginate (3 % W/V) dropped into 75 mM calcium chloride (CaCl2·2H2O) solution for the production of synthetic seeds and later transferred to MS medium for germination. The synthetic seeds were successfully germinated on medium even after 120 days of storage at 4 °C. The plantlets were eventually transferred to soil with 92 % success.  相似文献   

14.
Byrsonima, especially the species Byrsonima intermedia, is an endangered Brazilian plant that has been widely used as food and for its therapeutic characteristics. However, this species faces challenges with sexual propagation, and somatic embryogenesis has emerged as a viable alternative option for propagation. Therefore, this study aimed to establish a protocol for inducing somatic embryogenesis in B. intermedia. For the induction of callus from in vitro seedling leaves, different subcultures (three subcultures, 60 days each) and concentrations of different cytokinins (BAP, TDZ, Kin and ZEA) combined with varying NAA solutions were tested. Different concentrations of NAA were also analyzed in the induction of pro-embryogenic calli. For the induction of embryogenic calli and somatic embryos, the pro-embryogenic calli were subcultured on MS medium without adding growth regulators. The somatic embryos that originated were inoculated on a maturation medium containing different concentrations of gibberellic acid (GA3). The formation of secondary embryos was also analyzed using different concentrations (0, 2.88, and 8.66 µM) of GA3 and different types of lids (Conventional lid, Biossama® commercial lid and conventional lid with membranes). The results show that for the induction of somatic embryos, the use of kinetin with NAA presented the formation of somatic embryos in the second (4.76 µM CIN?+?0.54 µM NAA) and third (5.17 µM CIN?+?10.54 µM NAA) subcultures. The use of 28.87 µM GA3 favored the formation of seedlings. The Biossama lid and 2.88 µM GA3 showed higher formation of secondary embryos.  相似文献   

15.
Somatic embryogenesis is a reliable and important tool, and the relevant genes controlling this process act as vital roles through the whole development of somatic embryos. However, regeneration via somatic embryogenesis in Chinese chestnut has been impeded and its molecular mechanism is not known. Therefore, firstly we described a protocol for somatic embryo initiation, development, maturation and germination. Embryogenic calli were obtained in embryo initiation medium containing 1.8 μM 2,4-D and 1.1 μM 6-BA, and then were transferred to embryo development medium without any hormones for at least 4 weeks, until cotyledonary embryos appeared. Next, the somatic embryos were transferred to embryo maturation medium containing Gamborg’s B-5 Basal Salt Mixture with 0.5 μM NAA and 0.5 μM 6-BA for 3 weeks. Finally, these mature embryos were germinated in embryo germination medium consisting of WPM with 0.5 μM NAA and 0.5 μM 6-BA, resulting in shoot regeneration with a 2.1% conversion rate. Additionally, eight embryogenesis-related genes were identified, and the expression profiles of these genes during embryogenesis were analyzed via quantitative real-time RT-PCR (qRT-PCR). The CmSERK, CmLEC1, CmWUS and CmAGL15 genes exhibited high expression in the initial embryo stages, which inferred that these genes played key roles during the initiation of embryogenesis. Studies on embryogenesis-related genes will provide an insight for further elucidating molecular mechanism during somatic embryogenesis of Chinese chestnut. Furthermore, the successful establishment of a somatic embryo regeneration system for Chinese chestnut will lay a significant foundation for a stable genetic transformation system and genetic improvement.  相似文献   

16.
In this study, the different stages of somatic embryogenesis (SE) of the African oil palm (Elaeis guineensis Jacq.) were characterized biochemically. The total soluble sugars, starch, total free amino acids, and total proteins were extracted, identified and quantified at various stages of embryogenesis: zygotic embryos (initial explants), primary calluses, embryogenic calluses, calluses with pro-embryos, globular embryos, differentiated somatic embryos, and regenerated plants. It was found that at the onset of induction of SE, the level of soluble sugars in the tissues of the explants fell by half. During this period, the total soluble sugars present in the cultures consisted basically of glucose and fructose. In the process of regeneration and maturation, the concentrations of soluble sugars gradually increased, reaching the highest values in the last two stages of development. At this stage, the disaccharide sucrose accounts for more than 80 % of the composition of total soluble sugars in the explants. Compared to starch, we found that the concentrations thereof in developing tissues are inversely proportional to that of soluble sugars virtually throughout embryogenic development. As for free amino acids, we found that after 30 days of induction until formation of the embryogenic calluses, there is an accentuated synthesis of total free amino acids in the explant tissue. In this stage, there was a significant increase in the levels of alanine and serine in the tissues. However, after the formation of the embryogenic calluses, the levels of total free amino acids present in the cultures become stabile and remain constant until the end of cultivation. Similar results were found for total protein, which also showed a significant increase at the onset of induction, undergoing slight changes during the remainder of the cultivation.  相似文献   

17.
This study developed a plant regeneration protocol for Trifolium nigrescens (Viv.) via somatic embryogenesis (SE). Immature zygotic embryos at torpedo (TsE) and cotyledonary (CsE) stage were cultured on media with different auxins and cytokinins at different concentrations. The cultural requirements for SE differed between the explants used: the addition of 6-furfurylaminopurine (kinetin) or N6-[2-isopentenyl]-adenine (2iP) along with 2,4-dihydrophenoxyacetic acid (2,4-D) or 1-naphthaleneacetic acid (NAA) was needed to elicit the embryogenic response of CsE, but an exogenous cytokinin totally inhibited 2,4-D-induced SE from TsE. When applied alone, neither the cytokinin nor NAA induced SE in TsE or CsE. In all effective cultures the first somatic embryos appeared directly from the upper part of the hypocotyl (TsE and CsE) and from the margin of cotyledons (TsE) on day 7. Embryogenic callus occurred on CsE after 10 days. At comparable concentrations 2,4-D was a more potent SE inducer than NAA, but most of the embryoids induced on media with 2,4-D displayed morphological abnormalities, whereas those produced in the presence of NAA generally resembled zygotic embryos. Plant regeneration was achieved after transfer of somatic embryos or embryo-derived first shoots to medium without plant growth regulators (PGRs). The frequency of plant recovery was about 30% for embryoids obtained on media containing 2,4-D, and for material from media with NAA the recovery rates were 44–68% (somatic embryos) and 72–100% (embryoid-derived shoots). Regenerants appeared identical to each other and to wild plants; they produced flowers and had the chromosome complement typical for the species, 2n = 16, in root tip cells.  相似文献   

18.
Summary The main goal of this research was to identify and describe the morphological and histological events during coffee somatic embryogenesis. Leaf sections of coffee Catimor (Coffea arabica CV. Red Caturra X hybrid of Timor) were cultivated in vitro on solid medium containing 2,4-dichlorophenoxyacetic acid and benzyladenine. After 4 months, the calli produced were transferred to a medium containing naphthalene acetic acid. During the process of somatic embryogenesis, calli were sampled for histological observation. After four days of culture, the expiant produced a callus in the cut edges, where cell division occurred in the spongy parenchyma and in the perivascular parenchyma. After two months of culture, the first sign of organization within the growing callus was evidenced by the formation of densely stained cell groups appearing physically isolated, surrounded by thick cell walls. Two months later, proembryogenic clumps were formed by groups of dividing cells, unconnected to the callus. These cells were small, relatively isodiametric, with a dense cytoplasm, large nucleus, prominent nucleoli and thick cell walls. Afterwards, embryogenic calli formed somatic embryos going through the typical stages of development: globular, heart, and torpedo shapes. Histological observations revealed that the somatic embryos originated from a single cell, with dense cytoplasm, prominent nucleus and with signs of isolation evidenced by the presence of a thick cell wall.Abbreviations BAP 6-benzyladenine - 2,4-D 2,4-dichlorophenoxyacetic acid - NAA naphthalene acetic acid - SEM scanning electron microscopy  相似文献   

19.
We investigated the effect of red light and plant growth regulators on somatic embryogenesis in China Rose (Rosa chinensis Jacq.). Embryogenic calli that had been induced by combinations of 2,4-dichlorophenoxyacetic acid and thidiazuron in darkness were exposed to dark, red, and white light treatments. Cultures subjected to red light treatment generated the greatest number of embryos, with one (SE1 embryos) or two (SE2 embryos) expanded cotyledons. The largest numbers of shoot-like embryos without cotyledons (SE0 embryos) were produced in cultures subjected to dark treatment. The effects of different concentrations of abscisic acid (ABA) on the proliferation and germination of different types of somatic embryos were also evaluated. A concentration of 9.45 μM was found to be the most effective in promoting the proliferation and germination of SE2 embryos. The higher the concentration of ABA (from 0 to 18.90 μM), the higher the percentage of abnormal polycotyledonary embryos produced. The highest percentage of regenerated plants was obtained from SE2 embryos.  相似文献   

20.
Kelussia odoratissima Mozaff. (or Kelus) is a medicinal plant native to the Zagros Mountains in Iran. This plant is widely used as a food flavoring and for its health-promoting properties. It has been considered an endangered species by the United Nations Development Programme. In this study, a somatic embryogenesis (SE) method was developed for mass propagation of Kelus. The green globular embryogenic callus was induced on cotyledonary leaves using the Murashige and Skoog (MS) medium supplemented with 1 mg/l 2,4-dichlorophenoxyaceticacid (2,4-D) and 0.25 mg/l Kinetin. Different treatments were assayed for proliferation of the embryogenic callus. The calli remained embryogenic in an MS medium containing 2,4-D (1 mg/l). The light treatments and carbon source showed significant effects (P?≤?0.05) on the proliferation and development of somatic embryos. These treatments improved the conversion rate of the cotyledonary-stage embryos by 100%. The average numbers of embryos in the globular, heart, torpedo, and cotyledonary stages decreased by the addition of 3 g/l case in hydrolisate. The genetic stability among tissue culture-derived plants and the mother plant were assessed using the amplification fragment length polymorphism. No polymorphic band was observed among all the plants, exhibiting the genetic stability during in vitro multiplication. This research provides a promising approach for true-to-type plant multiplication of K. odoratissima through SE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号