首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A rapid growth of the coronary vasculature occurs during prenatal and early postnatal periods as precursor cells from the epi- and sub-epicardium differentiate, migrate and form vascular structures (vasculogenesis) which then fuse, branch and in some cases recruit cells to form three tunics (angiogenesis). These processes are tightly controlled by temporally and spatially expressed growth factors which are stimulated by metabolic and mechanical factors. The process of angiogenesis in the myocardium is not limited to developmental periods of life, but may occur when the heart is challenged by enhanced loading conditions or during hypoxia or ischemia. This review focuses on the activation of growth factors by metabolic and mechanical stimuli in the developing heart and in the adult heart undergoing adaptive responses. Experimental studies support the hypotheses that both metabolic (hypoxia) and mechanical (stretch) factors serve as powerful stimuli for the up-regulation of growth factors which facilitate angiogenesis and arteriogenesis. Both hypoxia and stretch are powerful inducers of VEGF and its receptors, and provide for paracrine and autocrine signaling. In addition to the VEGF family, bFGF and angiopoietins play major roles in myocardial vascularization. Sufficient evidence supports the hypothesis that mechanical (e.g., bradycardia) and metabolic (e.g., thyroxine analogs) may provide effective non-invasive angiogenic therapies for the ischemic and post-infarcted heart.  相似文献   

2.
Angiogenesis is regulated by chemical and mechanical factors in vivo. The regulatory role of mechanical factors and how chemical and mechanical angiogenic regulators work in concert remains to be explored. We investigated the effect of cyclic uniaxial stretch (20%, 1 Hz), with and without the stimulation of vascular endothelial growth factor (VEGF), on sprouting angiogenesis by employing a stretchable three‐dimensional cell culture model. When compared to static controls, stretch alone significantly increased the density of endothelial sprouts, and these sprouts aligned perpendicular to the direction of stretch. The Rho‐associated kinase (ROCK) inhibitor Y27632 suppressed stretch‐induced sprouting angiogenesis and associated sprout alignment. While VEGF is a potent angiogenic stimulus through ROCK‐dependent pathways, the combination of VEGF and stretch did not have an additive effect on angiogenesis. In the presence of VEGF stimulation, the ROCK inhibitor suppressed stretch‐induced sprout alignment but did not affect stretch‐induced sprout density; in contrast, the receptor tyrosine kinase (RTK) inhibitor sunitinib had no effect on stretch‐induced alignment but trended toward suppressed stretch‐induced sprout density. Our results suggest that the formation of sprouts and their directionality do not have completely identical regulatory pathways, and thus it is possible to separately manipulate the number and pattern of new sprouts. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 31:248–257, 2015  相似文献   

3.
How mechanical factors affect angiogenesis and how they and chemical angiogenic factors work in concert remain not yet well‐understood. This study investigated the interactive effects of cyclic uniaxial stretch and two potent proangiogenic molecules [basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF)] on angiogenesis using a stretchable three‐dimensional (3‐D) cell culture model. Endothelial cells seeded atop a 3‐D collagen gel underwent sprouting angiogenesis while being subjected to either 10 or 20% cyclic uniaxial stretch at a frequency of either 1/12 or 1 Hz, in conjunction with an elevated concentration of bFGF or VEGF. Without the presence of additional growth factors, 10 and 20% stretch at 1 Hz induced angiogenesis and the perpendicular alignment of new sprouts, and both inductive effects were abolished by cytochalasin D (an actin polymerization inhibitor). While “10% stretch at 1 Hz,” “20% stretch at 1 Hz,” bFGF, and VEGF were strong angiogenesis stimulants individually, only the combination of “20% stretch at 1 Hz” and bFGF had an additive effect on inducing new sprouts. Interestingly, the combination of “20% stretch at a lower frequency (1/12 Hz)” and bFGF decreased sprouting angiogenesis, even though the level of perpendicular alignment of new sprouts was the same for both stretch frequencies. Taken together, these results demonstrate that both stretch frequency and magnitude, along with interactions with various growth factors, are essential in mediating formation of endothelial sprouts and vascular patterning. Furthermore, work in this area is warranted to elucidate synergistic or competitive signaling mechanisms. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:879–888, 2014  相似文献   

4.
The importance of metabolic factors in the regulation of angiogenesis is well understood. An increase in metabolic activity leads to a decrease in tissue oxygenation causing tissues to become hypoxic. The hypoxia initiates a variety of signals that stimulate angiogenesis, and the increase in vascularity that follows promotes oxygen delivery to the tissues. When the tissues receive adequate amounts of oxygen, the intermediate effectors return to normal levels, and angiogenesis ceases. An emerging concept is that adenosine released from hypoxic tissues has an important role in driving the angiogenesis. The following feedback control hypothesis is proposed: AMP is dephosphorylated by ecto-5'-nucleotidase, producing adenosine under hypoxic conditions in the extracellular space adjacent to a parenchymal cell (e.g., cardiomyocyte, skeletal muscle fiber, hepatocyte, etc.). Extracellular adenosine activates A(2) receptors, which stimulates the release of vascular endothelial growth factor (VEGF) from the parenchymal cell. VEGF binds to its receptor (VEGF receptor 2) on endothelial cells, stimulating their proliferation and migration. Adenosine can also stimulate endothelial cell proliferation independently of VEGF, which probably involves modulation of other proangiogenic and antiangiogenic growth factors and perhaps an intracellular mechanism. In addition, hemodynamic factors associated with adenosine-induced vasodilation may have a role in the development and remodeling of the vasculature. Once a new capillary network has been established, and the diffusion/perfusion capabilities of the vasculature are sufficient to supply the parenchymal cells with adequate amounts of oxygen, adenosine and VEGF as well as other proangiogenic and antiangiogenic growth factors return to near-normal levels, thus closing the negative feedback loop. The available data indicate that adenosine might be an essential mediator for up to 50-70% of the hypoxia-induced angiogenesis in some situations; however, additional studies in intact animals will be required to fully understand the quantitative importance of adenosine.  相似文献   

5.
It has been documented that hypoxia enhances coronary vasculogenesis and angiogenesis in cultured embryonic quail hearts via the upregulation of vascular endothelial growth factor (VEGF). In this study, we compared the functions of two VEGF splice variants. Ventricles from 6-day-old embryonic quail hearts were cultured on three-dimensional collagen gels. Recombinant human VEGF(121) or VEGF(165) were added to the culture medium for 48 h, and vascular growth was visualized by immunostaining with a quail-specific endothelial cell (EC) marker, QH1. VEGF(165) enhanced vascular growth in a dose-dependent manner: 5 ng/ml of VEGF(165) slightly increased the number of ECs, 10 ng/ml of VEGF(165) increased the incorporation of ECs into tubular structures, and at 20 ng/ml of VEGF(165) wider tubes were formed. This pattern plateaued at the 50 ng/ml dose. In contrast, VEGF(121) did not enhance either the number of ECs or tube formation at these or higher dosages. Combined effects of hypoxia and exogenous VEGF(165) were then compared. Tube formation from the heart explants treated with both hypoxia and 50 ng/ml of VEGF(165) had a morphology intermediate to those treated with hypoxia or VEGF(165) alone. Immunocytochemistry study revealed EC lumenization under all culture conditions. However, the addition of VEGF(165) stimulated the coalescence of ECs to form larger vessels. We conclude the following: 1) VEGF(121) and VEGF(165) induced by hypoxia have different functions on coronary vascular growth, 2) unknown factors induced by hypoxia can modify the effect of VEGF(165), and 3) EC lumenization observed in the heart explant culture closely mimics in vivo coronary vasculogenesis.  相似文献   

6.
Formation of new blood vessels, which is fundamental in embryonic development, occurs through a combination of angiogenesis and vasculogenesis. Angiogenesis also plays a vital role postnatally, especially in reparative processes such as wound and fracture healing. Some of these events, especially in fracture healing, recapitulate processes observed in developmental angiogenesis. However, dysregulated angiogenesis is well documented to underlie a number of pathological disorders, including rheumatoid arthritis (RA). The vascular endothelial growth factor (VEGF)/VEGF receptor system is the best characterized regulator of angiogenesis. VEGF is expressed in a range of cells in response to soluble mediators (such as cytokines and growth factors), cell-bound stimuli (such as CD40 ligand), and environmental factors (such as hypoxia). As a consequence, this molecule is vital in the modulation of physiological and pathological angiogenesis. This review will focus in particular on the role played by VEGF in embryogenesis and skeletal growth, in fracture healing (in which increased angiogenesis is likely to be beneficial in promoting union), and in RA (in which excessive angiogenesis is thought to play a significant role in disease pathogenesis). In the not-too-distant future, targeting VEGF may prove to be of benefit in the treatment of diseases associated with excessive or aberrant angiogenesis, such as malignancies and RA.  相似文献   

7.
Vascular endothelial growth factor (VEGF) and basic (b) fibroblast growth factor (FGF-2/bFGF) are involved in vascular development and angiogenesis. Pulmonary artery smooth muscle cells express VEGF and FGF-2 and are subjected to mechanical forces during pulsatile blood flow. The effect of stretch on growth factor expression in these cells is not well characterized. We investigated the effect of cyclic stretch on the expression of VEGF and FGF-2 in ovine pulmonary artery smooth muscle cells. Primary confluent cells from 6-wk-old lambs were cultured on flexible silicon membranes and subjected to cyclic biaxial stretch (1 Hz; 5-25% stretch; 4-48 h). Nonstretched cells served as controls. Expression of VEGF and FGF-2 was determined by Northern blot analysis. Cyclic stretch induced expression of both VEGF and FGF-2 mRNA in a time- and amplitude-dependent manner. Maximum expression was found at 24 h and 15% stretch (VEGF: 1.8-fold; FGF-2: 1.9-fold). These results demonstrate that mechanical stretch regulates VEGF and FGF-2 gene expression, which could play a role in pulmonary vascular development or in postnatal pulmonary artery function or disease.  相似文献   

8.
We previously demonstrated that cyclic stretch of cardiac myocytes activates paracrine signaling via vascular endothelial growth factor (VEGF) leading to angiogenesis. The present study tested the hypothesis that cyclic stretch upregulates tyrosine kinase receptors in rat coronary microvascular endothelial cells (RCMEC) and human umbilical vein endothelial cells (HUVEC). VEGF receptor-2 (Flk-1) protein levels increased in HUVEC and RCMEC in a time-dependent manner, but the increase occurred much earlier in RCMEC than in HUVEC. The enhancement of Flk-1 protein level was not inhibited by addition of VEGF neutralizing antibodies, indicating that VEGF is not involved in stretch-induced Flk-1 expression. VEGF receptor-1 (Flt-1) protein and mRNA were not changed by stretch. However, Tie-2 and Tie-1 protein levels increased in RCMEC. Angiopoietin-1 and -2, the ligands for Tie-2, increased in cardiac myocytes subjected to cyclic stretch but were not affected by stretch in endothelial cells (EC). Stretch or incubation of RCMEC with VEGF increased cell proliferation moderately, whereas stretch + VEGF had an additive effect on proliferation. Mechanical stretch induces upregulation of the key tyrosine kinase receptors Flk-1, Tie-2, and Tie-1 in vascular EC, which underlies the increase in sensitivity of EC to growth factors and, therefore, facilitates angiogenesis. These in vitro findings support the concept that stretch of cardiac myocytes and EC plays a key role in coronary angiogenesis.  相似文献   

9.
Physiological angiogenesis is regulated by various factors, including signaling through vascular endothelial growth factor (VEGF) receptors. We previously reported that a single dose of ethanol (1.4 g/kg), yielding a blood alcohol concentration of 100 mg/dl, significantly impairs angiogenesis in murine wounds, despite adequate levels of VEGF, suggesting direct effects of ethanol on endothelial cell signaling (40). To examine the mechanism by which ethanol influences angiogenesis in wounds, we employed two different in vitro angiogenesis assays to determine whether acute ethanol exposure (100 mg/dl) would have long-lasting effects on VEGF-induced capillary network formation. Ethanol exposure resulted in reduced VEGF-induced cord formation on collagen and reduced capillary network structure on Matrigel in vitro. In addition, ethanol exposure decreased expression of endothelial VEGF receptor-2, as well as VEGF receptor-2 phosphorylation in vitro. Inhibition of ethanol metabolism by 4-methylpyrazole partially abrogated the effect of ethanol on endothelial cell cord formation. However, mice treated with t-butanol, an alcohol not metabolized by alcohol dehydrogenase, exhibited no change in wound vascularity. These results suggest that products of ethanol metabolism are important factors in the development of ethanol-induced changes in endothelial cell responsiveness to VEGF. In vivo, ethanol exposure caused both decreased angiogenesis and increased hypoxia in wounds. Moreover, in vitro experiments demonstrated a direct effect of ethanol on the response to hypoxia in endothelial cells, as ethanol diminished nuclear hypoxia-inducible factor-1alpha protein levels. Together, the data establish that acute ethanol exposure significantly impairs angiogenesis and suggest that this effect is mediated by changes in endothelial cell responsiveness to both VEGF and hypoxia.  相似文献   

10.
《Cytotherapy》2020,22(10):543-551
Background aimsWhen cells are exposed to stresses such as mechanical stimuli, they release growth factors and adapt to the surrounding environment H ere, we demonstrated that mechanical stimulation during culture affects the production of osteogenic and angiogenic factors.MethodsHuman bone marrow derived mesenchymal stromal cells (hMSCs) and human periodontal ligament fibroblasts (HPLFs ) were cultured under cyclic stretch stimulation for 24 h. Collected of the cells and conditioned media (CM), the gene and protein expression levels of osteogenic and angiogenic factors were evaluated. CM was also evaluated for angiogenic activity and calc ification ability. In in vivo study, CM was administered to a mouse calvarial defect model and histologically and radiologically evaluated.ResultsQuantitative real time polymerase chain reaction results showed that the expression of bone morphogenetic pro tein 2, 4 (BMP 2, 4), vascular endothelial growth factor A (VEGF A), and platelet derived growth factor AA (PDGF AA) was upregulated in the cyclic stretch stimulation group in comparison with the non stretch group in each cell type. Enzyme linked immunosor bent assay results revealed that the expression of BMP 2,4, VEGF A was upregulated in the cyclic stretch group in comparison with the non stretch group in each cell type. Only HPLFs showed significant difference in PDGF AA expression between the cyclic str etch and the non stretch group. Tube formation assay and Alizarin Red S staining results showed that angiogenic activity and calcification ability of CM was upregulated in the cyclic stretch stimulation group in comparison with the non stretch group in eac h cell type. CM was administered to the mouse calvarial defect model. Histological and radiological examination showed that the bone healing was promoted by CM from the cyclic stretch culture group. Immunohistological staining revealed that CM from cyclic stretch group have greater angiogenic effect than CM from the non stretch group.ConclusionsThese results indicate that osteogenesis was promoted by CM obtained under cyclic stretch stimulation through the increase of angiogenesis in the mouse calvarial defect model.  相似文献   

11.
Vascular endothelial cells are continuously exposed to mechanical (e.g., shear stress) and chemical (e.g., growth factors) stimuli. It is important to elucidate the mechanisms by which cells perceive and integrate these different stimuli to regulate the downstream signaling pathways. We (50) have previously reported the shear-induced interplay between two membrane receptors, integrins and Flk-1. In the present study, we investigated the molecular mechanisms regulating the downstream IkappaB kinase (IKK) pathway in response to shear stress and VEGF. Both shear stress and VEGF induced a transient increase of IKK activity. These effects were inhibited by SU-1498, a specific Flk-1 inhibitor, and by a negative mutant of Casitas B-lineage lymphoma (Cbl) with tyrosine-to-phenylalanine mutations at sites 700, 731, and 774 (Cbl(nm)). Because Flk-1 and Cbl form a complex upon shearing or VEGF applications (50), these results suggest that shear stress and VEGF activate IKK via the receptor Flk-1 and its recruitment of the adapter protein Cbl. The inhibition of the shear- and VEGF-induced IKK activities by a negative mutant of Akt indicates that Akt acts upstream to IKK in response to shear stress and VEGF. Furthermore, SU-1498 and Cbl(-nm) abolished the shear- and VEGF-induced Akt activity, indicating that Akt acts at a level downstream to Flk-1 and Cbl. Therefore, our results indicate that the signaling events induced by shear stress and VEGF converge at the membrane receptor Flk-1 and that these stimuli share the Flk-1/Cbl/Akt pathway in activating IKK activation.  相似文献   

12.
13.
Considerable evidence is gathering for the involvement of vascular endothelial growth factor (VEGF) in the vascularization and growth of primary tumours as well as in the formation of metastases. The expression of VEGF depends on activated oncogenes and inactivated tumour suppressor genes as well as several other factors (e.g. growth factors, tumour promoters and hypoxia). Substantial expression of the receptors for VEGF is restricted mainly to the tumour blood vessels. The causal involvement of this angiogenic factor in the progression of disease has been successfully evaluated by means of monoclonal antibodies against VEGF, dominant-negative receptor mutants and the use of antisense oligonucleotides against the VEGF mRNA. Thus, the VEGF signalling system seems to be an appropriate target to inhibit tumour angiogenesis and metastases formation.  相似文献   

14.
gamma-Secretase cleaves the transmembrane domains of several integral membrane proteins involved in vasculogenesis. Here, we investigated the role of gamma-secretase in the regulation of postnatal angiogenesis using gamma-secretase inhibitors (GSI). In endothelial cell (EC), gamma-secretase activity was up-regulated under hypoxia or the treatment of vascular endothelial growth factor (VEGF). The treatment of GSI significantly attenuated growth factor-induced EC proliferation and migration as well as c-fos promoter activity in a dose-dependent manner. In vascular smooth muscle cell (VSMC), treatment of GSI significantly attenuated growth factor-induced VEGF and fibroblast growth factor-2 (FGF-2) expression. Indeed, GSI attenuated VEGF-induced tube formation and inhibited FGF-2-induced angiogenesis on matrigel in mice as quantified by FITC-lectin staining of EC. Overall, we demonstrated that gamma-secretase may be key molecule in postnatal angiogenesis which may be downstream molecule of growth factor-induced growth and migration in EC, and regulate the expression of angiogenic growth factors in VSMC.  相似文献   

15.
To test the hypotheses that cyclic stretch of 1) cardiac myocytes produces factors that trigger angiogenic events in coronary microvascular endothelial cells (CMEC) and 2) CMEC enhances the expression of growth factors, cardiac myocytes and CMEC were subjected to cyclic stretch in a Flexercell Strain Unit. Vascular endothelial growth factor (VEGF) but not basic fibroblast growth factor mRNA and protein levels increased approximately twofold in myocytes after 1 h of stretch. CMEC DNA synthesis increased approximately twofold when conditioned medium from stretched myocytes or VEGF protein was added, and addition of VEGF neutralizing antibody blocked the increase. CMEC migration and tube formation increased with the addition of conditioned media but were markedly attenuated by VEGF neutralizing antibody. Myocyte transforming growth factor-beta [corrected] (TGF-beta) increased 2.5-fold after 1 h of stretch, and the addition of TGF-beta neutralizing antibodies inhibited the stretch-induced upregulation of VEGF. Stretch of CMEC increased VEGF mRNA in these cells (determined by Northern blot and RT-PCR) and increased the levels of VEGF protein (determined by ELISA analysis) in the conditioned media. Therefore, cyclic stretch of cardiac myocytes and CMEC appears to be an important primary stimulus for coronary angiogenesis through both paracrine and autocrine VEGF pathways. These data indicate that 1) CMEC DNA synthesis, migration, and tube formation are increased in response to VEGF secreted from stretched cardiac myocytes; 2) VEGF in CMEC subjected to stretch is upregulated and secreted; and 3) TGF-beta signaling may regulate VEGF expression in cardiac myocytes.  相似文献   

16.
Lack of physical activity results in muscle atrophy and bone loss, which can be counteracted by mechanical loading. Similar molecular signaling pathways are involved in the adaptation of muscle and bone mass to mechanical loading. Whether anabolic and metabolic factors regulating muscle mass, i.e., insulin-like growth factor-I isoforms (IGF-I Ea), mechano growth factor (MGF), myostatin, vascular endothelial growth factor (VEGF), or hepatocyte growth factor (HGF), are also produced by osteocytes in bone in response to mechanical loading is largely unknown. Therefore, we investigated whether mechanical loading by pulsating fluid flow (PFF) modulates the mRNA and/or protein levels of muscle anabolic and metabolic factors in MLO-Y4 osteocytes. Unloaded MLO-Y4 osteocytes expressed mRNA of VEGF, HGF, IGF-I Ea, and MGF, but not myostatin. PFF increased mRNA levels of IGF-I Ea (2.1-fold) and MGF (2.0-fold) at a peak shear stress rate of 44Pa/s, but not at 22Pa/s. PFF at 22 Pa/s increased VEGF mRNA levels (1.8- to 2.5-fold) and VEGF protein release (2.0- to 2.9-fold). Inhibition of nitric oxide production decreased (2.0-fold) PFF-induced VEGF protein release. PFF at 22 Pa/s decreased HGF mRNA levels (1.5-fold) but increased HGF protein release (2.3-fold). PFF-induced HGF protein release was nitric oxide dependent. Our data show that mechanically loaded MLO-Y4 osteocytes differentially express anabolic and metabolic factors involved in the adaptive response of muscle to mechanical loading (i.e., IGF-I Ea, MGF, VEGF, and HGF). Similarly to muscle fibers, mechanical loading enhanced expression levels of these growth factors in MLO-Y4 osteocytes. Although in MLO-Y4 osteocytes expression levels of IGF-I Ea and MGF of myostatin were very low or absent, it is known that the activity of osteoblasts and osteoclasts is strongly affected by them. The abundant expression levels of these factors in muscle cells, in combination with low expression in MLO-Y4 osteocytes, provide a possibility that growth factors expressed in muscle could affect signaling in bone cells.  相似文献   

17.
Hypertension and myocardial infarction are associated with the onset of hypertrophy. Hypertrophy is a compensatory response mechanism to increases in mechanical load due to pressure or volume overload. It is characterized by extracellular matrix remodeling and hypertrophic growth of adult cardiomyocytes. Production of Vascular Endothelial Growth Factor (VEGF), which acts as an angiogenic factor and a modulator of cardiomyocyte function, is regulated by mechanical stretch. Mechanical stretch promotes VEGF secretion in neonatal cardiomyocytes. Whether this effect is retained in adult cells and the molecular mechanism mediating stretch-induced VEGF secretion has not been elucidated. Our objective was to investigate whether cyclic mechanical stretch induces VEGF secretion in adult cardiomyocytes and to identify the molecular mechanism mediating VEGF secretion in these cells. Isolated primary adult rat cardiomyocytes (ARCMs) were subjected to cyclic mechanical stretch at an extension level of 10% at 30 cycles/min that induces hypertrophic responses. Cyclic mechanical stretch induced a 3-fold increase in VEGF secretion in ARCMs compared to non-stretch controls. This increase in stretch-induced VEGF secretion correlated with NFkB activation. Cyclic mechanical stretch-mediated VEGF secretion was blocked by an NFkB peptide inhibitor and expression of a dominant negative mutant IkBα, but not by inhibitors of the MAPK/ERK1/2 or PI3K pathways. Chromatin immunoprecipitation assays demonstrated an interaction of NFkB with the VEGF promoter in stretched primary cardiomyocytes. Moreover, VEGF secretion is increased in the stretched myocardium during pressure overload-induced hypertrophy. These findings are the first to demonstrate that NFkB activation plays a role in mediating VEGF secretion upon cyclic mechanical stretch in adult cardiomyocytes. Signaling by NFkB initiated in response to cyclic mechanical stretch may therefore coordinate the hypertrophic response in adult cardiomyocytes. Elucidation of this novel mechanism may provide a target for developing future pharmacotherapy to treat hypertension and heart disease.  相似文献   

18.
Numerous studies have demonstrated the critical role of angiogenesis for successful osteogenesis during endochondral ossification and fracture repair. Vascular endothelial growth factor (VEGF), a potent endothelial cell-specific cytokine, has been shown to be mitogenic and chemotactic for endothelial cells in vitro and angiogenic in many in vivo models. Based on previous work that (1) VEGF is up-regulated during membranous fracture healing, (2) the fracture site contains a hypoxic gradient, (3) VEGF is up-regulated in a variety of cells in response to hypoxia, and (4) VEGF is expressed by isolated osteoblasts in vitro stimulated by other fracture cytokines, the hypothesis that hypoxia may regulate the expression of VEGF by osteoblasts was formulated. This hypothesis was tested in a series of in vitro studies in which VEGF mRNA and protein expression was assessed after exposure of osteoblast-like cells to hypoxic stimuli. In addition, the effects of a hypoxic microenvironment on osteoblast proliferation and differentiation in vitro was analyzed. These results demonstrate that hypoxia does, indeed, regulate expression of VEGF in osteoblast-like cells in a dose-dependent fashion. In addition, it is demonstrated that hypoxia results in decreased cellular proliferation, decreased expression of proliferating cell nuclear antigen, and increased alkaline phosphatase (a marker of osteoblast differentiation). Taken together, these data suggest that osteoblasts, through the expression of VEGF, may be in part responsible for angiogenesis and the resultant increased blood flow to fractured bone segments. In addition, these data provide evidence that osteoblasts have oxygen-sensing mechanisms and that decreased oxygen tension can regulate gene expression, cellular proliferation, and cellular differentiation.  相似文献   

19.
20.
Vascular endothelial growth factor (VEGF) is an endothelial cell mitogen which stimulates angiogenesis. VEGF is regulated by multiple factors such as hypoxia, phorbol esters, and growth factors. However, data concerning the expression of VEGF in the different vascular cell types and its regulation by cAMP are not available. In the present study, we have investigated the effect of adenylate cyclase activation on VEGF mRNA expression in rat vascular cells in primary culture. Basal VEGF expression is greater in smooth muscle cells than in endothelial cells and fibroblasts. A 4-h treatment with forskolin (10−5M) induced a 2-fold stimulation of VEGF mRNA expression in smooth muscle cells and fibroblasts, but, in contrast, did not affect VEGF expression in endothelial cells. In smooth muscle cells, a pharmacologically induced increase in intracellular cAMP levels using iloprost or isoprenaline led to a rise in VEGF mRNA expression comparable to that induced by forskolin. Adenosine, which increases cAMP levels in smooth muscle cells, also increases VEGF expression. Moreover, the 2.2-fold stimulation of VEGF expression by adenosine was enhanced following a cotreatment with cobalt chloride (a hypoxia miming agent). The observed additive effect (4.3-fold increase) suggests that these two factors, hypoxia and adenosine, regulate VEGF mRNA expression in smooth muscle cells by independent mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号