首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transposable elements account for up to 85% of the maize genome and have significant implications in crop-improvement and evolutionary analyses. The Mutator (Mu) transposon superfamily, a class of DNA transposons, comprises the most complex and active elements in the maize genome, suggesting a special role in plant evolution. Here, we designed a set of Mu-specific primers based on terminal invert repeats and used a transposon display (TD) method for genotyping. We analyzed the distribution pattern of Mu insertions in teosinte (wild relative), sorghum (distant relative), and domesticated maize accessions (dent, sweet, and waxy). The MU-TD analysis suggested the presence of high polymorphic insertions among the species and subspecies, indicating the utility of the method in studying genetic variation and species relationships. Furthermore, we analyzed 80 maize recombinant inbred line populations. Mu-TD generated an average of 60% Mu-anchored polymorphic fragments in which insertions appeared to be segregating in significantly high numbers. The amplification profile was highly reproducible, confirming the utility of Mu elements as a new set of TD markers for developing high-density genetic maps.  相似文献   

2.
Up to 35% of the rice genome consists of various kinds of transposons, and CACTA and MITE are two of the major class 2 DNA transposons in the genome. We have employed the consensus sequences of Rim2/Hipa CACTA, Stowaway MITE Pangrangja, and Tourist MITE Ditto for transposon display (TD) analysis to locate them on a genetic map, with 58 SSR markers used to anchor them. The TD analysis produced a high profile of the polymorphisms between the parental lines, Oryza sativa var. Gihobyeo/O. sativa var. Milyang, in intraspecific F15 RIL lines, locating 368 markers of Rim2/Hipa CACTA, 78 markers of Tourist MITE Ditto, and 22 markers of Stowaway MITE Pangrangja. In the segregation analysis, non-parental segregating bands and segregation distortion bands were observed. The recombinant genetic map spans 3023.9 cM, with 5.7 cM the average distance between markers. The TD markers were distributed unequally on the chromosomes because many TD markers were located in pericentric chromosomal regions except in the cases of chromosomes 2, 3, 6 and 9. Although the number of transposon markers was not sufficient to include all rice class 2 transposons, the current map of CACTA and MITE transposons should provide new insight into the genome organization of rice since no previous DNA transposon map is available.  相似文献   

3.
CACTA is a class 2 transposon, that is very abundantly present in plant genomes. Using Rim2/Hipa CACTA transposon display (hereafter Rim2/Hipa-TD), we analyzed several A-genome diploid Oryza species that have a high distribution of the CACTA motifs. High levels of polymorphism were detected within and between the Oryza species. The African taxa, O. glaberrima and O. barthii, both showed lower levels of polymorphism than the Asian taxa, O. sativa, O. rufipogon, and O. nivara. However, O. longistaminata, another African taxon, showed levels of polymorphism that were similar to the Asian taxa. The Latin American taxon, O. glumaepatula, and the Australian taxon, O. meridionalis, exhibited intermediate levels of polymorphism between those of the Asian and African taxa. The lowest level of polymorphism was observed in O. glaberrima (32.1%) and the highest level of polymorphism was observed in O. rufipogon (95.7%). The phylogenetic tree revealed three major groups at the genetic similarity level of 0.409. The first group consisted of three Asian taxa, O. sativa, O. rufipogon and O. nivara. The second group consisted of three African taxa, O. glaberrima, O. barthii, O. longistaminata, and an American taxon, O. glumaepatula. The third group contained an Australian taxon, O. meridionalis. The clustering patterns of these species matched well with their geographical origins. Rim2/Hipa-TD appears to be a useful marker system for studying the genetic diversity and species relationships among the AA diploid Oryza species.  相似文献   

4.
5.

Background

Swine is an important agricultural commodity and biomedical model. Manipulation of the pig genome provides opportunity to improve production efficiency, enhance disease resistance, and add value to swine products. Genetic engineering can also expand the utility of pigs for modeling human disease, developing clinical treatment methodologies, or donating tissues for xenotransplantation. Realizing the full potential of pig genetic engineering requires translation of the complete repertoire of genetic tools currently employed in smaller model organisms to practical use in pigs.

Results

Application of transposon and recombinase technologies for manipulation of the swine genome requires characterization of their activity in pig cells. We tested four transposon systems- Sleeping Beauty, Tol2, piggyBac, and Passport in cultured porcine cells. Transposons increased the efficiency of DNA integration up to 28-fold above background and provided for precise delivery of 1 to 15 transgenes per cell. Both Cre and Flp recombinase were functional in pig cells as measured by their ability to remove a positive-negative selection cassette from 16 independent clones and over 20 independent genomic locations. We also demonstrated a Cre-dependent genetic switch capable of eliminating an intervening positive-negative selection cassette and activating GFP expression from episomal and genome-resident transposons.

Conclusion

We have demonstrated for the first time that transposons and recombinases are capable of mobilizing DNA into and out of the porcine genome in a precise and efficient manner. This study provides the basis for developing transposon and recombinase based tools for genetic engineering of the swine genome.  相似文献   

6.
Transposon display (TD) is a technique for analyzing polymorphic insertions and excisions of transposable elements. We used the CACTA transposon to develop cultivar-specific transposon insertion-sequence characterized amplified regions (Ti-SCARs) for rapeseed (Brassica napus). Using 16 combinations of TD primers, we detected 19 cultivar-specific fragments among six rapeseed cultivars. Of the 16 primer pairs, 12 successfully amplified targets in B. napus and six amplified novel, cultivar-specific markers. Cultivar-specific markers can be used for cultivar fingerprinting and marker-assisted selection in the rapeseed breeding program. Moreover, because Ti-SCARs are based on transposon insertions, Ti-SCAR markers may be used in reverse genetic techniques for isolating novel genes in plants.  相似文献   

7.
A PCR-based technique, involving the random amplification of polymorphic DNA (RAPD), was used for assessing genetic relatedness among isolates of the genus Phoma. Randomly Amplified Polymorphic DNA (RAPD) revealed the presence of interspecific genetic variation among the pigment producing isolates of Phoma and has shown distinct phylogenetic cluster. The major objective of the study was to study the genetic variation, if any. Study was aimed to differentiate four pigment producing species of Phoma based on morphological studies and molecular markers in general and RAPD in particular. We found that the test species of Phoma can be very well differentiated using molecular markers. Phoma sorghina was differentiated from P. exigua, P. fimeti and P. herbarum. RAPD profiles of P. herbarum and P. fimeti has shown the maximum similarity, which indicates the genetic relatedness among these two species which were considered earlier as distinct species based on morphological observation.  相似文献   

8.

Background  

The molecular organization of very few genetically defined CACTA transposon systems have been characterized thoroughly as those of Spm/En in maize, Tam1 of Antirrhinum majus Candystripe1 (Cs1) from Sorghum bicolor and CAC1 from Arabidopsis thaliana, for example. To date, only defective deletion derivatives of CACTA elements have been described for soybean, an economically important plant species whose genome sequence will be completed in 2008.  相似文献   

9.

Background

Polyploid species contribute to Oryza diversity. However, the mechanisms underlying gene and genome evolution in Oryza polyploids remain largely unknown. The allotetraploid Oryza minuta, which is estimated to have formed less than one million years ago, along with its putative diploid progenitors (O. punctata and O. officinalis), are quite suitable for the study of polyploid genome evolution using a comparative genomics approach.

Results

Here, we performed a comparative study of a large genomic region surrounding the Shattering4 locus in O. minuta, as well as in O. punctata and O. officinalis. Duplicated genomes in O. minuta have maintained the diploid genome organization, except for several structural variations mediated by transposon movement. Tandem duplicated gene clusters are prevalent in the Sh4 region, and segmental duplication followed by random deletion is illustrated to explain the gene gain-and-loss process. Both copies of most duplicated genes still persist in O. minuta. Molecular evolution analysis suggested that these duplicated genes are equally evolved and mostly manipulated by purifying selection. However, cDNA-SSCP analysis revealed that the expression patterns were dramatically altered between duplicated genes: nine of 29 duplicated genes exhibited expression divergence in O. minuta. We further detected one gene silencing event that was attributed to gene structural variation, but most gene silencing could not be related to sequence changes. We identified one case in which DNA methylation differences within promoter regions that were associated with the insertion of one hAT element were probably responsible for gene silencing, suggesting a potential epigenetic gene silencing pathway triggered by TE movement.

Conclusions

Our study revealed both genetic and epigenetic mechanisms involved in duplicated gene silencing in the allotetraploid O. minuta.  相似文献   

10.
Isaac-CACTA transposons: new genetic markers in maize and sorghum.   总被引:5,自引:0,他引:5  
CACTA is an En/Spm transposon superfamily present in high copy number in plant genomes, and Isaac is a subfamily of the CACTA superfamily. The TIR sequence of the Isaac subfamily was used for the purpose of transposon display (TD) in maize and sorghum. The Isaac TD produced 50-80 amplified fragments, depending on the primer combination, and the amplification profile was highly polymorphic among maize inbred lines. Isaac TD-based phylogenetic clustering distinguished the maize inbred lines according to their lineages and was consistent with the results of phylogenetic reports derived from other marker techniques by others researchers. The Isaac TD profile proved to be highly reproducible with different brands of Taq DNA polymerases and thermocyclers. The Isaac TD was also applied to recombinant inbred lines to assess genetic segregation; we observed 40-50 recordable segregation markers, depending on the primer combination. These Isaac TD markers segregated mostly as dominant markers, although, in a few cases, non-parental bands were observed in the segregating populations. In addition, the Isaac TD was very successful in the amplification of sorghum accessions. Therefore, the Isaac TD may provide another useful protocol for genetic analysis in maize and sorghum.  相似文献   

11.
The genus Porphyra (and its sister genus Pyropia) contains important red algal species that are cultivated and/or harvested for human consumption, sustaining a billion-dollar aquaculture industry. A vast amount of research has been focused on species of this genus, including studies on genetics and genomics among other areas. Twelve novel microsatellite markers were developed here for Porphyra linearis. Markers were characterized using 32 individuals collected from four natural populations of P. linearis with total heterozygosity varying from 0.098 to 0.916. The number of alleles per locus ranged from 2 to 18. All markers showed cross amplification with Porphyra umbilicalis and/or Porphyra dioica. These polymorphic microsatellite markers are useful for investigating population genetic diversity and differentiation in P. linearis and may become useful for other genetic research on the reproductive biology of this important species.  相似文献   

12.
The European common lizard (Zootoca vivipara) is a widely distributed species across Europe and Asia exhibiting two reproductive modes (oviparity/viviparity), six major lineages and several sublineages. It has been used to tackle a large variety of research questions, nevertheless, few nuclear DNA sequence markers have been developed for this species. Here we developed 79 new nuclear DNA sequence markers using a clonation protocol. These markers were amplified in several oviparous and viviparous specimens including samples of all extant clades, to test the amplification success and their diversity. 49.4% of the markers were polymorphic and of those, 51.3% amplified in all and 94.9% amplified in 5–7 of the extant Z. vivipara clades. These new markers will be very useful for the study of the population structure, population dynamics, and micro/macro evolution of Z. vivipara. Cross-species amplification in four lizard species (Psammodromus edwardsianus, Podarcis muralis, Lacerta bilineata, and Takydromus sexlineatus) was positive in several of the markers, and six makers amplified in all five species. The large genetic distance between P. edwardsianus and Z. vivipara further suggests that these markers may as well be employed in many other species.  相似文献   

13.

Objective

To strengthen NADH regeneration in the biosynthesis of l-2-aminobutyric acid (l-ABA).

Results

l-Threonine deaminase (l-TD) from Escherichia coli K12 was modified by directed evolution and rational design to improve its endurance to heat treatment. The half-life of mutant G323D/F510L/T344A at 42 °C increased from 10 to 210 min, a 20-fold increase compared to the wild-type l-TD, and the temperature at which the activity of the enzyme decreased by 50% in 15 min increased from 39 to 53 °C. The mutant together with thermostable l-leucine dehydrogenase from Bacillus sphaericus DSM730 and formate dehydrogenase from Candida boidinii constituted a one-pot system for l-ABA biosynthesis. Employing preheat treatment in the one-pot system, the biosynthesis of l-ABA and total turnover number of NAD+/NADH were 0.993 M and 16,469, in contrast to 0.635 M and 10,531 with wild-type l-TD, respectively.

Conclusions

By using the engineered l-TD during endured preheat treatment, the one-pot system has achieved a higher productivity of l-ABA and total turnover number of coenzyme.
  相似文献   

14.

Background

Barley is an important crop used widely in Europe for food production, feed and malting. Unfortunately it is often colonised by fungi from the Fusarium genus. Fusarium culmorum is a global pathogen causing root rot and crown rot in small-grain cereals, resulting in a reduction in yield and grain quality. F. culmorum produces the highly toxic chemicals trichothecenes. Experimental

Procedures

Chemotypes and mating-type idiomorphs (MAT) were identified using Polymerase Chain Reactions (PCR) and genetic diversity was determined using Sequence-related Amplified Polymorphism (SRAP) and Random Amplified Polymorphic DNA (RAPD). Physiological features such as mycelium growth rate were also evaluated.

Results

As many as 94% of isolates was classified as a 3ADON producing and only two isolates displayed NIV chemotype. The average growth rate at 15°C and 25°C equalled 5.32 mm/day and 13.5 mm/day, respectively. The MAT idiomorph amplification revealed that 60% of isolates possessed MAT1-2 idiomorph. Among 32 obtained SRAP and RAPD markers, eight were associated with mycelium growth rate.

Conclusions

It was shown first time that F. culmorum isolates with MAT1-2 idiomorph in the genome grew slower than these with MAT1-1. High level of genetic variability was determined based on amplification of SRAP and RAPD markers.  相似文献   

15.
Inter simple sequence repeat (ISSR) polymorphism was used to determine genetic diversity and phylogenetic relationships in Oryza. Forty two genotypes including 17 wild species, representing AA,BB,CC,EE,FF,GG,BBCC,CCDD, and HHJJgenomes, two cultivated species, Oryza sativa (AA) and Oryza glaberrima (AA), and three related genera, Porteresia coarctata, Leersia and Rhynchoryza subulata, were used in ISSR analysis. A total of 30 ISSR primers were screened representing di-, tri-, tetra- and penta-nucleotide repeats, of which 11 polymorphic and informative patterns were selected to determine the genetic diversity. The consensus tree constructed using binary data from banding patterns generated by ISSR-PCR clustered 42 genotypes according to their respective genomes. ISSR analysis suggests that the genus Oryza may have evolved following a polyphyletic pathway; Oryza brachyantha (FF genome) is the most divergent species in Oryza and Oryza australiensis (EE genome) does not fall under the Officinalis complex. DNA profiles based on ISSR markers have revealed potential diagnostic fingerprints for various species and genomes, and also for individual accessions/cultivars. Additionally ISSR revealed 87 putative genome/species-specific molecular markers for eight of the nine genomes of Oryza. The ISSR markers are thus useful in the fingerprinting of cultivated and wild species germplasm, and in understanding the evolutionary relationships of Oryza. Received: 23 August 1999 / Accepted: 10 November 1999  相似文献   

16.

Background

Paspalum plicatulum is a perennial rhizomatous grass with natural diploid and polyploid cytotypes. It is a member of Plicatula, which has historically been recognized as a highly complex group containing species of ecological, ornamental and forage importance. The complex nature of the P. plicatulum genome makes it a challenging species for genetic research. This study aimed to develop and characterize microsatellite molecular markers in P. plicatulum and to evaluate their transferability to other Plicatula group species.

Findings

Microsatellite sequences were identified from three enriched libraries from P. plicatulum. Specific primers were designed, and 25 displayed polymorphism when screened across 48 polyploid Paspalum spp. genotypes. The number of bands per locus ranged from 2 to 17, with a mean of 8.65. Private bands for each species were identified; the highest number of private bands was observed for P. plicatulum in 52% of the loci analyzed. The mean polymorphism information content of all loci was 0.69, and the mean discriminatory power was 0.82. Microsatellite markers were satisfactorily cross-amplified for the eight tested Plicatula-group Paspalum species, with P. atratum exhibiting the highest transferability rate (89.86%). STRUCTURE and Discriminant Analysis of Principal Components separated accessions into three groups but did not reveal separation of the accessions according to species.

Conclusions

This study describes the first microsatellite markers in P. plicatulum, which are polymorphic, efficient for the detection and quantification of genetic variation, and show high transferability into other species of the Plicatula group. This set of markers can be used in future genetic and molecular studies necessary for the proper development of conservation and breeding programs. Private bands within the markers can be used to assist in species identification.
  相似文献   

17.

Background

Detailed comparative genome analyses within the economically important Rosaceae family have not been conducted. This is largely due to the lack of conserved gene-based molecular markers that are transferable among the important crop genera within the family [e.g. Malus (apple), Fragaria (strawberry), and Prunus (peach, cherry, apricot and almond)]. The lack of molecular markers and comparative whole genome sequence analysis for this family severely hampers crop improvement efforts as well as QTL confirmation and validation studies.

Results

We identified a set of 3,818 rosaceaous unigenes comprised of two or more ESTs that correspond to single copy Arabidopsis genes. From this Rosaceae Conserved Orthologous Set (RosCOS), 1039 were selected from which 857 were used for the development of intron-flanking primers and allele amplification. This led to successful amplification and subsequent mapping of 613 RosCOS onto the Prunus TxE reference map resulting in a genome-wide coverage of 0.67 to 1.06 gene-based markers per cM per linkage group. Furthermore, the RosCOS primers showed amplification success rates from 23 to 100% across the family indicating that a substantial part of the RosCOS primers can be directly employed in other less studied rosaceaous crops. Comparisons of the genetic map positions of the RosCOS with the physical locations of the orthologs in the Populus trichocarpa genome identified regions of colinearity between the genomes of Prunus-Rosaceae and Populus-Salicaceae.

Conclusion

Conserved orthologous genes are extremely useful for the analysis of genome evolution among closely and distantly related species. The results presented in this study demonstrate the considerable potential of the mapped Prunus RosCOS for genome-wide marker employment and comparative whole genome studies within the Rosaceae family. Moreover, these markers will also function as useful anchor points for the genome sequencing efforts currently ongoing in this family as well as for comparative QTL analyses.
  相似文献   

18.

Background

Microsatellites (or short tandem repeats, STRs) are the genetic markers of choice for studying Aspergillus fumigatus molecular epidemiology due to its reproducibility and high discrimination power. However, the specificity of these markers must be investigated in a group of isolates from closely related species. The aim of this work was to test a microsatellite-based PCR multiplex previously designed for A. fumigatus in a set of species belonging to section Fumigati, namely Aspergillus fumigatiaffinis, Aspergillus lentulus, Aspergillus novofumigatus, Aspergillus unilateralis, Aspergillus viridinutans, Neosartorya fischeri, Neosartorya hiratsukae, Neosartorya pseudofischeri and Neosartorya udagawae.

Results

The reference A. fumigatus strain ATCC 46645 was easily genotyped in standard conditions showing a final electrophoretic profile of 8 expected peaks corresponding to each microsatellite locus. Inversely, no peaks were observed for all other species from section Fumigati, with an exception for marker MC6b in A. unilateralis. By screening the genome sequence of Neosartorya fischeri NRRL 181, the results showed that MC3, MC6a and MC7 might be employed for N. fischeri genotyping since these markers present several repeats of each motif. The accumulation of insertions and deletions was frequently observed in the genomic regions surrounding the microsatellites, including those where the A. fumigatus primers are located. The amplification of microsatellite markers in less stringent amplification conditions resulted in a distinct electrophoretic profile for species within section Fumigati.

Conclusions

Therefore, the microsatellite-based PCR multiplex allow simple identification of A. fumigatus and, with a slight modification of temperature conditions, it also allows discriminating other pathogenic species within section Fumigati, particularly A. fumigatiaffinis, N. fischeri and N. udagawae.  相似文献   

19.

Key message

The selected material of Cerasus subgen. will be useful for conservation and management and important for Prunus breeding programs.

Abstract

Knowledge of relationships among the cultivated and wild species of Cerasus is important for recognizing gene pools in germplasm and developing effective conservation and management strategies. In this study, genetic and phylogenetic relationships of wild Cerasus subgenus species naturally growing in Iran, including P. avium (mazzard), P. mahaleb, P. brachypetala, P. incana, P. yazdiana, P. microcarpa subsp. microcarpa, P. microcarpa subsp. diffusa and P. pseudoprostrata and three commercial species, sweet cherry (P. avium), sour cherry (P. cerasus) and duke cherry (P. x gondouinii) was investigated based on 16 nuclear SSR and five chloroplast SSR. Very high level of polymorphism was detected among the studied species based these molecular markers, indicating high inter and intraspecific genetic variation. Inter and intraspecific genetic similarity coefficients varied from 0.00 to 1.00, indicating high genetic variation in studied germplasm. These two molecular markers types could distinguish differences between all species so that accessions of each species were placed into a single group. Based on molecular markers, a close correlation was observed between intraspecific variation and geographical distribution. Furthermore, based on nuSSR primers, most wild species showed 2–4 alleles and may be tetraploid. In conclusion, the conservation of these highly diverse native populations of Iranian wild Cerasus germplasm is recommended for future breeding activity.  相似文献   

20.
Fourteen microsatellite loci were developed for the eastern rock sengi, Elephantulus myurus Thomas & Schwann, 1906 by incorporating genetic diversity from across its range in South Africa. Sengis are small mammals belonging to the order Macroscelidea, which comprises 19 species, all of which are endemic to Africa. The loci were amplified in 66 individuals from six localities. An average of 10.5 alleles per locus were identified, with observed and expected heterozygosity values ranging from 0.081 to 0.909 and 0.404 to 0.911, respectively. We also investigated cross-species amplification within the family and found variation in amplification success for five different species. The preliminary results from these amplification efforts could aid further studies into aspects of species diversity and biology. The markers described here represent the first set of variable nuclear markers for the genus Elephantulus, and together with a set of 8 recently developed markers for Rhynchocyon petersi, Bocage 1880, the first markers for the order Macroscelidea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号