首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study, we used suspension cultured cells from Chorispora bungeana Fisch. and C.A. Mey to investigate whether nitric oxide (NO) is involved in the signaling pathway of chilling adaptive responses. Low temperatures at 4 °C or 0 °C induced ion leakage, lipid peroxidation and cell viability suppression, which were dramatically alleviated by exogenous application of NO donor sodium nitroprusside (SNP). The levels of reactive oxygen species (ROS) were obviously reduced, and the activities of antioxidant enzymes such as ascorbate peroxidase (APX, EC 1.11.1.11), catalase (CAT, EC 1.11.1.6), glutathione reductase (GR, EC 1.6.4.2), peroxidase (POD, EC 1.11.1.7) and superoxide dismutase (SOD, EC 1.15.1.1) and the contents of ascorbic acid (AsA) and reduced glutathione (GSH) increased evidently in the presence of SNP under chilling stress. In addition, under low temperature conditions, treatment with NO scavenger PTIO or mammalian NO synthase (NOS) inhibitor l-NAME remarkably aggravated oxidative damage in the suspension cultures compared with that of chilling treatment alone. Moreover, measurements of NOS activity and NO production showed that both NOS activity and endogenous NO content increased markedly under chilling stress. The accumulation of NO was inhibited by l-NAME in chilling-treated cultures, indicating that most NO production under chilling may be generated from NOS-like activity. Collectively, these results suggest that chilling-induced NO accumulation can effectively protect against oxidative injury and that NOS like activity-dependent NO production might act as an antioxidant directly scavengering ROS or operate as a signal activating antioxidant defense under chilling stress, thus conferring an increased tolerance to chilling in C. bungeana suspension cultures.  相似文献   

2.
This study was carried out to better understand the role of salicylic acid (SA) applied before cold stress in the cold tolerance mechanism. Two barley (Hordeum vulgare) cultivars, cold-sensitive (Akhisar) and cold-tolerant (Tokak), were used and 0.1 mM SA was applied to 7-d-old barley seedlings growing under control conditions (20/18 °C). The seedlings were transferred to cold chamber (7/5 °C) at the age 14, 21, and 28 d. After three days, the leaves were harvested to determine the activities of apoplastic antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT), and peroxidase (POX) and ice nucleation activity and electrophoretic patterns of apoplastic proteins. Cold treatment decreased the activities of all enzymes in cold-sensitive cultivar, however, it increased CAT and POX activities in cold-tolerant cultivar. Exogenous SA increased enzyme activities in both cultivars. Ice nucleation activity increased by cold treatment, especially in 17-d-old seedlings in both cultivars. In addition, SA treatment increased ice nucleation activity in all examined samplings in both cultivars. SA treatment caused accumulation or de novo synthesis of some apoplastic proteins. The results of the present study show that exogenous SA can improve cold tolerance by regulating the activities of apoplastic antioxidative enzymes, ice nucleation activity, and the patterns of apoplastic proteins.  相似文献   

3.
The effects of sodium nitroprusside (SNP, a donor of NO) on cadmium (Cd) toxicity in lettuce seedlings were studied. SNP was added into hydroponic systems or sprayed directly on the leaves of plants grown with and without Cd. Excess supply of Cd (100 μM) caused growth inhibition, dramatically increased Cd accumulation in both leaves and roots, and inhibited the absorption of Ca, Mg, Fe and Cu. Excess Cd also decreased activities of superoxide dismutase peroxidase and catalase in leaves and roots, and increased the accumulation of superoxide anion (O 2 ·? ), hydrogen peroxide (H2O2) and malondialdehyde (MDA). Root or foliar applications of exogenous NO alleviated Cd-induced growth suppression, especially root application of 250 μM SNP and foliar addition of 500 μM SNP. Addition of SNP promoted the chlorophyll synthesis suggesting that the photosynthesis was up-regulated. Exogenous NO increased Cd-decreased activities of antioxidant enzymes and markedly diminished Cd-induced reactive oxygen species (ROS) and MDA accumulation. Moreover, the absorption of Ca, Mg, Fe and Cu was increased, indicating that exogenous NO stimulated H+-ATPase activity to promote sequestration or uptake of ions. In addition, exogenous NO also inhibited Cd transfer from roots to shoots, which may indicate that Cd retention in roots induced by NO plays a significant role in Cd tolerance in lettuce seedlings. These data suggest that under Cd stress, exogenous NO improves photosynthesis by increasing chlorophyll synthesis, protects lettuce seedlings against oxidative damage by scavenging ROS, helps to maintain the uptake of nutrient elements, and inhibits Cd transferred to shoots effectively.  相似文献   

4.
The sources of nitric oxide (NO) production in response to abscisic acid (ABA) and the role of NO in ABA-induced hydrogen peroxide (H(2)O(2)) accumulation and subcellular antioxidant defense in leaves of maize (Zea mays L.) plants were investigated. ABA induced increases in generation of NO and activity of nitric oxide synthase (NOS) in maize leaves. Such increases were blocked by pretreatment with each of the two NOS inhibitors. Pretreatments with a NO scavenger or NR inhibitors inhibited ABA-induced increase in production of NO, but did not affect the ABA-induced increases in activity of NOS, indicating that ABA-induced NO production originated from sources of NOS and NR. ABA- and H(2)O(2)-induced increases in expression of the antioxidant genes superoxide dismutase 4 (SOD4), cytosolic ascorbate peroxidase (cAPX), and glutathione reductase 1 (GR1) and the activities of the chloroplastic and cytosolic antioxidant enzymes were arrested by pretreatments with the NO scavenger, inhibitors of NOS and NR, indicating that NO is involved in the ABA- and H(2)O(2)-induced subcellular antioxidant defense reactions. On the other hand, NO donor sodium nitroprusside (SNP) reduced accumulation of H(2)O(2) induced by ABA, and c-PTIO reversed the effect of SNP in decreasing the accumulation of H(2)O(2). SNP induced increases in activities of subcellular antioxidant enzymes, and the increases were substantially prevented from occurring by the pretreatment with c-PTIO. These results suggest that ABA induces production of H(2)O(2) and NO, which can up-regulate activities of the subcellular antioxidant enzymes, to prevent overproduction of H(2)O(2) in maize plants. There is a negative feedback loop between NO and H(2)O(2) in ABA signal transduction in maize plants.  相似文献   

5.
Using pharmacological and biochemical approaches, the role of maize polyamine oxidase (MPAO) in abscisic acid (ABA)induced antioxidant defense in leaves of maize (Zea mays L.) plants was investigated. Exogenous ABA treatment enhanced the expression of the MPAO gene and the activities of apoplastic MPAO. Pretreatment with two different inhibitors for apoplastic MPAO partly reduced hydrogen peroxide (H2O2) accumulation induced by ABA and blocked the ABA-induced expression of the antioxidant genes superoxide dismutase 4 and cytosolic ascorbate peroxidase and the activities of the cytosolic antioxidant enzymes. Treatment with spermidine, the optimum substrate of MPAO, also induced the expression and the activities of the antioxidant enzymes, and the upregulation of the antioxidant enzymes was prevented by two inhibitors of MPAO and two scavengers of H2O2. These results suggest that MPAO contributes to ABA-induced cytosolic antioxidant defense through H2O2, a Spd catabolic product.  相似文献   

6.
Jatropha curcas L. is a sustainable energy plant with great potential for biodiesel production, and low temperature is an important limiting factor for its distribution and production. In this present work, chill hardening-induced chilling tolerance and involvement of antioxidant defense system were investigated in J. curcas seedlings. The results showed that chill hardening at 10 or 12 °C for 1 and 2 days greatly lowered death rate and alleviated electrolyte leakage as well as accumulation of the lipid peroxidation product malondialdehyde (MDA) of J. curcas seedlings under severe chilling stress at 1 °C for 1–7 days, indicating that the chill hardening significantly improved chilling tolerance of J. curcas seedlings. Measurement of activities of the antioxidant enzymes superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), peroxidase (POD), and glutathione reductase (GR), and the levels of the antioxidants ascorbic acid (AsA) and glutathione (GSH) showed the chill hardening at 12 °C for 2 days could obviously increase the activities of these antioxidant enzymes and AsA and GSH contents in the hardened seedlings. When the hardened and non-hardening (control) seedlings were subjected to severe chilling stress at 1 °C for 1–7 days, the chill-hardened seedlings generally maintained significantly higher activities of the antioxidant enzymes SOD, APX, CAT, POD, and GR, and content of the antioxidants AsA and GSH as well as ratio of the reduced antioxidants to total antioxidants [AsA/(AsA + DHA) and GSH/(GSH + GSSG)], when compared with the control without chill hardening. All above-mentioned results indicated that the chill hardening could enhance the chilling tolerance, and the antioxidant defense system plays an important role in the chill hardening-induced chilling tolerance in J. curcas seedlings.  相似文献   

7.
Sodium nitroprusside (SNP) and S-nitrosoglutathione (GSNO) were used as a source of exogenous nitric oxide (NO) to investigate their effects on biochemical parameters and antioxidant enzyme response in leaves of wild type Columbia and tocopherol-deficient vte4 and vte1 mutant lines of Arabidopsis thaliana plants and possible tocopherol involvement in regulation of antioxidant response under NO-induced stress. SNP enhanced the activity of the enzymes, that scavenge hydrogen peroxide in leaves of all studied lines, and increased glutathione reductase and glutathione-S-transferase activity there. In addition, it decreased the intensity of lipid peroxidation in vte1 mutant line leaves. At the same time, GSNO increased the levels of protein carbonyls and inactivated enzymes ascorbate peroxidase, guaiacol peroxidase and dehydroascorbate reductase in almost all investigated plant lines. In contrast to wild type, GSNO increased superoxide dismutase activity and decreased catalase activity and chlorophyll a/b ratio in the leaves of two mutant lines. It can be assumed that tocopherols in some way are responsible for plant protection against NO-induced stress. However the mechanisms of this protection remain unknown.  相似文献   

8.
A hydroponics experiment was conducted to test the effects of sodium nitroprusside (SNP, a donor of NO) supplied with different concentrations on copper (Cu) toxicity in ryegrass seedlings (Lolium perenne L.). Excess Cu (200 µM) reduced chlorophyll content, resulting a decrease in photosynthesis. Cu stress induced the production of hydrogen peroxide (H2O2) and superoxide anion (O2? ?), leading to malondialdehyde (MDA) accumulation. Furthermore, activities of antioxidant enzymes in Cu-treated seedlings such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were decreased. In addition, Cu stress inhibited the uptake of K, Mg, Fe, and Zn and increased Ca content in roots. Moreover, in leaves of Cu-stressed seedlings, K, Fe, and Zn contents were decreased and the contents of Ca and Mg were not affected significantly. In Cu-treated seedlings, Cu concentration in roots was higher than in leaves. Addition of 50, 100, 200 µM SNP in Cu-mediated solutions increased chlorophyll content and photosynthesis, improved antioxidant enzyme activities, reduced Cu-induced oxidative damages, kept intracellular ion equilibrium under Cu stress, increased Cu concentration in roots and inhibited Cu accumulation in leaves. In particular, addition of 100 µM SNP had the best effect on promoting growth of ryegrass seedlings under Cu stress. However, the application of 400 µM SNP had no obvious alleviating effect on Cu toxicity in ryegrass seedlings.  相似文献   

9.
Salicylic acid (SA) is one component of a complex signalling pathway that is induced by a number of biotic and abiotic stresses. Exposing seedling radicles to aqueous solutions of 0.5 m M salicylic acid for 24 h before chilling at 2.5°C for 1–4 days reduced the chilling-induced increase in electrolyte leakage from maize and rice leaves, and cucumber hypocotyls, but not from their radicles. The SA treatments that induced chilling tolerance in the aerial portion of the seedlings did not induce chilling tolerance in the radicles, even though the SA treatments were applied to the radicles. A comparison of activity among five antioxidant enzymes showed that SA did not alter enzyme activities in the radicles, but that chilling tolerance induced by SA in the aerial portions of maize and cucumber plants was associated with an increase in the activity of glutathione reductase and guaiacol peroxidase.  相似文献   

10.
The present study was designed to examine whether exogenous sodium nitroprusside (SNP) supplementation has any ameliorating action against PEG-induced osmotic stress in Zea mays cv. FRB-73 roots. Twenty percent or 40 % polyethylene glycol (PEG6000; ?0.5 MPa and ?1.76 MPa, respectively) treatment alone or in combination with 150 and 300 μM SNP was applied to hydroponically grown maize roots for 72 h. Although only catalase (CAT) activity increased when maize roots were exposed to PEG-induced osmotic stress, induction of this antioxidant enzyme was inadequate to detoxify the extreme levels of reactive oxygen species, as evidenced by growth, water content, superoxide anion radical (O 2 ?? ), hydroxyl radical (OH?) scavenging activity, and TBARS content. However, supplementation of PEG-exposed specimens with SNP significantly alleviated stress-induced damage through effective water management and enhancement of antioxidant defense markers including the enzymatic/non-enzymatic systems. Exogenously applied SNP under stress resulted in the up-regulation of glutathione peroxidase (GPX), glutathione S-transferase (GST), ascorbate peroxidase (APX), glutathione reductase (GR), total ascorbate, and glutathione contents involved in ascorbate–glutathione cycle. On the other hand, growth rate, osmotic potential, CAT, APX, GR, and GPX increased in maize roots exposed to both concentrations of SNP alone, but activities of monodehydroascorbate reductase (MDHAR) and dehydroascorbate reductase decreased. Based on the above results, an exogenous supply of both 150 and 300 μM SNP to maize roots was protective for PEG-induced toxicity. The present study provides new insights into the mechanisms of SNP (NO donor) amelioration of PEG-induced osmotic stress damages in hydroponically grown maize roots.  相似文献   

11.
The effects of Cd, in combination with salicylic acid (SA) and sodium nitroprusside (SNP), on ryegrass seedlings were studied. Exposure of plants to 0.1 mM CdCl2 for 2 weeks resulted in toxicity symptoms such as chlorosis and necrotic spots on leaves. The addition of 0.2 mM SA or 0.1 mM SNP slightly alleviated the toxic effects of Cd. After application of both SA and SNP, these symptoms significantly decreased. Treatment with Cd resulted in a decrease of dry weight of roots and shoots, chlorophyll content, net photosynthetic rate (P n), transpiration rate (T r), and the uptake and translocation of mineral elements. In Cd-treated plants, levels of lipoxygenase activity and malondialdehyde, hydrogen peroxide (H2O2), and proline contents significantly increased, whereas the activities of antioxidant enzymes, such as superoxide dismutase, guaiacol peroxidase, catalase, and ascorbate peroxidase, decreased in both roots and shoots. The results indicated that Cd caused physiological stresses in ryegrass plants. The Cd-stressed plants exposed to SA or SNP, especially to SA + SNP, exhibited improved growth compared with Cd-stressed plants. Application of SA or SNP, especially the combination SA + SNP, considerably reduced root-to-shoot translocation of Cd and increased the activities of antioxidant enzymes in both roots and shoots of Cd-stressed plants. The interaction of SA and SNP increased chlorophyll content, P n and T r in leaves, and the uptake and translocation of mineral elements, and decreased lipid peroxidation and H2O2 and proline accumulation in roots and shoots. These results suggest that SA or SNP, and, in particular, their combination counteracted the negative effects of Cd on ryegrass plants.  相似文献   

12.
Sang J  Zhang A  Lin F  Tan M  Jiang M 《Cell research》2008,18(5):577-588
Using pharmacological and biochemical approaches, the signaling pathways between hydrogen peroxide (H2O2), calcium (Ca^2+)-calmodulin (CAM), and nitric oxide (NO) in abscisic acid (ABA)-induced antioxidant defense were investigated in leaves of maize (Zea mays L.) plants. Treatments with ABA, H2O2, and CaCl2 induced increases in the generation of NO in maize mesophyll cells and the activity of nitric oxide synthase (NOS) in the cytosolic and microsomal fractions of maize leaves. However, such increases were blocked by the pretreatments with Ca^2+ inhibitors and CaM antagonists. Meanwhile, pretreatments with two NOS inhibitors also suppressed the Ca^2+-induced increase in the production of NO. On the other hand, treatments with ABA and the NO donor sodium nitroprusside (SNP) also led to increases in the concentration of cytosolic Ca^2+ in protoplasts of mesophyll cells and in the expression of calmodulin 1 (CaM1) gene and the contents of CaM in leaves of maize plants, and the increases induced by ABA were reduced by the pretreatments with a NO scavenger and a NOS inhibitor. Moreover, SNP-induced increases in the expression of the antioxidant genes superoxide dismutase 4 (SOD4), cytosolic ascorbate peroxidase (cAPX), and glutathione reductase 1 (GR1) and the activities of the chloroplastic and cytosolic antioxidant enzymes were arrested by the pretreatments with Ca^2+ inhibitors and CaM antagonists. Our results suggest that Ca^2+-CaM functions both upstream and downstream of NO production, which is mainly from NOS, in ABA- and H2O2-induced antioxidant defense in leaves of maize plants.  相似文献   

13.
Zhang A  Jiang M  Zhang J  Ding H  Xu S  Hu X  Tan M 《The New phytologist》2007,175(1):36-50
* The role of nitric oxide (NO) and the relationship between NO, hydrogen peroxide (H(2)O(2)) and mitogen-activated protein kinase (MAPK) in abscisic acid (ABA)-induced antioxidant defense in leaves of maize (Zea mays) plants were investigated. * Both ABA and H(2)O(2) induced increases in the generation of NO in mesophyll cells of maize leaves, and H(2)O(2) was required for the ABA-induced generation of NO. Pretreatment with NO scavenger and nitric oxide synthase (NOS) inhibitor substantially reduced the ABA-induced production of NO, and partly blocked the activation of a 46 kDa MAPK and the expression and the activities of several antioxidant enzymes induced by ABA. Treatment with the NO donor sodium nitroprusside (SNP) also induced the activation of the MAPK, and enhanced the antioxidant defense systems. * Conversely, SNP treatment did not induce the production of H(2)O(2), and pretreatments with NO scavenger and NOS inhibitor did not affect ABA-induced H(2)O(2) production. * Our results suggest that ABA-induced H(2)O(2) production mediates NO generation, which, in turn, activates MAPK and results in the upregulation in the expression and the activities of antioxidant enzymes in ABA signaling.  相似文献   

14.
The present study aimed at investigating the effects of foliar applied nitric oxide (as SNP [sodium nitroprusside]) on sulfur (glutathione reductase, guaiacol peroxidase, and glutathione S-transferase) and nitrate assimilation (nitrite and nitrate reductase) pathway enzymes in maize (Zea mays L.) exposed to water deficit conditions. The seedlings of a drought tolerant (NK8711) and sensitive (P1574) maize hybrid were applied with various SNP doses (0, 50, 100, 150, and 200 µM) under normal and drought stress conditions. Foliar spray of 100 µM markedly improved water status and chlorophyll contents and alleviated drought-induced oxidative damages through increased antioxidant (catalase, ascorbate peroxidase, and superoxide dismutase) activities in both maize hybrids. Moreover, exogenous SNP supply increased nitrite and nitrate reductase activities and upregulated glutathione reductase, glutathione S-transferase, and guaiacol peroxidase compared to no SNP supply. Interestingly, the negative effects of excess NO generation at high SNP doses (150, 200 µM) were more pronounced in P1574 than NK8711 leading to lower biomass accumulation in drought-sensitive hybrid.  相似文献   

15.
The microwave has been widely used in the field of biology with the development of microwave technology. Previous studies suggest that suitable doses of microwave irradiation improved plant metabolism and enzymatic activities under cadmium stress and enhanced cadmium tolerance in wheat seedlings. The objective of this study was to test whether nitric oxide is involved in microwave pretreatment induced cadmium tolerance in wheat seedlings due to its nature as a second messenger in stress responses. Plant were treated with 10 s microwave pretreatment, microwave pretreatment in combination with NO scavenger, 2-(4-carboxyphenyl)-4, 4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) and their effects on the lipid peroxidation, the activities of antioxidant enzymes, the concentration of antioxidant compounds and wheat seedlings growth and development were compared. The results showed that 10 s microwave pretreatment dramatically alleviated growth suppression induced by cadmium stress, reflected by decreased malondialdehyde, hydrogen peroxide and superoxide radical production. Furthermore, the activities of antioxidant enzymes (superoxide dismutase, peroxidase, catalase, ascorbate peroxidase and glutathione reductase) and the concentration of antioxidant metabolites (ascorbate, reduced glutathione, carotenoids and nitric oxide) were increased in wheat seedlings pretreated with microwave under cadmium stress. Nevertheless, the promotive effect of microwave pretreatment induced cadmium tolerance in wheat seedlings was effectively reversed by the addition of 0.5 % (w/v) cPTIO (NO scavenger), suggesting that NO was involved in microwave pretreatment induced cadmium tolerance in wheat seedlings.  相似文献   

16.
The effects of salicylic acid (SA) (0.01, 0.1 and 1 mM) and cold on freezing tolerance (freezing injury and ice nucleation activity) were investigated in winter wheat (Triticum aestivum cv. Dogu-88) grown under control (20/18 °C for 15, 30 and 45-day) and cold (15/10 °C for 15-day, 10/5 °C for 30-day and 5/3 °C for 45-day) conditions. Cold acclimatisation caused a decrease of injury to leaf segments removed from the plants and subjected to freezing conditions. Exogenous SA also decreased freezing injury in the leaves grown under cold (15/10 °C) and control (15 and 30-day) conditions. Cold conditions (10/5 and 5/3 °C) caused an increase in ice nucleation activity by apoplastic proteins, which were isolated from the leaves. For the first time, it was shown that exogenous SA caused an increase in ice nucleation activity under cold (15/10 and 10/5 °C) and control conditions. These results show that salicylic acid can increase freezing tolerance in winter wheat leaves by affecting apoplastic proteins.  相似文献   

17.
To elucidate the physiological mechanism of chilling stress mitigated by cinnamic acid (CA) pretreatment, a cucumber variety (Cucumis sativus cv. Jinchun no. 4) was pretreated with 50 μM CA for 2 d and was then cultivated at two temperatures (15/8 and 25/18 °C) for 1 d. We investigated whether exogenous CA could protect cucumber plantlets from chilling stress (15/8 °C) and examined whether the protective effect was associated with the regulation of antioxidant enzymes and lipid peroxidation. At 2 d, exogenous CA did not influence plant growth, but induced the activities of some antioxidant enzymes, including superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), guaiacol peroxidase (GPX, EC 1.11.1.7), glutathione peroxidase (GSH-Px, EC 1.6.4.2) and ascorbate peroxidase (APX, EC 1.11.1.11) in cucumber leaves, and it also elevated the contents of reduced glutathione (GSH) and ascorbate (AsA). When CA was rinsed and the CA-pretreated seedlings were exposed to different temperatures, the antioxidant activities in leaves at 3 d had undergone additional change. Chilling increased the activities of CAT, GSH-PX, APX, GSH and AsA in leaves, but the combination of CA pretreatment and chilling enhanced the antioxidant activities even more. Moreover, chilling inhibited plant growth and increased the contents of malonaldehyde (MDA), superoxide radical (O2) and hydrogen peroxide (H2O2) in cucumber leaves, and the stress resulted in 87.5% of the second leaves being withered. When CA pretreatment was combined with the chilling stress, we observed alleviated growth inhibition and decreased contents of MDA, H2O2 and O2 in comparison to non-pretreated stressed plants, and found that the withered leaves occurred at a rate of 25.0%. We propose that CA pretreatment increases antioxidant enzyme activities in chilling-stressed leaves and decreases lipid peroxidation to some extent, enhancing the tolerance of cucumber leaves to chilling stress.  相似文献   

18.
The role of increased oxidation induced by successive stresses of chilling and high light in the induction of leaf abscission was studied in Ixora coccinea plants in relation to auxin metabolism and oxidative processes. Exposure of plants following dark chilling (7°C for 3 days) to high light (500–700 μmol m−2 s−1 photosynthetically active radiation) for 5 h at 20–25°C enhanced chilling-induced leaf abscission. This abscission was inhibited by pretreatment with the antioxidant butylated hydroxyanisole, α -naphthaleneacetic acid or the ethylene action inhibitor, 1-methylcyclopropene. The oxidative processes initiated during the low light period following the dark chilling period, such as indoleacetic acid (IAA) decarboxylation and lipid peroxidation, were further enhanced by subsequent exposure to high light. Photoinhibition, expressed by the reduction of the chlorophyll fluorescence parameter Fv/Fm, was evident following exposure to high light, irrespective of the temperature of the pretreatment, but this reduction persisted only in chilled plants. This suggests that oxidative processes generated during and after the chilling period might have inhibited the recovery from photoinhibition. The chilling stress under darkness induced a 60% reduction in superoxide dismutase (SOD) activity and significant increases (130–600%) in the activities of several other antioxidative enzymes. These data suggest that the chilling-induced reduction in SOD activity may well be responsible for the increase in the oxidative stress induced by the subsequent light treatment, as expressed by the increased enzymatic activities. Taken together, this study provides further support for the involvement of oxidative processes in the events occurring in tissues exposed to sequential chilling and light stresses, leading to reduction in free IAA content in the abscission zone and to leaf abscission.  相似文献   

19.
Low non-freezing temperature is one of the major environmental factors affecting growth, development and geographical distribution of chilling-sensitive plants, Jatropha curcas is considered as a sustainable energy plants with great potential for biodiesel production. In this study, chilling shock at 5 °C followed by recovery at 26 °C for 4 h significantly improved survival percentage of J. curcas seedlings under chilling stress at 1 °C. In addition, chilling shock could obviously enhance the activities of antioxidant enzymes superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT) and glutathione reductase (GR), and the levels of antioxidants ascorbic acid (AsA) and glutathione (GSH), as well as the contents of osmolytes proline and betaine in leaves of seedlings of J. curcas compared with the control without chilling shock. During the process of recovery, GR activity, AsA, GSH, proline and betaine contents sequentially increased, whereas SOD, APX and CAT activities gradually decreased, but they markedly maintained higher activities than those of control. Under chilling stress, activities of SOD, APX, CAT, GR and GPX, and contents of AsA, GSH, proline and betaine, as well as the ratio of the reduced antioxidants to total antioxidants [AsA/(AsA + DHA) and GSH/(GSH + GSSG)] in the shocked and non-shock seedlings all dropped, but shocked seedlings sustained significantly higher antioxidant enzyme activity, antioxidant and osmolyte contents, as well as ratio of reduced antioxidants to total antioxidants from beginning to end compared with control. These results indicated that the chilling shock followed by recovery could improve chilling tolerance of seedlings in J. curcas, and antioxidant enzymes and osmolytes play important role in the acquisition of chilling tolerance.  相似文献   

20.
Endophytic bacteria have been shown to increase resistance against biotic stress and tolerance to abiotic stress in many plants. The objective of this study was to evaluate the effect of an endophytic bacterium, Clavibacter sp. strain Enf12, in regenerated plantlets of Chorispora bungeana subjected to chilling stress (0°C). Aerial biomass and physiological markers for chilling stress, such as electrolyte leakage, lipid peroxidation, reactive oxygen species (ROS) accumulation, proline content and activities of superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6), guaiacol peroxidase (EC 1.11.1.7) and ascorbate peroxidase (EC 1.11.1.11), were assessed. We demonstrated that Clavibacter sp. strain Enf12 was capable of colonizing internal tissues of regenerated plantlets of C. bungeana and maintained stable population densities under both normal (20°C) and chilling (0°C) conditions. Inoculation enhanced plantlet growth under both conditions and significantly attenuated the chilling-induced electrolyte leakage, lipid peroxidation and ROS accumulation. The endophyte significantly increased the activities of antioxidant enzymes and proline content in C. bungeana plantlets under chilling stress. These findings suggest that Clavibacter sp. strain Enf12 inoculation stimulates the growth of C. bungeana plantlets and improves their tolerance to chilling stress through enhancing the antioxidant defense system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号