首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Rho GTPases are regulators of signaling pathways that control actin organization and cell polarity processes in all eukaryotic cells. In Schizosaccharomyces pombe, Rho4p is involved in the regulation of septum degradation during cytokinesis. Here we show that Rho4p participates in the secretion of the glucanases Eng1p and Agn1p, which are responsible for the septum degradation. First, eng1+ or agn1+ overexpression suppressed the rho4delta multiseptation phenotype, and simultaneous overproduction of Rho4p and Eng1p or of Rho4p and Agn1p caused a dramatic lysis. Second, Rho4p was not necessary for Eng1p-mediated glucanase activity as measured in cell extracts; however, rho4delta cells have a lower level of (1,3)-beta-D-glucanase activity in the culture medium. Additionally, Eng1- or Agn1-green fluorescent protein did not properly localize to the septum in rho4delta cells grown at 37 degrees C. There was a decreased amount of these enzymes in the cell wall and in the culture medium of rho4delta cells at 37 degrees C. These results provide evidence that Rho4p is involved in the regulation of Eng1p and Agn1p secretion during cytokinesis.  相似文献   

2.
The nuclear envelope is essential for compartmentalizing the nucleus from the cytoplasm in all eukaryotic cells. There is a tremendous flux of both RNA and proteins across the nuclear envelope, which is intact throughout the entire cell cycle of yeasts but breaks down during mitosis of animal cells. Transport across the nuclear envelope requires the recognition of cargo molecules by receptors, docking at the nuclear pore, transit through the nuclear pore, and then dissociation of the cargo from the receptor. This process depends on the RanGTPase system, transport receptors, and the nuclear pore complex. We provide an overview of the nuclear transport process, with particular emphasis on the fission yeast Schizosaccharomyces pombe, including strategies for predicting and experimentally verifying the signals that determine the sub-cellular localization of a protein of interest. We also describe a variety of reagents and experimental strategies, including the use of mutants and chemical inhibitors, to study nuclear protein import, nuclear protein export, nucleocytoplasmic protein shuttling, and mRNA export in fission yeast. The RanGTPase and its regulators also play an essential transport independent role in nuclear envelope re-assembly after mitosis in animal cells and in the maintenance of nuclear envelope integrity at mitosis in S. pombe. Several experimental strategies and reagents for studying nuclear size, nuclear shape, the localization of nuclear pores, and the integrity of the nuclear envelope in living fission yeast cells are described.  相似文献   

3.
Yeasts have proven to be invaluable, genetically tractable systems to study various fundamental biological processes including programmed cell death. Recent advances in the elucidation of the molecular pathways underlying apoptotic cell death in yeasts have revealed remarkable similarities to mammalian apoptosis at cellular, organelle and macromolecular levels, thus making a strong case for the relevance of yeast models of regulated cell death. Programmed cell death has been reported in fission yeast Schizosaccharomyces pombe, primarily in the contexts of perturbed intracellular lipid metabolism, defective DNA replication, improper mitotic entry, chronological and replicative aging. Here we review the current understanding of the programmed cell death in fission yeast, paying particular attention to lipid-induced cell death. We discuss our recent findings that fission yeast exhibits plasticity of apoptotic and non-apoptotic modes of cell death in response to different lipid stimuli and growth conditions, and that mitochondria, reactive oxygen species and novel cell death mediators including metacaspase Pca1, SpRad9 and Pck1 are involved in the lipotoxic cell death. We also present perspectives on how various aspects of the cell and molecular biology of this organism can be explored to shed light on the governing principles underlying lipid-mediated signaling and cell demise.  相似文献   

4.
Dikaryons, cells with two haploid nuclei contributed by the members of a mating pair, are part of the life cycle of many filamentous fungi, but the molecular mechanisms underlying the division of dikaryons are largely unknown. We found that the fission yeast Schizosaccharomyces pombe has a latent ability to divide as a dikaryon. Cells capable of restarting the mitotic cycle with two nuclei were prepared by transient inactivation of the septation initiation network. Close pairing of the two nuclei before mitosis was dependent on minus-end-directed kinesin Klp2p and was essential for propagation as a dikaryon. The two spindles extended in opposite directions, keeping their old spindle pole bodies at the prospective site of cell division until the mid-anaphase. The spindles then overlapped, exchanging the inner nuclei. Finally, twin mitosis was followed by a single cytokinesis, producing two daughter dikaryons carrying copies of the original pair of nuclei.  相似文献   

5.
6.
范洁琼  邓小龙  冯碧薇  王继峰  余垚  吕红 《遗传》2013,35(8):1030-1039
丝/苏氨酸特异性钙调磷酸酶(Calcineurin, CN)是一种在真核生物中广泛存在的蛋白, 是参与转录调控的重要分子。裂殖酵母中的CN是由催化亚基Ppb1和调节亚基Cnb1组成的异源二聚体。文章报道了裂殖酵母中cnb1+的缺失引起细胞生长速度缓慢, 产生多隔膜现象, 胞质分裂受阻滞。胞质分裂过程中, Cnb1与Ppb1组成CN复合物, 与收缩环在分裂平面上共定位, 并与收缩环一起收缩。cnb1Δ菌株的隔膜成熟过程存在缺陷, 微管出现纵穿隔膜的现象。上述结果说明Cnb1可能参与隔膜的成熟过程。此外, 还检测了cnb1D菌株中胞裂蛋白的信号。胞裂蛋白包括Spn1、Spn2、Spn3和Spn4, 它们是引导隔膜降解的重要分子。结果显示, 在cnb1D菌株中, 80%左右的细胞在隔膜处缺失Spn2和Spn3的信号, 20%左右的细胞缺失Spn1和Spn4的信号。由于胞裂蛋白的蛋白表达量在cnb1D中没有降低, 因此胞裂蛋白信号的消失不是转录缺陷引起的, 这暗示Cnb1可能采用了不依赖转录的方式来调控胞裂蛋白环的稳定性。以上结果提示, Cnb1可能通过影响隔膜的成熟及胞裂蛋白环的稳定性参与调节裂殖酵母的胞质分裂过程。  相似文献   

7.
The suitability of fission yeast as a model for understanding the eukaryotic cell cycle has been validated in five years of exciting developments. We review recent advances in understanding the nature of the controls that regulate progression through the cell cycle and the coordination of DNA replication and mitosis.  相似文献   

8.
Five cyclin-like genes, cig1, cig2/cyc17, mcs2, puc1 and cdc13, have been discovered in S. pombe to date. It is not yet clear what their functions are or even whether they are all involved with control of the cell cycle. Conflicting data for cig1 and cig2/cyc17 have obscured analysis of their function and cig1 remains largely uncharacterized, although clues to the role of cig2/cyc17 have emerged. There is genetic data available for the more distant cyclin homologue mcs2, which has an essential although as yet unspecified role. Puc1 may be involved in regulation of exit from the cell cycle. The first cyclin to be discovered, and the best understood, is cdc13 which with cdc2 promotes mitosis. Studies of the roles of cdc2 and cdc13 in the overall ordering of the cell cycle suggest that cdc13 and probably other cyclins are key regulators, maintaining the order of S phase and mitosis during the cell cycle.  相似文献   

9.
DNA synthesis in the fission yeast Schizosaccharomyces pombe   总被引:15,自引:0,他引:15  
  相似文献   

10.
Conjugation between two haploid yeast cells is generally controlled by the reciprocal action of diffusible mating pheromones, cells of each mating type releasing pheromones that induce mating-specific changes in cells of the opposite type. Recent studies into pheromone signalling in the fission yeast Schizosaccharomyces pombe have revealed significant parallels with processes in higher eukaryotes and could provide the opportunity for investigating communication in an organism that is amenable to both biochemical and genetic manipulation.  相似文献   

11.
12.
13.
The Schizosaccharomyces pombe mutant ehs1-1 mutant was isolated on the basis of its hypersensitivity to Echinocandin and Calcofluor White, which inhibit cell wall synthesis. The mutant shows a thermosensitive growth phenotype that is suppressed in the presence of an osmotic stabiliser. The mutant also showed other cell wall-associated phenotypes, such as enhanced sensitivity to enzymatic cell wall degradation and an imbalance in polysaccharide synthesis. The ehs1 + gene encodes a predicted integral membrane protein that is 30% identical to Saccharomyces cerevisiae Mid1p, a protein that has been proposed to form part of a calcium channel. As expected for such a function, we found that ehs1+ is involved in intracellular Ca2+ accumulation. High external Ca2+ concentrations suppressed all phenotypes associated with the ehs1 null mutation, suggesting that the cell integrity defects of ehs1 mutants result from inadequate levels of calcium in the cell. We observed a genetic relationship between ehs1+ and the protein kinase C homologue pck2+. pck2+ suppressed all phenotypes of ehs1-1 mutant cells. Overproduction of pck2p is deleterious to wild-type cells, increasing 1,3-beta-D-glucan synthase activity and promoting accumulation of extremely high levels of Ca2+. The lethality associated with pck2p, the increase in 1,3-beta-D-glucan synthase production and the strong Ca2+ accumulation are all dependent on the presence of ehs1p. Our results suggest that in fission yeast ehs1p forms part of a calcium channel that is involved in the cell wall integrity pathway that includes the kinase pck2p.  相似文献   

14.
Yeasts being simple eukaryotes are established genetic systems that are often employed to solve important biological questions. Recently, it has become evident that certain cell death programs exist in these unicellular organisms. For example, it has been shown recently that strains of the fission yeast Schizosaccharomyces pombe deficient in triacylglycerol synthesis undergo cell death with prominent apoptotic markers. This minireview is intended to discuss key developments that have rendered fission yeast useful both as a tool and as a model for apoptosis and lipoapoptosis research. It is attempted to delineate a putative signaling pathway leading to the execution of lipoapoptosis in the fission yeast. Although in its infancy, apoptosis research in the fission yeast promises exciting breakthroughs in the near future.  相似文献   

15.
The fission yeast cps6-153 mutant was originally isolated based on its hypersensitivity to the spindle poison isopropyl N-3-chlorophenyl carbamate (CIPC). The mutant also shows defects in both cell wall integrity and cytokinesis, resulting in the accumulation of unseparated cells with weakened cell walls. The arrested cells display a disoriented alignment of cytoplasmic microtubules. When the mutant cells are cultivated at high temperature (35 degrees C), both cell walls and septa become very thick. Electron microscopy revealed the disorganized structure of the thickened cell walls and septa, in which fibrillar components were not completely masked with an amorphous matrix. rad25+ was cloned from a genomic library by complementation of the mutant phenotypes, suggesting the involvement of Rad25p, one of two 14-3-3 proteins in S. pombe, in the pathway of cell wall integrity and cytokinesis.  相似文献   

16.
The Rho-family GTPase Cdc42p regulates many aspects of cell polarity and growth in eukaryotic cells, including the organization of the actin cytoskeleton. To further examine Cdc42p function in the fission yeast Schizosaccharomyces pombe, a functional green fluorescent protein (GFP)-Cdc42p fusion protein was generated. GFP-Cdc42p was observed at the medial region of the cell at the cell-division site early in cytokinesis and remained there through cell separation, and was also localized to the periphery of the cell and to internal membranes. Unexpectedly, treatment with the actin-depolymerizing drug latrunculin-A disrupted the medial region targeting pattern, and cells deficient in the actin-binding proteins tropomyosin and profilin also did not exhibit medial GFP-Cdc42p staining. In addition, medial GFP-Cdc42p localization was eliminated in a number of cytokinesis mutants, including strains defective in assembling the medial actinomyosin ring, medial ring contraction, and septum assembly. GFP-Cdc42p targeting was less affected in mutants that formed misplaced or multiple septa. These results suggest that the localization of Cdc42p at the cell-division site was dependent upon the actin cytoskeleton and that Cdc42p may function in the interdependent processes of cytokinesis and septation.  相似文献   

17.
《The Journal of cell biology》1989,109(6):2693-2702
A membrane-associated galactosyltransferase has been purified to homogeneity from the fission yeast, Schizosaccharomyces pombe. The enzyme has a molecular weight of 61,000 and is capable of transfering galactose from UDP-galactose (UDP-Gal) to a variety of mannose-based acceptors to form an alpha-1,2 galactosyl mannoside linkage. Immunofluorescence localization of the protein is consistent with the presence of the enzyme in the Golgi apparatus of S. pombe. This, together with the presence of terminal, alpha-linked galactose on the N- linked oligosaccharides of S. pombe secretory proteins, suggests that the galactosyltransferase is an enzyme involved in the processing of glycoproteins transported through the Golgi apparatus in fission yeast.  相似文献   

18.
The fission yeast Schizosaccharomyces pombe is a natural auxotroph for inositol and fails to grow in the complete absence of it. It was previously reported that a small concentration of inositol in the culture medium supports vegetative growth, but not mating and sporulation, and a tenfold of that concentration also supports mating and sporulation. The purpose of the present work was to investigate whether a moderate inositol starvation specifically affected events of the sexual program of development. A homothallic culture grown to the stationary phase in medium with a small inositol concentration was sterile but cells in the stationary phase of growth synchronously entered and completed the sexual cycle when inositol was added, without need of previous cell divisions. This suggests the involvement of inositol in a mechanism (or mechanisms) of the sexual program. The events of the program that were affected by inositol starvation were investigated. Commitment to mating and production of pheromone M were shown not to be inositol-dependent. A diploid strain homozygous at the mating-type locus and carrying a pat1-114 temperature-sensitive mutation in homozygous configuration sporulated under inositol starvation at the restrictive temperature; therefore starvation did not directly affect meiosis or sporulation. In contrast, production of pheromone P and the response of cells to pheromones were found to be inositol-dependent. The possibility that inositol or one of its derivative compounds is involved in pheromone P secretion and in pheromone signal reception is discussed.  相似文献   

19.
We looked for changes in gene expression and novel genes that could be involved in the interaction between glucose repression and oxidative stress response in the fission yeast, Schizosaccharomyces pombe, using a constitutive invertase mutant, ird11, which is resistant to glucose. BLAST analysis was made of the S. pombe genome database of cDNAs whose expression ratios differentially decreased or increased upon exposure to mild oxidative stress in this mutant compared to the wild type. Genes with this type of activity were identified as rpl302, encoding 60S ribosomal protein L3, and mpg1, encoding mannose-1-phosphate guanyltransferase; their expression patterns were measured using quantitative real-time PCR. We found that the expression levels of rpl302 and mpg1 genes in ird11 under unstressed conditions were increased compared to those of the wild type. Under stress conditions, the expression levels of the rpl302 gene were decreased in both strains, while mpg1 expression levels remained unchanged. These results suggest that these genes play a role in the response to oxidative stress in this mutant strain.  相似文献   

20.
Mutants of the fission yeast Schizosaccharomyces pombe which are sensitive to UV and/or γ-irradiation have been assigned to 23 complementation groups, which can be assigned to three phenotypic groups. We have cloned genes which correct the deficiency in mutants corresponding to 12 of the complementation groups. Three genes in the excision-repair pathway have a high degree of sequence conservation with excision-repair genes from the evolutionarily distant budding yeast Saccharomyces cerevisiae. In contrast, those genes in the recombination repair pathway which have been characterised so far, show little homology with any previously characterised genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号