首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The response of caudate nucleus neurons to acoustic stimulation (a click at 0.5 Hz) was investigated during chronic experimentation in cats using intracellular techniques and reversible blockage of the thalamic centrum medianum produced by anode polarization. Having analyzed poststimulus histograms it was found that the response of phasic activation to an acoustic signal decreased, and disappeared in 52% of neurons. A reduction in the level of spontaneous activity was also observed in neurons of the caudate nucleus. The significance of a direct pathway from the thalamic centrum medianum to the caudate nucleus is discussed from the viewpoint of acoustic signal transmission to caudate nucleus neurons.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 18, No. 1, pp. 92–99, January–February, 1986.  相似文献   

2.
Synchronized activity (spindles, augmentation response) evoked by stimulation of thalamic nonspecific, association, and specific nuclei was investigated in chronic experiments on 11 cats before and after successive destruction of the caudate nuclei. After destruction of the caudate nuclei the duration of spindle activity in the frontal cortex and subcortical formations (thalamic nuclei, globus pallidus, putamen) was reduced to only three or four oscillations. In the subcortical nuclei its amplitude fell significantly (by 50±10%); in the cortex the decrease in amplitude was smaller and in some cases was not significant. Different changes were observed in the amplitude of the augmentation response, depending on where it was recorded. In the subcortical formations it was considerably and persistently reduced (by 50±10%); in the cortex these changes were unstable in character. Unilateral destruction of the caudate nucleus inhibited synchronized activity evoked by stimulation of the thalamic nuclei on the side of the operation only. Destruction of the basal ganglia (caudate nucleus, globus pallidus, entopeduncular nucleus, and putamen) did not prevent the appearance of synchronized activity; just as after isolated destruction of the caudate nucleus, after this operation synchronized activity was simply reduced in duration and amplitude. It is suggested that the caudate nucleus exerts an ipsilateral facilitatory influence on the nonspecific system of the thalamus during the development of evoked synchronized activity.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 9, No. 3, pp. 239–248, May–June, 1977.  相似文献   

3.
Sources of direct and indirect afferent connections of the caudate nucleus were investigated in cats by the retrograde axonal transport of horseradish peroxidase method. Different parts of the neocortex were shown to form different types of projections to the caudate nucleus; the sources of these projections have a laminar organization. Connections of the globus pallidus with the caudate nucleus, not previously described, were found. Among the sources of the thalamo-caudate projections, besides nuclei of the intralaminar complex, an important place is occupied by the ventral anterior and mediodorsal nuclei. After injection of horseradish peroxidase into the caudate nucleus, retrograde axonal transport of the enzyme was observed in the caudal direction, as far as cells of the locus coeruleus. ON the basis of these results a general scheme of afferent projections to the caudate nucleus is drawn up, including its connections with the spinal cord mediated by the thalamic nuclei and mesencephalic reticular formation.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 12, No. 2, pp. 146–154, March–April, 1980.  相似文献   

4.
A well-developed descending efferent system of the caudate nucleus has been revealed by retrograde axonal transport of horseradish peroxidase. It consists of numerous projections into the thalamus. A topical differentiation of the connections between the caudate nucleus and the paleostriatum and substantia nigra was found. It was established that the main source of efferent connections of the caudate nucleus were small and medium-sized neurons. It was demonstrated that the subthalamic nucleus has a special role in the descending efferent system of the caudate nucleus. In addition to the direct connections into the caudate nucleus itself the subthalamic nucleus has direct connections with the main output structures of the caudate nucleus, the paleostriatum, and the substantia nigra. The concept that the descending and ascending connections are interlinked in the mammalian central nervous system is supported by the results of this investigation into the caudate nucleus.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 17, No. 4, pp. 509–517, July–August, 1985.  相似文献   

5.
Evoked potentials were recorded in the caudate nucleus of adult rabbits and young rabbits aged 2–30 days in response to stimulation of the ipsilateral motor cortex. The response of the caudate nucleus in the adult rabbit consisted of a positive-negative complex with latent period of 3–5 msec. Maximal amplitude of the response was observed in the dorsorostral region of the nucleus. As the recording electrode was inserted deeper, the amplitude of the response gradually decreased but without reversal of its polarity. Responses of the caudate nucleus to stimulation of the motor cortex were recorded as early as on the 3rd day after birth. These responses were indistinguishable in configuration from responses of the nucleus of adult rabbits. Their latent period was about 10 msec. Between the 16th and 20th day after birth the latent period of the response decreased considerably — from 9 to 5 msec, and by the 30th day of life it had reached its definitive value. With age the amplitude of the response increased but the threshold of stimulation decreased, The results indicate early functional maturation of connections of the motor cortex with the caudate nucleus and they agree with the results of morphological investigations of the structural development of the afferent systems of this nucleus.Brain Institute, Academy of Medical Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 14, No. 3, pp. 284–289, May–June, 1982.  相似文献   

6.
Structural and ultrastructural changes in the frontal areas of the cortex and in the region of the globus pallidus were investigated after local and extensive destruction of the caudate nucleus. It was shown by the Fink-Heimer method that after local injury to the caudate nucleus by means of electrodes implanted 2–16 months before electrolytic destruction, only a few degenerating fibers of medium and thin caliber were present. Extensive destruction of the caudate nucleus (without preimplantation of electrodes) was followed by massive degeneration of fibers of different caliber in the frontal area of the cortex. After local injury to the caudate nucleus numerous thin degenerating axons 0.5–0.6 µ in diameter and degenerating terminals were found in the region of the globus pallidus. Degenerative changes in the axo-dendritic and axo-somatic terminals followed the "dark" type of course. It is concluded that no considerable direct projections of neurons of the caudate nucleus are present in the cortex. Degenerating fibers of average caliber in frontal areas of the cortex after destruction of the caudate nucleus are evidently axons of thalamic neurons and not from cells of the damaged nucleus.A. A. Bogomol'ets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 7, No. 2, pp. 165–171, March–April, 1975.  相似文献   

7.
Neurons of the medial terminal nucleus of the accessory optic tract receiving direct retinal inputs were shown to project to the heat and body of the caudate nucleus in the cat using techniques of retrograde horseradish peroxidase axonal transport and experimentally induced degeneration. These primarily ipsilateral projections are evenly distributed throughout the aforementioned areas of the nucleus. Neurons of the medial terminal nucleus forming synaptic connections with caudate nucleus cells are distinguished by their varied shapes and sizes, ranging from 20 × 10 to 37.5 × 18 µm and are located in both the ventral and dorsal subdivisions of the nucleus. The supposed functional significance of these projections for the regulation of muscle tonus tension is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 18, No. 2, pp. 214–219, March–April, 1986.  相似文献   

8.
Neuronal activity in the ventrolateral thalamus during execution of instrumental reaction before and after parenteral administration of N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was investigated in samples of 81 and 70 cells, respectively. After a 5-day course of one 5 mg/kg MPTP injection daily, firing rate of neurons in which activity correlated with forelimb movement rose significantly; this activation increased in length during the initial, flexor, and extensor stages of motor response. Bradykinesia set in together with intensified neuronal activation in the animals. Microinjection of exogenous dopamine into the caudate nucleus brought about correction of motor disturbance and a reduced neuronal firing rate in the ventrolateral (thalamic) nucleus. It was deduced that the nigrostriatal system exercises inhibitory control over the activity of thalamic neurons associated with forelimb movement in thalamic neurons in intact animals.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 22, No. 3, pp. 291–300, May–June, 1990.  相似文献   

9.
Spike activity was analyzed in the course of visual testing for directional sensitivity in 177 neuronal populations in different thalamic nuclei and the striopallidal complex in the brain of nine parkinsonian patients, diagnosed and treated using implanted intracerebral electrodes. Directionally selective neurons were discovered in the centrum medianum, the thalamic zona incerta and reticular nucleus, the caudate nucleus, and the central area of the globus pallidus. Proportions and distribution of neurons with different properties were investigated in the thalamic nuclei and striopallidal complex.Institute of Experimental Medicine, Academy of Medical Sciences of the USSR, Leningrad. Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 21, No. 5, pp. 652–660, September–October, 1989.  相似文献   

10.
Responses of caudate neurons to stimulation of the anterior sigmoid and various parts of the suprasylvian gyrus were studied in acute experiments on cats. The experiments consisted of two series: on animals with an intact thalamus and on animals after preliminary destruction of the nonspecific thalamic nuclei. Stimulation of all cortical areas tested in intact animals evoked complex multicomponent responses in caudate neurons with (or without) initial excitation, followed by a phase of inhibition and late activation. The latent periods of the initial responses to stimulation of all parts of the cortex were long and averaged 14.5–25.5 msec. Quantitative and qualitative differences were established in responses of the caudate neurons to stimulation of different parts of the cortex. Considerable convergence of cortical influences on neurons of the caudate nucleus was found. After destruction of the nonspecific thalamic nuclei all components of the complex response of the caudate neurons to cortical stimulation were preserved, and only the time course of late activation was modified.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 12, No. 5, pp. 464–471, September–October, 1980.  相似文献   

11.
Electrophysiological study of functional interactions of the prefrontal cortex, the hippocampus, the head of the caudate nucleus and the thalamic medio-dorsal nucleus in 2 monkeys in conditions of the trace reflex and delayed reaction has revealed various morphofunctional systems for these types of memory. The morphofunctional system of the trace CR is characterized by greater stability and a small number of functional connections (21%) in contrast to the dynamic morphofunctional system with a considerable percentage of functional contacts (54%) in case of the delayed reaction. This difference can be very likely related to the different dynamics of functional connections between brain structures rather than to the involvement of various brain structures.  相似文献   

12.
Rubrocaudate projections in the cat   总被引:1,自引:0,他引:1  
Small numbers of neurons projecting to the caudate nucleus were found in the cat red nucleus using horseradish peroxidase retrograde axonal transport techniques. Rubrocaudate neurons were found in both the parvo- and magnocellular sections of the red nucleus. Organization of reciprocal connections between the red nucleus and the striopallidal system is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 20, No. 1, pp. 28–32, January–February, 1988.  相似文献   

13.
Stimulation of the head of the caudate nucleus in cats anesthetized with chloralose and pentobarbital evoked spike responses of the Purkinje cells and other cerebellar cortical neurons in the paramedian lobes, lobulus simplex, and the tuber of the vermis. Phasic responses in the form of simple discharges (on account of activation of the neurons through mossy fibers) appeared mainly after a latent period of 5–12 and 14–20 msec; the latent period of responses consisting of complex discharges (on account of activation of Purkinje cells through climbing fibers) was 5–6, 9–22 msec, or more. Depending on the latent period, the spike responses differed in their rhythm of generation. In response to stimulation of the caudate nucleus with a frequency of 4–6/sec recruiting responses were found. An inhibitory pause was an invariable component of the tonic responses. During stimulation of the globus pallidus responses of the same types (phasic and tonic) appeared as during stimulation of the caudate nucleus, but they differed in the distribution of the neurons by latent period of spike responses. The minimal latent period was 4 msec. Recruiting also was observed during repetitive stimulation of the globus pallidus. During stimulation of the substantia nigra Pukinje cells activated by climbing fibers responded. Evoked complex discharges appeared after a stable latent period of 8.5±0.3 msec. Arguments are put forward regarding the role of the substantia nigra, the globus pallidus, nuclei of the inferior olive, and also the thalamic nuclei in the mechanism of caudato-cerebellar oligosynaptic and polysynaptic connections.N. I. Pirogov Medical Institute, Vinnitsa. Translated from Neirofiziologiya, Vol. 10, No. 4, pp. 375–384, July–August, 1978.  相似文献   

14.
Spontaneous unit activity recorded extracellularly from the caudate nucleus in acute experiments on cats was analyzed. A graph of the sliding mean frequency, an interspike interval histogram, correlogram, intensity function, and histogram of correlation between adjacent intervals were plotted for the spontaneous activity of each neuron. The spontaneous activity of neurons of the caudate nucleus showed considerable variability in time and its mean frequency varied for different neurons from 0.5 to 20 spikes/sec. Depending on the temporal pattern of the spikes and also on the statistical indices, spontaneous unit activity in the caudate nucleus was conventionally divided into two types: single and grouped. A switch from one type of activity to the other was observed for the same neuron. On the basis of the data as a whole it is impossible to regard the spontaneous unit activity of the caudate nucleus as a simple random (Poissonian) spike train.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 9, No. 4, pp. 369–376, July–August, 1977.  相似文献   

15.
Connections between the anterior thalamic and habenular nuclei were investigated in the lizard by administering horseradish peroxidase to these nuclei. They were shown to have overlapping locations of afferent sources, namely basotelencephalic structures, nuclei of anterior and hippocampal commissures, preoptic and lateral hypothalamic area, and superior raphe nucleus, as well as common projection zones, viz: the mamillary complex and the ventral tegmental area. Specific connections confined to individual nuclei were discovered, apart from those common to the nuclei: A reciprocal connection with the dorsolateral hypothalamic nucleus (for the anterior dorsolateral nucleus), a projection to the interpeduncular nucleus (for the habenular nucleus), and to the dorsal hypothalamic area (for the dorsomedial nucleus). No sources of afferent pathways to the anterior thalamic nuclei were found in the mamillary complex. All the thalamic nuclei studied, togetherwith their connections, are considered diencephalic relay links in pathways comparable with the dorsal (in the case of the habenular nuclei) and the ventral (with respect to the anterior thalamic nuclei) pathways of the mammalian limbic system.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 19, No. 1, pp. 110–120, January–February, 1987.  相似文献   

16.
Spontaneous and evoked unit activity in response to repeated application of clicks at a frequency of 0.3–2.0 Hz in the caudate nucleus was studied by an extracellular recording technique in chronic experiments on cats. Four types of spontaneous unit activity in the caudate nucleus were distinguished. Altogether 44% of neurons tested responded by changes in spontaneous activity to clicks. Five types of responses of caudate neurons to clicks were discovered: phasic excitation, phasic inhibition, tonic activation, tonic inhibition, and mixed tonic responses; the commonest type was tonic activation. During prolonged stimulation by clicks extinction of the phasic responses was not observed. Complete or partial extinction of tonic responses in the course of frequent repetition of stimulation was observed in 33% of responding neurons. The question of possible convergence of specific and nonspecific influences on caudate neurons is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 12, No. 1, pp. 28–35, January–February, 1980.  相似文献   

17.
A study was carried out on 8 adult cats of functional role of the frontal, parietal and occipital parts of the neocortex, and also of the dorsal hippocampus, mediodorsal thalamic nucleus and caudate nucleus head, in realization of a delayed spatial choice (DSCh) before and after compensatory reorganizations of the brain activity caused by multiple electrical stimulation of the frontal part of the cerebral cortex. Compensatory reorganization led to a change of functional significance of these structures. While before this change the frontal cortex, hippocampus and mediodorsal thalamic nucleus were critically necessary brain areas for the realization of the DSCh, after it parietal and occipital cortical areas acquired such significance. The obtained data are discussed proceeding from the principle of the integrity in the brain activity.  相似文献   

18.
Background activity was recorded in 272 neurons of the ventrolateral thalamic nucleus before and after systemic haloperidol and droperidol injection at a cataleptic dose using intracellular techniques during chronic experiments on cats in a drowsy condition. Brief burster discharges lasting 5–50 msec and following on at a high intraburst spike rate (of 200–450 Hz) were characteristic of neuronal activity in intact animals. Regular discharges occurred at the rate of 2–2.5 Hz or occasionally 3–4 Hz in 15% of cells. Numbers of neurons with the latter activity pattern rose to 22 and 30%, respectively, following haloperidol and droperidol injection. Both irregular and prolonged (80–300 msec) regular discharges were recorded in one third of the total. A relatively low intraburst spike rate (of 60–170 Hz) was observed in 37% of cells following 10 days' haloperidol injection. These changes are thought to be produced by intensified inhibitory effects on neurons of the thalamic ventrolateral nucleus from the substantia nigra and reticular thalamic nucleus following blockade of dopaminergic and -adrenergic receptors.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 21, No. 5, pp. 675–685, September–October, 1989.  相似文献   

19.
Unitary responses of the caudate nucleus to stimulation of various parts of it were investigated by extracellular recording. Latent periods of response discharges varied from 3.5 to 40 msec. Most neurons were excited by stimulation of the most rostral part of the head of the caudate nucleus. Irrespective of the site of stimulation, in most cases responses consisted of initial excitation in the form of one or, less frequently, two discharges followed by a period of depression of spontaneous activity. Recovery of activity took place gradually, without postinhibitory facilitation. No afterdischarges or periodic repetitions of spikes were observed after the initial response. Repetitive stimulation of the caudate nucleus showed that the neurons of this nucleus reproduce frequencies of stimulation badly above 30/sec, and under these circumstances in many cases they continued to discharge on average at a frequency of 5–15/sec. The results are examined from the standpoint of participation of the caudate nucleus in the formation of spindle activity.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 8, No. 5, pp. 497–506, September–October, 1976.  相似文献   

20.
Responses of caudate neurons to electrical stimulation of the afferent input from thepulvinar thalamic nucleus and to visual stimuli of various orientations were studied extracellularly in awake chronic cats. Activation responses dominated among reactions of these neurons. The response latencies have ranged from 4 to 85 msec for units with primary activation and from 20 to 150 msec for inhibited ones. The values are indicative of both rapidly and slowly conducting afferent pathways. A possibility of monosynaptic transmission in thepulvinarcaudate projections is also revealed.Pulvinar stimulation is found to be efficient for a significant (more than 50 percent) number of caudate neurons responding to visual stimuli, including orientation-selective cells. The mode of influences from other structures of the visual system (optic tract, area 17, the Clare-Bishop area) on caudate neurons responding topulvinar stimulation is described. The data are discussed with respect to the possible role of cortical and subcortical projections of the visual system in the creation of sensory specific responses of the caudate nucleus.A. A. Bogomolets Physiology Institute, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 23, No. 5, pp. 520–529, September–October, 1991.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号