共查询到20条相似文献,搜索用时 15 毫秒
1.
Light-Dependent Tyrosine Phosphorylation in the Cyanobacterium Prochlorothrix hollandica 总被引:3,自引:0,他引:3 下载免费PDF全文
A light-dependent tyrosine kinase activity is present in soluble extracts from the cyanobacterium Prochlorothrix hollandica. The substrate of this tyrosine kinase activity is a soluble 88-kD protein that is phosphorylated when cultures of P. hollandica are adapted to high-light conditions. This phosphoprotein was identified by probing western blots of 32P-labeled soluble proteins from P. hollandica with an antibody specific for phosphotyrosine. This specificity was confirmed by competition experiments in which the antibody binding was abolished completely in the presence of excess phosphotyrosine but not phosphoserine and phosphothreonine. The kinetics of phosphorylation in vivo were determined by probing western blots with this antibody. Within 1 h following a switch from extended darkness to high light (200 [mu]mol photons m-2 s-1), the 88-kD protein was detectable upon India ink staining of western blots. After 3 h, the antibody recognized the phosphorylated form of this polypeptide. Within 6 h of a downshift from high to low light, the 88-kD protein was dephosphorylated. In vitro phosphorylation studies also showed that cell extracts can phosphorylate a tyrosine-containing artificial substrate; acid hydrolysis of both the artificial substrate and the 88-kD protein showed that phosphorylation occurred exclusively on tyrosine residues. Finally, experiments with high-light-adapted Synechococcus sp. PCC7942 suggest that a similar tyrosine phosphorylation event occurs in a phycobilisome-containing cyanobacterium. 相似文献
2.
3.
Functional Analysis of the Photosynthetic Apparatus of Prochlorothrix hollandica (Prochlorales), a Chlorophyll b Containing Procaryote 总被引:1,自引:0,他引:1 下载免费PDF全文
Light-shade adaptation of the chlorophyll a/b containing procaryote Prochlorothrix hollandica was studied in semicontinuous cultures adapted to 8, 80 and 200 μmole quanta per square meter per second. Chlorophyll a contents based on dry weight differed by a factor of 6 and chlorophyll b by a factor of 2.5 between the two extreme light conditions. Light utilization efficiencies determined from photosynthesis response curves were found to decrease in low light grown cultures due to lower light harvesting efficiencies; quantum requirements were constant at limiting and saturating irradiances for growth. At saturating growth irradiances, changes in light saturated oxygen evolution rate originated from changes in chlorophyll a antenna relative to the number of reaction centers II. At light-limiting conditions both the number of reaction centers II and the antenna size changed. The amount of chlorophyll b relative to reaction center II remained constant. As in cyanobacteria, the ratio of reaction center I to reaction center II was modulated during light-shade adaptation. On the other hand, time constants for photosynthetic electron transport (4 milliseconds) were low as observed in green algae and diatoms. The occurrence of state one to two and state two to one transitions is reported here. Another feature linking photosynthetic electron transport in P. hollandica to that in the eucaryotic photosynthetic apparatus was blockage of the state one to two transition by 3-(3,4-dichlorophenyl)-1,1-dimethylurea. Although chlorophyll b was reported in association with photosystem I, the 630 nanometer light effect does not exclude that chlorophyll b is the photoreceptor for the state one to two transition. 相似文献
4.
The photosynthetic activity and photosystem II fluorescence of Prochlorothrix hollandica were studied under anoxic, sulfide-rich conditions. Oxygenic photosynthetic activity with water as the electron donor was highly resistant to inhibition by sulfide. Cells still retained 50% of their oxygenic photosynthetic activity at >1 mM sulfide. In the presence of DCMU [N-(3,4-dichlorophenyl)-N(prm1)-dimethylurea], an inhibitor of photosystem II activity, P. hollandica cells exhibited a low but significant anoxygenic photosynthetic activity when sulfide was present. This activity increased with higher sulfide concentrations and reached maximal rates at concentrations exceeding 1 mM sulfide. The effects of hydroxylamine on both oxygen evolution and fluorescence induction kinetics were similar to those observed for sulfide. It was concluded that the oxidizing site of photosystem II was the site of sulfide action leading to reduced or even fully inhibited electron donation to photosystem II. These observations bear similarity to the situation in some cyanobacteria in which both hydroxylamine and sulfide inhibit electron donation from H(inf2)O to P(inf680). The high resistance of photosystem II to sulfide is related to the hydrophobic nature of the manganese-stabilizing protein in P. hollandica (T. S. Mor, A. F. Post, and I. Ohad, Biochim. Biophys. Acta 1141:206-212, 1993). The observed sulfide tolerance of P. hollandica may confer a competitive advantage in its natural environment, where it forms a dominant fraction of phytoplankton in waters in which sulfide presence is a recurring phenomenon. 相似文献
5.
Uwe Johannes Jürgens 《FEMS microbiology letters》1990,70(2):125-130
Abstract Rhizobium sp. isolated from Lablab purpureus utilized catechol as sole carbon and energy source, a property which is plasmid encoded. The heat curable (39–41°C) plasmid, designated as pAMG1, was transferred to cat− strains of Rhizobium sp. with a transfer frequency of 2.6 × 10−6 transconjugants/donor cell. 相似文献
6.
Lipopolysaccharide in the outer membrane of the filamentous prochlorophyte Prochlorothrix hollandica
Uwe J. Jürgens 《FEMS microbiology letters》1989,59(1-2):119-124
Abstract A lipopolysaccharide (LPS) fraction was isolated from Prochlorothrix hollandica by hot phenol/water extraction. Negatively stained preparations of an aqueous LPS dispersion showed the triple-layered appearance of the LPS aggregates. Glucose (main sugar), rhamnose, fucose, galactose, mannose, xylose, and 3- O -methyl-xylose were found as the constituents of the polysaccharide moiety. Glucosamine and the 3-hydroxy fatty acids, 3-OH-16:0, 3-OH-14:0, and the rarely detected iso-3-OH-15:0, constitute the lipid A of the LPS. l -glycero- d -manno-heptose and 3-deoxy- d -manno-2-octulosonic acid (dOclA), typical components of inner core oligosaccharides from enterobacterial LPS, were lacking in the isolated LPS fraction from Prochlorothrix hollandica . 相似文献
7.
NMR solution structure of plastocyanin from the photosynthetic prokaryote, Prochlorothrix hollandica
The solution structure of a divergent plastocyanin (PC) from the photosynthetic prokaryote Prochlorothrix hollandica was determined by homonuclear 1H NMR spectroscopy. Nineteen structures were calculated from 1222 distance restraints, yielding a family of structures having an average rmsd of 0.42 +/- 0.08 A for backbone atoms and 0.71 +/- 0.07 A for heavy atoms to the mean structure. No distance constraint was violated by more than 0.26 A in the structure family. Despite the low number of conserved residues shared with other PC homologues, the overall folding pattern of P. hollandica PC is similar to other PCs, in that the protein forms a two-sheet beta-barrel tertiary structure. The greatest variability among the backbone structures is seen in the loop region from residues 47-60. The differences seen in the P. hollandica PC homologue likely arise due to a small deletion of 2-4 residues compared to the PC consensus; this yields a less extended loop containing a short alpha-helix from residues Ala52-Leu55. Additionally, the protein has an altered hydrophobic patch thought to be important in binding reaction partners. Whereas the backbone structure is very similar within the loops of the hydrophobic region, the presence of two unique residues (Tyr12 and Pro14) yields a structurally different hydrophobic surface likely important in binding P. hollandica Photosystem I. 相似文献
8.
Peptidoglycan-polysaccharide complex in the cell wall of the filamentous prochlorophyte Prochlorothrix hollandica. 下载免费PDF全文
A peptidoglycan-polysaccharide complex composed of N-acetylglucosamine, N-acetylmuramic acid, muramic acid 6-phosphate, L-alanine, D-alanine, D-glutamic acid, meso-diaminopimelic acid, N-acetylmannosamine, mannose, galactose, glucose, and phosphate was isolated from cell walls of the filamentous prochlorophyte Prochlorothrix hollandica; this complex was similar in chemical composition and structure to that found in cyanobacteria. Peptide patterns of partial acid hydrolysates of the isolated peptidoglycan revealed an A1 gamma structure with direct cross-linkage (m-diaminopimelic acid-D-alanine) of the peptide side chains. The degree of cross-linkage (63%) was found to be in the range of values obtained for gram-positive bacteria and cyanobacteria. 相似文献
9.
Akhilesh Kumar Chaurasia Shree Kumar Apte 《Applied and environmental microbiology》2009,75(18):6008-6012
The bicistronic groESL operon, encoding the Hsp60 and Hsp10 chaperonins, was cloned into an integrative expression vector, pFPN, and incorporated at an innocuous site in the Anabaena sp. strain PCC7120 genome. In the recombinant Anabaena strain, the additional groESL operon was expressed from a strong cyanobacterial PpsbA1 promoter without hampering the stress-responsive expression of the native groESL operon. The net expression of the two groESL operons promoted better growth, supported the vital activities of nitrogen fixation and photosynthesis at ambient conditions, and enhanced the tolerance of the recombinant Anabaena strain to heat and salinity stresses.Nitrogen-fixing cyanobacteria, especially strains of Nostoc and Anabaena, are native to tropical agroclimatic conditions, such as those of Indian paddy fields, and contribute to the carbon (C) and nitrogen (N) economy of these soils (22, 30). However, their biofertilizer potential decreases during exposure to high temperature, salinity, and other such stressful environments (1). A common target for these stresses is cellular proteins, which are denatured and inactivated during stress, resulting in metabolic arrest, cessation of growth, and eventually loss of viability. Molecular chaperones play a major role in the conformational homeostasis of cellular proteins (13, 16, 24, 26) by (i) proper folding of nascent polypeptide chains; (ii) facilitating protein translocation and maturation to functional conformation, including multiprotein complex assembly; (iii) refolding of misfolded proteins; (iv) sequestering damaged proteins to aggregates; and (v) solubilizing protein aggregates for refolding or degradation. Present at basal levels under optimum growth conditions in bacteria, the expression of chaperonins is significantly enhanced during heat shock and other stresses (2, 25, 32).The most common and abundant cyanobacterial chaperones are Hsp60 proteins, and nitrogen-fixing cyanobacteria possess two or more copies of the hsp60 or groEL gene (http://genome.kazusa.or.jp/cyanobase). One occurs as a solitary gene, cpn60 (17, 21), while the other is juxtaposed to its cochaperonin encoding genes groES and constitutes a bicistronic operon groESL (7, 19, 31). The two hsp60 genes encode a 59-kDa GroEL and a 61-kDa Cpn60 protein in Anabaena (2, 20). Both the Hsp60 chaperonins are strongly expressed during heat stress, resulting in the superior thermotolerance of Anabaena, compared to the transient expression of the Hsp60 chaperonins in Escherichia coli (20). GroEL and Cpn60 stably associate with thylakoid membranes in Anabaena strain PCC7120 (14) and in Synechocystis sp. strain PCC6803 (15). In Synechocystis sp. strain PCC6803, photosynthetic inhibitors downregulate, while light and redox perturbation induce cpn60 expression (10, 25, 31), and a cpn60 mutant exhibits a light-sensitive phenotype (http://genome.kazusa.or.jp/cyanobase), indicating a possible role for Cpn60 in photosynthesis. GroEL, a lipochaperonin (12, 28), requires a cochaperonin, GroES, for its folding activity and has wider substrate selectivity. In heterotrophic nitrogen-fixing bacteria, such as Klebsiella pneumoniae and Bradyrhizobium japonicum, the GroEL protein has been implicated in nif gene expression and the assembly, stability, and activity of the nitrogenase proteins (8, 9, 11).Earlier work from our laboratory demonstrated that the Hsp60 family chaperonins are commonly induced general-stress proteins in response to heat, salinity, and osmotic stresses in Anabaena strains (2, 4). Our recent work elucidated a major role of the cpn60 gene in the protection from photosynthesis and the nitrate reductase activity of N-supplemented Anabaena cultures (21). In this study, we integrated and constitutively overexpressed an extra copy of the groESL operon in Anabaena to evaluate the importance and contribution of GroEL chaperonin to the physiology of Anabaena during optimal and stressful conditions.Anabaena sp. strain PCC7120 was photoautotrophically grown in combined nitrogen-free (BG11−) or 17 mM NaNO3-supplemented (BG11+) BG11 medium (5) at pH 7.2 under continuous illumination (30 μE m−2 s−1) and aeration (2 liters min−1) at 25°C ± 2°C. Escherichia coli DH5α cultures were grown in Luria-Bertani medium at 37°C at 150 rpm. For E. coli DH5α, kanamycin and carbenicillin were used at final concentrations of 50 μg ml−1 and 100 μg ml−1, respectively. Recombinant Anabaena clones were selected on BG11+ agar plates supplemented with 25 μg ml−1 neomycin or in BG11− liquid medium containing 12.5 μg ml−1 neomycin. The growth of cyanobacterial cultures was estimated either by measuring the chlorophyll a content as described previously (18) or the turbidity (optical density at 750 nm). Photosynthesis was measured as light-dependent oxygen evolution at 25 ± 2°C by a Clark electrode (Oxy-lab 2/2; Hansatech Instruments, England) as described previously (21). Nitrogenase activity was estimated by acetylene reduction assays, as described previously (3). Protein denaturation and aggregation were measured in clarified cell extracts containing ∼500 μg cytosolic proteins treated with 100 μM 8-anilino-1-naphthalene sulfonate (ANS). The pellet (protein aggregate) was solubilized in 20 mM Tris-6 M urea-2% sodium dodecyl sulfate (SDS)-40 mM dithiothreitol for 10 min at 50°C. The noncovalently trapped ANS was estimated using a fluorescence spectrometer (model FP-6500; Jasco, Japan) at a λexcitation of 380 nm and a λemission of 485 nm, as described previously (29).The complete bicistronic groESL operon (2.040 kb) (GenBank accession no. ) was PCR amplified from PCC7120 genomic DNA using specific primers (Table FJ608815(Table1)1) and the amplicon cloned into the NdeI-BamHI restriction sites of plasmid vector pFPN, which allows integration at a defined innocuous site in the PCC7120 genome and expression from a strong cyanobacterial PpsbA1 promoter (6). The resulting construct, designated pFPNgro (Table (Table1),1), was electroporated into PCC7120 using an exponential-decay wave form electroporator (200 J capacitive energy at a full charging voltage of 2 kV; Pune Polytronics, Pune, India), as described previously (6). The electroporation was carried out at 6 kV cm−1 for 5 ms, employing an external autoclavable electrode with a 2-mm gap. The electroporation buffer contained high concentrations of salt (10 mM HEPES, 100 mM LiCl, 50 mM CaCl2), as have been recommended for plant cells (23) and other cell types (27). The electrotransformants, selected on BG11+ agar plates supplemented with 25 μg ml−1 neomycin by repeated subculturing for at least 25 weeks to achieve complete segregation, were designated AnFPNgro.
Open in a separate windowaThe underlined nucleotides in the primer sequences represent the incorporated restriction endonuclease sites.The transfer of pFPNgro to PCC7120 resulted in the integration of an extra copy of groESL (PpsbA1-groESL) into the PCC7120 genome. PCR amplification (Fig. (Fig.1I)1I) with the PpsbA1 forward and groESL reverse primer pairs showed the additional copy of groEL juxtaposed downstream to the PpsbA1 promoter (lane 6) in the recombinant Anabaena strain, while the native groESL operon found in the wild-type strain (lane 3) remained intact in the AnFPNgro strain (lane 5).Open in a separate windowFIG. 1.Integration and constitutive expression of an additional groESL operon in Anabaena strain PCC7120. (I) Integration of an additional groESL operon in the PCC7120 genome. The electrophoretogram shows the transfer and integration of PpsbA1-groESL in strain AnFPNgro. Lane 1, 1-kb DNA marker; lane 2, PCR control template without primer; lane 3, PCR product from wild-type Anabaena using the groESLfwd and groESLrev primers; lane 4, PCR product from PCC7120 using the PpsbA1fwd and groESLrev primers; lane 5, PCR product from AnFPNgro using the groESLfwd and groESLrev primers; lane 6, PCR product from AnFPNgro using the PpsbA1fwd and groESLrev primers. (II) Expression of the groESL operon in the wild-type and recombinant Anabaena strains during stress. PCC7120 (An7120) and AnFPNgro were grown for 3 days and then subjected to either heat stress (42°C) for 4 h (A and A′) or salinity stress (150 mM NaCl) for 3 days (B and B′). GroEL levels were estimated by Western blotting of 10% SDS-polyacrylamide gel electrophoresis-resolved whole-cell proteins, followed by immunodetection using anti-AnGroEL antiserum and densitometry (A and B). Panels A′ and B′ depict SDS-polyacrylamide gel electrophoresis-resolved and Coomassie blue-stained proteins to show equal sample loading. Various lanes contained protein samples under unstressed-control (U), heat (H), or salt (S) stress conditions. Numbers below panels A and B show GroEL quantitation by densitometry.Under normal growth conditions, the recombinant AnFPNgro cells expressed about 8.7- to 9.9-fold higher levels of GroEL protein than that detected in the PCC7120 cells (Fig. 1II), indicating a strong constitutive expression of the GroEL protein from the PpsbA1 promoter. In PCC7120, the wild-type copy of the GroEL protein was induced by both heat shock (Fig. 1IIA, lane 2) and salt stress (Fig. 1IIB, lane 2). GroEL levels in the recombinant strain were found to be about 2.5-fold higher under heat stress (Fig. 1IIA, lane 4) and approximately 1.7-fold higher under salinity stress (Fig. 1IIB, lane 4) than that expressed by PCC7120 under these stresses (Fig. 1IIA and IIB, lanes 2). The exposure of AnFPNgro cells to heat stress resulted in a further increase of approximately sixfold in GroEL levels (Fig. 1IIA, lane 4), while salt stress enhanced GroEL levels by approximately threefold (Fig. 1IIB, lane 4), compared to the constitutively expressed GroEL level in this strain (Fig. 1IIA and IIB, lanes 3). The constitutive expression of GroEL protein in AnFPNgro under ambient conditions (Fig. 1IIA and IIB, lanes 3) was from the PpsbA1 promoter (Fig. (Fig.1I,1I, lane 6). We assume that the additional increase in GroEL levels observed under heat and salt stress (Fig. 1IIA and IIB, lanes 4) was due to the native stress-induced groESL operon, functional from its own promoter.The diazotrophically grown PCC7120 did not grow during prolonged exposure to heat stress (42°C) (Fig. (Fig.2A)2A) and showed poor growth during salinity stress (150 mM) (Fig. (Fig.2B).2B). Salinity stress was particularly severe for photosynthetic pigments in PCC7120 and bleached the cells (data not shown). In contrast, the recombinant strain AnFPNgro showed a higher content of major photosynthetic pigments (Fig. (Fig.2C)2C) and presented a healthier blue-green phenotype (data not included). Strain AnFPNgro also showed better growth than wild-type PCC7120, both under unstressed and stressed conditions (Fig. 2A and B).Open in a separate windowFIG. 2.Effect of groESL overexpression on thermotolerance and salinity tolerance of diazotrophically grown Anabaena strains. (A) Growth (measured as chlorophyll a content) of strains during prolonged exposure to 42°C. (B) Growth (turbidity measured at an optical density at 750 nm) during prolonged exposure to 150 mM NaCl. (C) Absorption spectra of a dilute suspension of whole filaments after 7 days of exposure to various NaCl concentrations.The photosynthetic activity decreased with time during heat stress in PCC7120 but was maintained at comparatively higher levels in AnFPNgro cells (Fig. (Fig.3A)3A) than in PCC7120. The dinitrogenase activity in PCC7120 was severely inhibited after 4 h of heat stress (Fig. (Fig.3B).3B). In contrast, the dinitrogenase activity of the recombinant strain (AnFPNgro) was about 1.5-fold higher than PCC7120 under ambient conditions (25°C ± 2°C, no NaCl) and more than 3-fold higher than that of PCC7120 after 4 h of heat stress (Fig. (Fig.3B).3B). Prolonged exposure to salinity stress inhibited photosynthesis and nitrogen fixation in PCC7120 (Fig. 3C and D). However, strain AnFPNgro displayed significant protection of these activities, possibly due to overexpressed GroES/GroEL proteins. The recombinant strain (AnFPNgro) exhibited much-reduced protein aggregation after 4 h of heat stress or after prolonged exposure (10 days) to salinity stress than PCC7120 (Fig. (Fig.44).Open in a separate windowFIG. 3.Effect of groESL overexpression on photosynthesis and nitrogen fixation in Anabaena. Photosynthesis (A and C) and nitrogenase activity (B and D) in wild-type Anabaena strain PCC7120 (An7120) and recombinant AnFPNgro strains exposed to heat stress for 10 days (A) or 4 h (B) or to salinity stress (150 mM) for 10 days (C and D). Letters U, H, and S denote unstressed-control, heat stress, and salt stress conditions, respectively.Open in a separate windowFIG. 4.Protein aggregation in Anabaena strains during exposure to heat and salinity stress. The protein aggregation was monitored by ANS fluorescence after 4 h of exposure to 42°C (H) or 10 days of exposure to 150 mM NaCl (S) and compared with the unstressed controls (U) of recombinant strain AnFPNgro and the wild-type Anabaena strain PCC7120 (An7120). The fluorescence intensity output from the spectrofluorimeter is expressed as arbitrary units (a.u.).This study evaluated the possible benefits of groESL overexpression for the general stress tolerance of PCC7120. The recombinant AnFPNgro strain harbored two groESL operons, one native stress-inducible groESL and a second groESL operon integrated at a defined innocuous site and placed downstream of a constitutive PpsbA1 promoter (Fig. (Fig.1).1). The recombinant AnFPNgro strain showed an 8- to 10-fold higher constitutive expression of GroEL under ambient conditions than PCC7120, while its inherent stress-induced GroEL expression was not impaired and resulted in 30- and 48-fold more GroEL under salt and heat stress, respectively (Fig. (Fig.11).The AnFPNgro cells exhibited better growth (Fig. (Fig.2),2), photosynthesis, and nitrogen fixation (Fig. (Fig.3)3) than PCC7120, suggesting a possible limitation on the availability of GroEL under ambient conditions. The protection of photosynthetic pigments and oxygen photoevolution during salinity stress were particularly impressive. Nearly 2- to 2.5-fold higher GroEL levels in AnFPNgro under heat or salt stress, compared to those of PCC7120 (Fig. (Fig.1),1), lowered the stress-triggered protein aggregation (Fig. (Fig.4)4) and had beneficial consequences for photosynthesis and nitrogen fixation in the recombinant strain (Fig. (Fig.3).3). An overall improvement in the aforesaid vital metabolic activities eventually resulted in the superior tolerance of recombinant AnFPNgro to heat and salt stresses. 相似文献
TABLE 1.
Plasmids, strains, and primers used in this studyPlasmid, strain, or primer | Feature or sequencea | Source or reference |
---|---|---|
Plasmids | ||
pFPN | Integrative expression vector | 6 |
pFPNgro | pFPN with groESL operon | This study |
Strains | ||
An7120 | Wild-type Anabaena sp. strain PCC7120 | R. Haselkorn |
AnFPNgro | GroESL-overexpressing Anabaena | This study |
Primers | ||
groESLfwd | 5′-GGA ATT CCA TAT GGC AGC AGT ATC TCT AAG-3′ | This study |
groESLrev | 5′-CGC GGA TCC TTA GTA ATC GAA GTC ACC GCC-3′ | This study |
PpsbA1fwd | 5′-GAG CTG CAG GGA TTC CCA AAG ATA GGG-3′ | 6 |
PpsbA1rev | 5′-CTC GGA TCC CCA TAT GTT TTT ATG ATT GCT TTG-3′ | 6 |
10.
The outer membrane of Prochlorothrix hollandica is covered with a network of fine fibrils on its surface and separated from the cytoplasmic membrane by an electrondense peptidoglycan layer (8 to 20 nm thick). The thylakoid membranes are arranged in stacked and unstacked regions which present four characteristic fracture faces with different numbers and sizes of intramembrane particles. Cell inclusions such as polyhedral bodies (carboxysomes), ribosomes, and polyphosphate granules were found in Prochlorothrix hollandica. Another type of cell inclusions was identified by its characteristic shape (a cylindre with conical caps) and a regular striation as gas vesicles. It is concluded that the organism is in its morphological structure similar to the cyanobacteria.Abbreviations C
carboxysome
- CM
cytoplasmic membrane
- EFs, EFu
exoplasmic fracture face of stacked and unstacked membrane area, respectively
- ES
exoplasmic surface
- PFs, PFu
plasmic fracture face of stacked and unstacked membrane area, respectively
- PG
peptidoglycan layer
- TM
thylakoid membrane
Dedicated to Prof. Dr. D. Peters, Hamburg, on the occasion of his 75th birthday 相似文献
11.
J. Michael Engle William Burkhart Debra M. Sherman George S. Bullerjahn 《Archives of microbiology》1991,155(5):453-458
We have identified a water-soluble surface-associated complex from Prochlorothrix hollandica, composed of two polypeptides of 56 and 58 kilodaltons (kDa), zeaxanthin, and lipopolysaccharide. The complex was purified
by preparative isoelectric focusing (pI=3.0). The outer membrane lipopolysaccharide co-purified with the complex. Immunocytochemisty
employing a polyclonal antibody to the apoproteins exclusively labeled the cell surface. Both zeaxanthin and the protein accumulated
under high light intensities, thus we propose that the complex may play a role in photoprotection. 相似文献
12.
Chlorophyll-protein composition of the thylakoid membrane from Prochlorothrix hollandica, a prokaryote containing chlorophyll b 总被引:3,自引:0,他引:3
G S Bullerjahn H C Matthijs L R Mur L A Sherman 《European journal of biochemistry》1987,168(2):295-300
The chlorophyll-protein complexes of the thylakoid membrane from Prochlorothrix hollandica were identified following electrophoresis under nondenaturing conditions. Five complexes, CP1-CP5, were resolved and these green bands were analyzed by spectroscopic and immunological methods. CP1 contains the photosystem I (PSI) reaction center, as this complex quenched fluorescence at room temperature, and had a 77 K fluorescence emission peak at 717 nm. CP4 contains the major chlorophyll-a-binding proteins of the photosystem II (PSII) core, because this complex contained polypeptides which cross-reacted to antibodies raised against Chlamydomonas PSII proteins 5 and 6. Furthermore, fluorescence excitation studies at 77 K indicated that only a Chl a is bound to CP4. Complexes CP2, CP3 and CP5 contained functionally bound Chl a and b as judged by absorption spectroscopy at 20 degrees C and fluorescence excitation spectra at 77 K. CP2, CP3 and CP5 all contain polypeptides of 30-33 kDa which are immunologically distinct from the LHC-II complex of higher plant thylakoids. 相似文献
13.
14.
J A Navarro E Myshkin M A De la Rosa G S Bullerjahn M Hervás 《The Journal of biological chemistry》2001,276(40):37501-37505
A number of surface residues of plastocyanin from Prochlorothrix hollandica have been modified by site-directed mutagenesis. Changes have been made in amino acids located in the amino-terminal hydrophobic patch of the copper protein, which presents a variant structure as compared with other plastocyanins. The single mutants Y12G, Y12F, Y12W, P14L, and double mutant Y12G/P14L have been produced. Their reactivity toward photosystem I has been analyzed by laser flash absorption spectroscopy. Plots of the observed rate constant with all mutants versus plastocyanin concentration show a saturation profile similar to that with wild-type plastocyanin, thus suggesting the formation of a plastocyanin-photosystem I transient complex. The mutations do not induce relevant changes in the equilibrium constant for complex formation but induce significant variations in the electron transfer rate constant, mainly with the two mutants at proline 14. Additionally, molecular dynamics calculations indicate that mutations at position 14 yield small changes in the geometry of the copper center. The comparative kinetic analysis of the reactivity of plastocyanin mutants toward photosystem I from different organisms (plants and cyanobacteria) reveals that reversion of the unique proline of Prochlorothrix plastocyanin to the conserved leucine of all other plastocyanins at this position enhances the reactivity of the Prochlorothrix protein. 相似文献
15.
Computational simulation of the docking of Prochlorothrix hollandica plastocyanin to potosystem I: modeling the electron transfer complex 下载免费PDF全文
We have used several docking algorithms (GRAMM, FTDOCK, DOT, AUTODOCK) to examine protein-protein interactions between plastocyanin (Pc)/photosystem I (PSI) in the electron transfer reaction. Because of the large size and complexity of this system, it is faster and easier to use computer simulations than conduct x-ray crystallography or nuclear magnetic resonance experiments. The main criterion for complex selection was the distance between the copper ion of Pc and the P700 chlorophyll special pair. Additionally, the unique tyrosine residue (Tyr(12)) of the hydrophobic docking surface of Prochlorothrix hollandica Pc yields a specific interaction with the lumenal surface of PSI, thus providing the second constraint for the complex. The structure that corresponded best to our criteria was obtained by the GRAMM algorithm. In this structure, the solvent-exposed histidine that coordinates copper in Pc is at the van der Waals distance from the pair of stacked tryptophans that separate the chlorophylls from the solvent, yielding the shortest possible metal-to-metal distance. The unique tyrosine on the surface of the Prochlorothrix Pc hydrophobic patch also participates in a hydrogen bond with the conserved Asn(633) of the PSI PsaB polypeptide (numbering from the Synechococcus elongatus crystal structure). Free energy calculations for complex formation with wild-type Pc, as well as the hydrophobic patch Tyr(12)Gly and Pro(14)Leu Pc mutants, were carried out using a molecular mechanics Poisson-Boltzman, surface area approach (MM/PBSA). The results are in reasonable agreement with our experimental studies, suggesting that the obtained structure can serve as an adequate model for P. hollandica Pc-PSI complex that can be extended for the study of other cyanobacterial Pc/PSI reaction pairs. 相似文献
16.
Immunological characterization of the Prochlorothrix hollandica and Prochloron sp. chlorophyll a/b antenna proteins 总被引:1,自引:0,他引:1
George S. Bullerjahn Timothy C. Jensen Debra M. Sherman Louis A. Sherman 《FEMS microbiology letters》1990,67(1-2):99-106
Polyclonal antibodies were prepared against the major antenna chlorophyll (Chl) a/b-binding protein from the prokaryote Prochlorothrix hollandica (Burger-Wiersma et al. (1986) Nature (Lond.) 320, 262-264). Immunoblotting experiments on Triton X-114 phase-partitioned P. hollandica thylakoids revealed that the antibody recognizes intrinsic membrane polypeptides of 33 and 30 kDa, and immunocytochemistry of P. hollandica thin sections showed that the antibody preferentially decorates the thylakoid. The antibody was immunopurified against a LacZ fusion protein produced in Escherichia coli by an immunopositive phage clone retrieved from a lambda ZAP expression library. This purified antibody crossreacted to both the 33 and 30 kDa polypeptides, indicating that these proteins are either structurally related products of different genes, or modified forms of the same gene product. Whereas immunological crossreactivity of Prochlorothrix antibody to the major LHC-II Chl a/b antenna of maize could not be detected, the immunopurified antibody reacted strongly to the major 34 kDa Chl a/b antenna protein from the prokaryote Prochloron sp. (Lewin (1975) Phycologia 14, 153-160). These data confirm the structural similarity of the prochlorophyte photosynthetic antenna systems. 相似文献
17.
D. P. Singh J. I. S. Khattar Mandeep Kaur Gurdeep Kaur Meenu Gupta Yadvinder Singh 《PloS one》2013,8(1)
This study deals with anilofos tolerance and its mineralization by the common rice field cyanobacterium Synechocystis sp. strain PUPCCC 64. The organism tolerated anilofos up to 25 mg L−1. The herbicide caused inhibitory effects on photosynthetic pigments of the test organism in a dose-dependent manner. The organism exhibited 60, 89, 96, 85 and 79% decrease in chlorophyll a, carotenoids, phycocyanin, allophycocyanin and phycoerythrin, respectively, in 20 mg L−1 anilofos on day six. Activities of superoxide dismutase, catalase and peroxidase increased by 1.04 to 1.80 times over control cultures in presence of 20 mg L−1 anilofos. Glutathione content decreased by 26% while proline content was unaffected by 20 mg L−1 anilofos. The test organism showed intracellular uptake and metabolized the herbicide. Uptake of herbicide by test organism was fast during initial six hours followed by slow uptake until 120 hours. The organism exhibited maximum anilofos removal at 100 mg protein L−1, pH 8.0 and 30°C. Its growth in phosphate deficient basal medium in the presence of anilofos (2.5 mg L−1) indicated that herbicide was used by the strain PUPCCC 64 as a source of phosphate. 相似文献
18.
Action spectra for photosystem II (PSII)-driven oxygen evolution and of photosystem I (PSI)-mediated H(2) photoproduction and photoinhibition of respiration were used to determine the participation of chlorophyll (Chl) a/b-binding Pcb proteins in the functions of pigment apparatus of Prochlorothrix hollandica. Comparison of the in situ action spectra with absorption spectra of PSII and PSI complexes isolated from the cyanobacterium Synechocystis 6803 revealed a shoulder at 650 nm that indicated presence of Chl b in the both photosystems of P. hollandica. Fitting of two action spectra to absorption spectrum of the cells showed a chlorophyll ratio of 4:1 in favor of PSI. Effective antenna sizes estimated from photochemical cross-sections of the relevant photoreactions were found to be 192+/-28 and 139+/-15 chlorophyll molecules for the competent PSI and PSII reaction centers, respectively. The value for PSI is in a quite good agreement with previous electron microscopy data for isolated Pcb-PSI supercomplexes from P. hollandica that show a trimeric PSI core surrounded by a ring of 18 Pcb subunits. The antenna size of PSII implies that the PSII core dimers are associated with approximately 14 Pcb light-harvesting proteins, and form the largest known Pcb-PSII supercomplexes. 相似文献
19.
20.
van der Staay Georg W. M. Yurkova Natalya Green Beverley R. 《Plant molecular biology》1998,36(5):709-716
The chlorophyll (Chl) a/b proteins of the photosynthetic prokaryotes appear to have evolved by gene duplication and divergence of the core Chl a antenna family, which also includes CP43 and CP47 and the iron-stress induced Chl a-binding IsiA proteins. We show here that Prochlorothrix hollandica has a cluster of three pcb (prochlorophyte chlorophyll b) genes which are co-transcribed. The major antenna polypeptides of 32 and 38 kDa are encoded by pcbA and pcbC respectively. The pcbC gene is significantly divergent from the other two and may have originated by a gene duplication independent of the one that led to isiA and the other prochlorophyte pcb genes. The distant relatedness of the three prochlorophyte genera implies that not only the ability to make Chl b and use it for light-harvesting arose independently in the three lineages, but also that the pcb genes may have arisen as the result of independent gene duplications in each lineage. 相似文献